1
|
Zheng Y, Zhang TN, Hao PH, Yang N, Du Y. Histone deacetylases and their inhibitors in kidney diseases. Mol Ther 2025:S1525-0016(25)00300-4. [PMID: 40263937 DOI: 10.1016/j.ymthe.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/18/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
Histone deacetylases (HDACs) have emerged as key regulators in the pathogenesis of various kidney diseases. This review explores recent advancements in HDAC research, focusing on their role in kidney development and their critical involvement in the progression of chronic kidney disease (CKD), acute kidney injury (AKI), autosomal dominant polycystic kidney disease (ADPKD), and diabetic kidney disease (DKD). It also discusses the therapeutic potential of HDAC inhibitors in treating these conditions. Various HDAC inhibitors have shown promise by targeting specific HDAC isoforms and modulating a range of biological pathways. Their protective effects include modulation of apoptosis, autophagy, inflammation, and fibrosis, underscoring their broad therapeutic potential for kidney diseases. However, further research is essential to improve the selectivity of HDAC inhibitors, minimize toxicity, overcome drug resistance, and enhance their pharmacokinetic properties. This review offers insights to guide future research and prevention strategies for kidney disease management.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yue Du
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Liu M, Chen X. Human Umbilical Cord-Derived Mesenchymal Stem Cells-Exosomes-Delivered miR-375 Targets HDAC4 to Promote Autophagy and Suppress T Cell Apoptosis in Sepsis-Associated Acute Kidney Injury. Appl Biochem Biotechnol 2024; 196:7954-7973. [PMID: 38668845 DOI: 10.1007/s12010-024-04963-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 12/14/2024]
Abstract
This study sought to elucidate the mechanism of human umbilical cord-derived mesenchymal stem cells (HUCMSCs)-exosomes (Exos) in sepsis-associated acute kidney injury (SAKI). Exos were isolated from HUCMSCs and co-cultured with CD4+ T cells exposed to lipopolysaccharide to detect the effects of HUCMSCs-Exos on CD4+ T cell apoptosis and autophagy. miR-375 expression in CD4+ T cells and HUCMSCs-Exos was examined. The relationship between miR-375 and HDAC4 was analyzed. A mouse model of SAKI was established and injected with HUCMSCs-Exos to verify the function of HUCMSCs-Exos in vivo. HUCMSCs-Exos inhibited lipopolysaccharide-induced apoptosis of CD4+ T cells and promoted autophagy. miR-375 expression was noted to be elevated in the HUCMSCs-Exos. Importantly, HUCMSCs-Exos could deliver miR-375 into CD4+ T cells where miR-375 targeted HDAC4 and negatively regulated its expression. By this mechanism, HUCMSCs-Exos decreased CD4+ T cell apoptosis and augmented autophagy. This finding was further confirmed in an in vivo SAKI model. Collectively, HUCMSCs-Exos can protect against SAKI via delivering miR-375 that promotes autophagy and arrests T cell apoptosis through HDAC4 downregulation. These findings suggest a promising therapeutic potential for HUCMSCs-Exos in the context of SAKI.
Collapse
Affiliation(s)
- Min Liu
- Department of Intensive Care, the First Hospital of Changsha, No. 311 Yingpan Road, Changsha, Hunan, 410005, People's Republic of China
| | - Xiyun Chen
- Department of Gynecology, the First Hospital of Changsha, No. 311 Yingpan Road, Changsha, Hunan, 410005, People's Republic of China.
