1
|
Tu L, Zou Z, Yang Y, Wang S, Xing B, Feng J, Jin Y, Cheng M. Targeted drug delivery systems for atherosclerosis. J Nanobiotechnology 2025; 23:306. [PMID: 40269931 PMCID: PMC12016489 DOI: 10.1186/s12951-025-03384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Atherosclerosis is a complex cardiovascular disease driven by multiple factors, including aging, inflammation, oxidative stress, and plaque rupture. The progression of this disease is often covert, emphasizing the need for early biomarkers and effective intervention measures. In recent years, advancements in therapeutic strategies have highlighted the potential of targeting specific processes in atherosclerosis, such as plaque localization, macrophage activity, and key enzymes. Based on this, this review discusses the potential role of targeted drugs in the treatment of atherosclerosis. It also focuses on their clinical efficacy in anti-atherosclerosis treatment and their ability to provide more precise therapeutic approaches. The findings underscore that future research can concentrate on exploring newer drug delivery systems and biomarkers to further refine clinical treatment strategies and enhance the long-term dynamic management of atherosclerosis.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Ye Yang
- Wenzhou Yining Geriatric Hospital, Wenzhou, 325041, P.R. China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
- Guangxi University of Chinese Medicine, Nanning, 530200, P.R. China
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China.
| |
Collapse
|
2
|
Ma X, Zhao X, Yang Y, Yan J, Shi X, Wu H, Liu Y, Dai M. Paeonol inhibits NETs-mediated foam cell inflammation through the CitH3/NLRP3/caspase-1 signaling pathway in atherosclerosis. Int Immunopharmacol 2025; 151:114340. [PMID: 40020464 DOI: 10.1016/j.intimp.2025.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by lipid streaks, which are produced by aggregates of lipid-rich foam cells. Foam cells intensify atherosclerosis by secreting a range of inflammatory mediators. Neutrophil extracellular traps produced by activated neutrophils, which are abundantly present in lipid-accumulating plaques. However, the relationship between neutrophil extracellular traps and foam cells inflammation is still unclear. Paeonol is well known for its anti-inflammatory effects in atherosclerosis. Nevertheless, the exact pharmacological mechanisms by which paeonol affects atherosclerosis are not fully understood which require further investigation. The purpose of this study is to investigate the effects of paeonol on the neutrophil extracellular traps' formation and foam cell inflammation caused by neutrophil extracellular traps, and to explore the potential mechanisms. A high-fat diet was administered to ApoE-/- mice for a period of 12 weeks to induce an atherosclerosis model. Our findings demonstrated that paeonol notably suppressed the advancement of atherosclerosis in ApoE-/- mice, curtailed the formation of neutrophil extracellular traps, and lowered inflammatory factor levels within the plaque. In vitro studies have shown that neutrophil extracellular traps could enhance the inflammation in foam cells. CitH3 played a role in the cellular communication between neutrophil extracellular traps and foam cells. Concurrently, NLRP3 acted as a key receptor in the inflammation mediated by this interaction. Paeonol is capable of regulating NE, thereby affecting the formation of neutrophil extracellular traps. Most notably, the foam cell inflammation caused by neutrophil extracellular traps was significantly mitigated by the inclusion of paeonol. Our findings suggested that paeonol inhibited foam cell inflammation which induced by neutrophil extracellular traps through the CitH3/NLRP3/caspase-1 signaling pathway, shedding new lights on its anti-atherosclerotic pharmacological mechanism.
Collapse
Affiliation(s)
- Xiaolin Ma
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xuan Zhao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yulong Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jinjin Yan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoyan Shi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, 230012, China
| | - Hongfei Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, 230012, China
| | - Yarong Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, 230012, China.