| |
Collapse
|
3
|
Chen C, Li Y, Feng T, Chen X, Li C, Li L, Zhu M, Chang Y, Wang S. LMK-235 suppresses osteoclastogenesis and promotes osteoblastogenesis by inhibiting HDAC4. Sci Rep 2024; 14:19973. [PMID: 39198677 PMCID: PMC11358535 DOI: 10.1038/s41598-024-70814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoblasts and osteoclasts play an important role in maintaining the structural integrity of bone tissue, in which osteoclasts degrade bone structure and osteoblasts restore bone tissue. The imbalance of osteoblast and osteoclast function can lead to many bone-related diseases, such as osteoporosis and inflammatory osteolysis. The drug that can both promote bone formation and inhibit bone loss will be able to treat those diseases. In this study, it was found that LMK-235, an selective HDAC4/5 inhibitor, inhibited the differentiation and maturation of osteoclasts by regulating NF-κB and p-Smad2/3 signaling pathways via inhibition of HDAC4. At the same time, we found that LMK-235 promoted osteoblast mineralization by upregulating Runx2 expression via inhibition of HDAC4. In vivo, LMK-235 was able to alleviate lipopolysaccharide (LPS)-induced calvarial osteolysis and promote the repair of bone defects. Taken together, LMK-235 suppresses osteoclast differentiation and promotes osteoblast formation by inhibiting HDAC4. This may provide a valuable treatment for bone diseases caused by abnormal osteoclast bone resorption and osteoblast bone regeneration.
Collapse
Affiliation(s)
- Chongwei Chen
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yue Li
- Department of Biochemistry, Basic Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Teng Feng
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xinping Chen
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Chengwei Li
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Lu Li
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengbo Zhu
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.
| | - Yaqiong Chang
- Department of Nursing, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.
| | - Shaowei Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.
| |
Collapse
|
4
|
Tang B, Shi Y, Zeng Z, He X, Yu J, Chai K, Liu J, Liu L, Zhan Y, Qiu X, Tang R, Xiao Y, Xiao R. Silica's silent threat: Contributing to skin fibrosis in systemic sclerosis by targeting the HDAC4/Smad2/3 pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124194. [PMID: 38782158 DOI: 10.1016/j.envpol.2024.124194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Nowadays, silica products are widely used in daily life, especially in skin applications, which inevitably increases the risk of silica exposure in general population. However, inadequate awareness of silica's potential hazards and lack of self-protection are of concern. Systemic sclerosis (SSc) is characterized by progressive tissue fibrosis under environmental and genetic interactions. Silica exposure is considered an important causative factor for SSc, but its pathogenesis remains unclear. Within this study, we showed that lower doses of silica significantly promoted the proliferation, migration, and activation of human skin fibroblasts (HSFs) within 24 h. Silica injected subcutaneously into mice induced and exacerbated skin fibrosis. Notably, silica increased histone deacetylase-4 (HDAC4) expression by inducing its DNA hypomethylation in normal HSFs. The elevated HDAC4 expression was also confirmed in SSc HSFs. Furthermore, HDAC4 was positively correlated with Smad2/3 phosphorylation and COL1, α-SMA, and CTGF expression. The HDAC4 inhibitor LMK235 mitigated silica-induced upregulation of these factors and alleviated skin fibrosis in SSc mice. Taken together, silica induces and exacerbates skin fibrosis in SSc patients by targeting the HDAC4/Smad2/3 pathway. Our findings provide new insights for evaluating the health hazards of silica exposure and identify HDAC4 as a potential interventional target for silica-induced SSc skin fibrosis.