| | - Min Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
3
|
Kalafateli M, Tourkochristou E, Tsounis EP, Aggeletopoulou I, Triantos C. New Insights into the Pathogenesis of Intestinal Fibrosis in Inflammatory Bowel Diseases: Focusing on Intestinal Smooth Muscle Cells. Inflamm Bowel Dis 2025; 31:579-592. [PMID: 39680685 DOI: 10.1093/ibd/izae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Indexed: 12/18/2024]
Abstract
Strictures in inflammatory bowel disease, especially Crohn's disease (CD), are characterized by increased intestinal wall thickness, which, according to recent accumulating data, is mainly attributed to the expansion of the intestinal smooth muscle layers and to a lesser extent to collagen deposition. In this review, we will discuss the role of intestinal smooth muscle cells (SMCs) as crucial orchestrators of stricture formation. Activated SMCs can synthesize extracellular matrix (ECM), thus contributing to intestinal fibrosis, as well as growth factors and cytokines that can further enhance ECM production, stimulate other surrounding mesenchymal and immune cells, and increase SMC proliferation via paracrine or autocrine signaling. There is also evidence that, in stricturing CD, a phenotypic modulation of SMC toward a myofibroblast-like synthetic phenotype takes place. Moreover, the molecular mechanisms and signaling pathways that regulate SMC hyperplasia/hypertrophy will be extensively reviewed. The understanding of the cellular network and the molecular background behind stricture formation is essential for the design of effective anti-fibrotic strategies, and SMCs might be a promising therapeutic target in the future.
Collapse
Affiliation(s)
- Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, Patras, Greece
| | - Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Efthymios P Tsounis
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
4
|
Chen X, Kang Y, Tang C, Zhang L, Guo L. TLR4 promotes smooth muscle cell-derived foam cells formation by inducing receptor-independent macropinocytosis. Biosci Biotechnol Biochem 2024; 89:22-32. [PMID: 39455413 DOI: 10.1093/bbb/zbae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Foam cells are primarily formed through scavenger receptors that mediate the uptake of various modified low-density lipoproteins (LDL) into cells. In addition to the receptor-dependent pathway, macropinocytosis is an essential nonreceptor endocytic pathway for vascular smooth muscle cells (VSMCs) to take up lipids. However, the molecular mechanisms underlying this process remain unclear. Primary cultured VSMCs were stimulated with 200 ng/mL lipopolysaccharide (LPS) and 200 µg/mL native LDL (nLDL). We observed a significant increase in Toll-like receptor 4 (TLR4) protein expression and a significant activation of macropinocytosis, which correlated with the highest uptake of nLDL and intracellular lipid deposition in WT VSMCs. However, macropinocytosis was inhibited and lipid accumulation decreased after treatment with macropinocytosis inhibitors and Syk inhibitors in WT VSMCs. Consistently, TLR4 knockout significantly suppressed macropinocytosis and lipid droplets accumulation in VSMCs. Taken together, our findings suggest a critical role of TLR4/Syk signaling in promoting receptor-independent macropinocytosis leading to VSMC-derived foam cells formation.
Collapse
MESH Headings
- Toll-Like Receptor 4/metabolism
- Pinocytosis/drug effects
- Animals
- Foam Cells/metabolism
- Foam Cells/cytology
- Foam Cells/drug effects
- Syk Kinase/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Signal Transduction
- Lipopolysaccharides/pharmacology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/cytology
- Mice
- Lipoproteins, LDL/metabolism
- Lipoproteins, LDL/pharmacology
- Cells, Cultured
- Mice, Knockout
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Xue Chen
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Yulai Kang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Chunhua Tang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Lili Zhang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Lu Guo
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Liang Y, Dong L, Yan J, Yang Y, Liu Y, Wu H, Shi X, Dai M. Paeonol attenuates atherosclerosis by regulating vascular smooth muscle cells apoptosis and modulating immune cells infiltration through reducing LTβR expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156196. [PMID: 39520955 DOI: 10.1016/j.phymed.2024.156196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/26/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease with multicellular participation, and the decrease of plaque stability induces the occurrence of clinical adverse events. In order to update the clinical treatment strategy of atherosclerosis, it is necessary to clarify the mechanism of plaque stabilization, especially to explore the targets of vascular smooth muscle cells (VSMCs) apoptosis and immune cell infiltration. Paeonol (Pae), a major phenolic compound derived from the bark of Paeonia albiflora Andr., has been proved to have anti-inflammatory properties in atherosclerosis. However, the pharmacological mechanisms of Pae in improving atherosclerosis remain unclear, particularly with regard to the role of stabilizing vulnerable plaques. PURPOSE This study is aiming to elucidate the effect of Pae against atherosclerotic unstable plaque, and to further explore the potential mechanism of Pae in inhibiting VSMCs apoptosis and immune cell infiltration. METHODS A high-fat diet (HFD) induced atherosclerosis mice model was established in ApoE-/- mice, Pae in two different dosages and simvastatin (SIM) were than administrated for another 4 weeks. Atherosclerotic plaque formation and lipid accumulation were assessed with hematoxylin and eosin (H&E) staining and oil red O staining. Immunofluorescence were employed to examine the general condition of mice and the protective effect of Pae on plaque progression. Cell apoptosis was assessed via TUNNEL staining and flow cytometry. The mRNA and protein expressions in aorta tissue was detected by RT-PCR and western blotting. To investigate the effect of Pae on the regulation of the LTβR/NIK/caspase-3 pathway, VSMCs were extracted from the aorta of C57BL/6 J mice and treated with LTα1β2. RESULTS Here, we show that Pae significantly inhibited atherosclerosis progression and stabilized vulnerable plaques in ApoE-/- mice, in association with decreased T/B cell infiltration and VSMC apoptosis. Notably, the number of plaque-infiltrating T/B cells showed a linear positive correlation with apoptotic VSMCs, and VSMCs sensitive to apoptosis expressed LTβR, which might be activated by LTα1β2-expressing T/B cells. Moreover, the protein expression of LTβR in VSMCs was decreased in plaques after treatment of Pae. Mechanistically, Pae treatment inhibited LTα1β2 stimulated VSMCs apoptosis via LTβR/NIK/caspase-3 signaling pathway in vitro. Importantly, LTβR overexpression increased the VSMCs apoptosis and plaque instability in ApoE-/- mice, partially reversing the protective effect of Pae. CONCLUSION Inhibition of LTβR signaling represents a promising strategy that exerts therapeutic effects through the combined suppression of immune cell infiltration and VSMCs apoptosis, providing novel insights into the anti-atherosclerosis mechanisms of Pae.
Collapse
Affiliation(s)
- Yuning Liang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lishun Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jinjin Yan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yulong Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yarong Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, 230012, China
| | - Hongfei Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, 230012, China
| | - Xiaoyan Shi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, 230012, China.
| | - Min Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
6
|
Lin L, Xiang S, Chen Y, Liu Y, Shen D, Yu X, Wu Z, Sun Y, Chen K, Luo J, Wei G, Wang Z, Ning Z. Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review). Exp Ther Med 2024; 28:427. [PMID: 39301250 PMCID: PMC11411594 DOI: 10.3892/etm.2024.12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/03/2024] [Indexed: 09/22/2024] Open
Abstract
The gut microbiota refers to the diverse bacterial community residing in the gastrointestinal tract. Recent data indicate a strong correlation between alterations in the gut microbiota composition and the onset of various diseases, notably cardiovascular disorders. Evidence suggests the gut-cardiovascular axis signaling molecules released by the gut microbiota play a pivotal role in regulation. This review systematically delineates the association between dysbiosis of the gut microbiota and prevalent cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction and heart failure. Furthermore, it provides an overview of the putative pathogenic mechanisms by which dysbiosis in the gut microbiota contributes to the progression of cardiovascular ailments. The potential modulation of gut microbiota as a preventive strategy against cardiovascular diseases through dietary interventions, antibiotic therapies and probiotic supplementation is also explored and discussed within the present study.