Collapse
Affiliation(s)
- Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ke Chai
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Licong Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiangning Qiu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Rui Tang
- Department of Rheumatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
5
|
Zhang Y, Yu C, Li X. Kidney Aging and Chronic Kidney Disease. Int J Mol Sci 2024; 25:6585. [PMID: 38928291 PMCID: PMC11204319 DOI: 10.3390/ijms25126585] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The process of aging inevitably leads to an increase in age-related comorbidities, including chronic kidney disease (CKD). In many aspects, CKD can be considered a state of accelerated and premature aging. Aging kidney and CKD have numerous common characteristic features, ranging from pathological presentation and clinical manifestation to underlying mechanisms. The shared mechanisms underlying the process of kidney aging and the development of CKD include the increase in cellular senescence, the decrease in autophagy, mitochondrial dysfunction, and the alterations of epigenetic regulation, suggesting the existence of potential therapeutic targets that are applicable to both conditions. In this review, we provide a comprehensive overview of the common characteristics between aging kidney and CKD, encompassing morphological changes, functional alterations, and recent advancements in understanding the underlying mechanisms. Moreover, we discuss potential therapeutic strategies for targeting senescent cells in both the aging process and CKD.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chen Yu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Pan S, Yuan T, Xia Y, Yu W, Zhou X, Cheng F. Role of Histone Modifications in Kidney Fibrosis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:888. [PMID: 38929505 PMCID: PMC11205584 DOI: 10.3390/medicina60060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Chronic kidney disease (CKD) is characterized by persistent kidney dysfunction, ultimately resulting in end-stage renal disease (ESRD). Renal fibrosis is a crucial pathological feature of CKD and ESRD. However, there is no effective treatment for this condition. Despite the complex molecular mechanisms involved in renal fibrosis, increasing evidence highlights the crucial role of histone modification in its regulation. The reversibility of histone modifications offers promising avenues for therapeutic strategies to block or reverse renal fibrosis. Therefore, a comprehensive understanding of the regulatory implications of histone modifications in fibrosis may provide novel insights into more effective and safer therapeutic approaches. This review highlights the regulatory mechanisms and recent advances in histone modifications in renal fibrosis, particularly histone methylation and histone acetylation. The aim is to explore the potential of histone modifications as targets for treating renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (T.Y.); (Y.X.); (W.Y.)
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (T.Y.); (Y.X.); (W.Y.)
| |
Collapse
|
7
|
Zuo Z, Li Q, Zhou S, Yu R, Wu C, Chen J, Xiao Y, Chen H, Song J, Pan Y, Wang W. Berberine ameliorates contrast-induced acute kidney injury by regulating HDAC4-FoxO3a axis-induced autophagy: In vivo and in vitro. Phytother Res 2024; 38:1761-1780. [PMID: 37922559 DOI: 10.1002/ptr.8059] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
In hospitals, contrast-induced acute kidney injury (CI-AKI) is a major cause of renal failure. This study evaluates berberine's (BBR) renal protection and its potential HDAC4 mechanism. CI-AKI in rats was induced with 10 mL kg-1 ioversol. Rats were divided into five groups: Ctrl, BBR, CI-AKI, CI-AKI + BBR, and CI-AKI + Tasq. The renal function of CI-AKI rats was determined by measuring serum creatinine and blood urea nitrogen. Histopathological changes and apoptosis of renal tubular epithelial cells were observed by HE and terminal deoxynucleotidyl transferase (TdTase)-mediated dUTP-biotin nick end labeling (TUNEL) staining. Transmission electron microscopy was used to observe autophagic structures. In vitro, a CI-AKI cell model was created with ioversol-treated HK-2 cells. Treatments included BBR, Rapa, HCQ, and Tasq. Analyses focused on proteins and genes associated with kidney injury, apoptosis, autophagy, and the HDAC4-FoxO3a axis. BBR showed significant protective effects against CI-AKI both in vivo and in vitro. It inhibited apoptosis by increasing Bcl-2 protein levels and decreasing Bax levels. BBR also activated autophagy, as indicated by changes in autophagy-related proteins and autophagic flux. The study further revealed that the contrast agent ioversol increased the expression of HDAC4, which led to elevated levels of phosphorylated FoxO3a (p-FoxO3a) and acetylated FoxO3a (Ac-FoxO3a). However, BBR inhibited HDAC4 expression, resulting in decreased levels of p-FoxO3a and Ac-FoxO3a. This activation of autophagy-related genes, regulated by the transcription factor FoxO3a, played a role in BBR's protective effects. BBR, a traditional Chinese medicine, shows promise against CI-AKI. It may counteract CI-AKI by modulating HDAC4 and FoxO3a, enhancing autophagy, and limiting apoptosis.
Collapse
Affiliation(s)
- Zhi Zuo
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University/Jiangsu Province Hospital, Nanjing, China
| | - Qingju Li
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| | - Suqin Zhou
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Ran Yu
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| | - Caixia Wu
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Jiajia Chen
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Yao Xiao
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- Jiangsu College of Nursing, Huai'an, China
| | - Haoyu Chen
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Jian Song
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Yan Pan
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Wanpeng Wang
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| |
Collapse
|
8
|
Patil RS, Maloney ME, Lucas R, Fulton DJR, Patel V, Bagi Z, Kovacs-Kasa A, Kovacs L, Su Y, Verin AD. Zinc-Dependent Histone Deacetylases in Lung Endothelial Pathobiology. Biomolecules 2024; 14:140. [PMID: 38397377 PMCID: PMC10886568 DOI: 10.3390/biom14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and, as such, provides a semi-selective barrier between the blood and the interstitial space. Compromise of the lung EC barrier due to inflammatory or toxic events may result in pulmonary edema, which is a cardinal feature of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). The EC functions are controlled, at least in part, via epigenetic mechanisms mediated by histone deacetylases (HDACs). Zinc-dependent HDACs represent the largest group of HDACs and are activated by Zn2+. Members of this HDAC group are involved in epigenetic regulation primarily by modifying the structure of chromatin upon removal of acetyl groups from histones. In addition, they can deacetylate many non-histone histone proteins, including those located in extranuclear compartments. Recently, the therapeutic potential of inhibiting zinc-dependent HDACs for EC barrier preservation has gained momentum. However, the role of specific HDAC subtypes in EC barrier regulation remains largely unknown. This review aims to provide an update on the role of zinc-dependent HDACs in endothelial dysfunction and its related diseases. We will broadly focus on biological contributions, signaling pathways and transcriptional roles of HDACs in endothelial pathobiology associated mainly with lung diseases, and we will discuss the potential of their inhibitors for lung injury prevention.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - McKenzie E. Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vijay Patel
- Department of Cardiothoracic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Laszlo Kovacs
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
9
|
Jiang R, Zhou Y, Gao Q, Han L, Hong Z. ZC3H4 governs epithelial cell migration through ROCK/p-PYK2/p-MLC2 pathway in silica-induced pulmonary fibrosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104301. [PMID: 37866415 DOI: 10.1016/j.etap.2023.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Increased epithelial migration capacity is a key step accompanying epithelial-mesenchymal transition (EMT). Our lab has described that ZC3H4 mediated EMT in silicosis. Here, we aimed to explore the mechanisms of ZC3H4 by which to stimulate epithelial cell migration. METHODS Silicon dioxide (SiO2)-induced pulmonary fibrosis (PF) animal models were administered by intratracheal instillation in C57BL/6 J mice. Pathological analysis and 2D migration assay were established to uncover the pulmonary fibrotic lesions and epithelial cell migration, respectively. Inhibitors targeting ROCK/p-PYK2/p-MLC2 and CRISPR/Cas9 plasmids targeting ZC3H4 were administrated to explore the signaling pathways. RESULTS 1) SiO2 upregulated epithelial migration in pulmonary fibrotic lesions. 2) ZC3H4 modulated SiO2-induced epithelial migration. 3) ZC3H4 governed epithelial migration through ROCK/p-PYK2/p-MLC2 signaling pathway. CONCLUSIONS ZC3H4 regulates epithelial migration through the ROCK/p-PYK2/p-MLC2 signaling pathway, providing the possibility that molecular drugs targeting ZC3H4-overexpression may exert effects on pulmonary fibrosis induced by silica.
Collapse
Affiliation(s)
- Rong Jiang
- Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China
| | - Yichao Zhou
- Department of Occupation Disease Prevention and Cure, Changzhou Wujin District Center for Disease Control and Prevention, Changzhou, Jiangsu Province, China
| | - Qianqian Gao
- Department of Occupation Disease Prevention and Cure, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China; Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Han
- Department of Occupation Disease Prevention and Cure, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China.
| | - Zhen Hong
- Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China.
| |
Collapse
|
10
|
Mohamed OS, Abdel Baky NA, Sayed-Ahmed MM, Al-Najjar AH. Lactoferrin alleviates cyclophosphamide induced-nephropathy through suppressing the orchestration between Wnt4/β-catenin and ERK1/2/NF-κB signaling and modulating klotho and Nrf2/HO-1 pathway. Life Sci 2023; 319:121528. [PMID: 36828132 DOI: 10.1016/j.lfs.2023.121528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
AIMS Cyclophosphamide is an alkylating agent with vast arrays of therapeutic activity. Currently, its medical use is limited due to its numerous adverse events, including nephrotoxicity. This study aimed to follow the molecular mechanisms behind the potential renoprotective action of lactoferrin (LF) against cyclophosphamide (CP)-induced renal injury. MATERIALS AND METHODS For fulfillment of our aim, Spragw-Dwaly rats were orally administrated LF (300 mg/kg) for seven consecutive days, followed by a single intraperitoneal injection of CP (150 mg/kg). KEY FINDINGS Treatment of CP-injured rats with LF significantly reduced the elevated creatinine and blood urea nitrogen (BUN), markedly upregulated Nrf2/HO-1 signaling with consequent increase in renal total antioxidant capacity (TAC) and decrease in renal malondialdehyde (MDA) level. Furthermore, LF treatment significantly reduced the elevated renal p-ERK1/2 expression, tumor necrosis factor-α (TNFα), interleukin-6 (IL-6), nuclear factor-kappa B (NF-κB) levels in CP-treated animals. Interestingly, LF treatment downregulated Wnt4/β-catenin signaling and increased both renal klotho gene expression and serum klotho level. Furthermore, LF treatment reduced apoptosis in kidney tissue via suppressing GSK-3β expression and modulating caspase-3 and Bcl2 levels. Histopathological examination of kidney tissue confirmed the protective effect of LF against CP-induced renal injury. SIGNIFICANCE The present findings document the renoprotective effect of LF against CP-induced nephropathy, which may be mediated via suppressing ERK1/2/ NF-κB and Wnt4/β-catenin trajectories and enhancing klotho expression and Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Ola S Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Nayira A Abdel Baky
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Mohamed M Sayed-Ahmed
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Aya H Al-Najjar
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
11
|
Shen Z, Bei Y, Lin H, Wei T, Dai Y, Hu Y, Zhang C, Dai H. The role of class IIa histone deacetylases in regulating endothelial function. Front Physiol 2023; 14:1091794. [PMID: 36935751 PMCID: PMC10014714 DOI: 10.3389/fphys.2023.1091794] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Vascular endothelial cells (ECs) are monolayer cells located in the inner layer of the blood vessel. Endothelial function is crucial in maintaining local and systemic homeostasis and is precisely regulated by sophisticated signaling pathways and epigenetic regulation. Endothelial dysfunctions are the main factors for the pathophysiological process of cardiovascular and cerebrovascular diseases like atherosclerosis, hypertension, and stroke. In these pathologic processes, histone deacetylases (HDACs) involve in epigenetic regulation by removing acetyl groups from lysine residues of histones and regulating downstream gene expression. Among all HDACs, Class IIa HDACs (HDAC4, 5, 7, 9) contain only an N-terminal regulatory domain, exert limited HDAC activity, and present tissue-specific gene regulation. Here, we discuss and summarize the current understanding of this distinct subfamily of HDACs in endothelial cell functions (such as angiogenesis and immune response) with their molecular underpinnings. Furthermore, we also present new thoughts for further investigation of HDAC inhibitors as a potential treatment in several vascular diseases.
Collapse
Affiliation(s)
- Zexu Shen
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Bei
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haoran Lin
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Taofeng Wei
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yunjian Dai
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yangmin Hu
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Zhang
- Department of Pharmacy, The First People’s Hospital of Hangzhou Lin’an District, Hangzhou, China
| | - Haibin Dai
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Haibin Dai,
| |
Collapse
|