Collapse
Affiliation(s)
- Li Lin
- Department of Biochemistry, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shaowei Xiang
- Department of Neurosurgery, Enshi State Central Hospital, Enshi, Hubei 445000, P.R. China
| | - Yuan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yan Liu
- Department of Internal Medicine, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dingwen Shen
- Department of Parasitology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xiaoping Yu
- Department of Function, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhe Wu
- Department of Histology and Embryology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yanling Sun
- Department of Histology and Embryology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Kequan Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Jia Luo
- School of Sport, Xianning Vocational and Technical College, Xianning, Hubei 437100, P.R. China
| | - Guilai Wei
- School of Art and Design, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhiguo Wang
- Department of Dermatology, The First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhifeng Ning
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
7
|
Jia J, Li L, Wu Z, Li S. Fluorescent probes for imaging: a focus on atherosclerosis. NANOSCALE 2024; 16:11849-11862. [PMID: 38836376 DOI: 10.1039/d4nr01533a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Atherosclerosis, as a chronic cardiovascular disease driven by inflammation, can lead to arterial stenosis and thrombosis, which seriously threatens human life and health. Achieving the timely monitoring of atherosclerosis is an important measure to reduce acute cardiovascular diseases. Compared with other imaging platforms, fluorescence imaging technology has the characteristics of excellent sensitivity, high spatiotemporal resolution and real-time imaging, which is very suitable for direct visualization of molecular processes and abnormalities of atherosclerosis. Recently, researchers have strived to design a variety of fluorescent probes, from single-mode fluorescent probes to fluorescent-combined dual/multimode probes, to enrich the imaging and detection of atherosclerosis. Therefore, this review aims to provide an overview of currently investigated fluorescent probes in the context of atherosclerosis, summarize relevant published studies showing applications of different types of fluorescent probes in the early-stage and other stages to detect atherosclerosis, give effective biological targets and discuss the latest progress and some limitations. Finally, some insights are provided for the development of a new generation of more accurate and efficient fluorescent probes.
Collapse
Affiliation(s)
- Jing Jia
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
- Collaborative Innovation Center for Molecular Imaging, Shanxi Medical University, Taiyuan, China
| | - Li Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
- Collaborative Innovation Center for Molecular Imaging, Shanxi Medical University, Taiyuan, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
- Collaborative Innovation Center for Molecular Imaging, Shanxi Medical University, Taiyuan, China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
- Collaborative Innovation Center for Molecular Imaging, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Gao M, Dong L, Yang Y, Yan J, Liang Y, Ma X, Zhou M, Wu H, Liu Y, Dai M. The anti-atherosclerotic effect of Paeonol against the lipid accumulation in macrophage-derived foam cells by inhibiting ferroptosis via the SIRT1/NRF2/GPX4 signaling pathway. Biochem Biophys Res Commun 2024; 708:149788. [PMID: 38518720 DOI: 10.1016/j.bbrc.2024.149788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Atherosclerosis (AS) is the underlying cause of many severe vascular diseases and is primarily characterized by abnormal lipid metabolism. Paeonol (Pae), a bioactive compound derived from Paeonia Suffruticosa Andr., is recognized for its significant role in reducing lipid accumulation. Our research objective is to explore the link between lipid buildup in foam cells originating from macrophages and the process of ferroptosis, and explore the effect and mechanism of Pae on inhibiting AS by regulating ferroptosis. In our animal model, ApoE-deficient mice, which were provided with a high-fat regimen to provoke atherosclerosis, were administered Pae. The treatment was benchmarked against simvastatin and ferrostatin-1. The results showed that Pae significantly reduced aortic ferroptosis and lipid accumulation in the mice. In vitro experiments further demonstrated that Pae could decrease lipid accumulation in foam cells induced by oxidized low-density lipoprotein (LDL) and challenged with the ferroptosis inducer erastin. Crucially, the protective effect of Pae against lipid accumulation was dependent on the SIRT1/NRF2/GPX4 pathway, as SIRT1 knockdown abolished this effect. Our findings suggest that Pae may offer a novel therapeutic approach for AS by inhibiting lipid accumulation through the suppression of ferroptosis, mediated by the SIRT1/NRF2/GPX4 pathway. Such knowledge has the potential to inform the creation of novel therapeutic strategies aimed at regulating ferroptosis within the context of atherosclerosis.
Collapse
Affiliation(s)
- Menglong Gao
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Lishun Dong
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Yulong Yang
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Jinjin Yan
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Yuning Liang
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Xiaolin Ma
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Min Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Yarong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China.
| | - Min Dai
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China.
| |
Collapse
|
9
|
Niu Y, Jin Y, Hao Y, Liang W, Tang F, Qin Z, Liang T, Shi L. Paeonol interferes with lupus nephritis by regulating M1/M2 polarization of macrophages. Mol Immunol 2024; 169:66-77. [PMID: 38503139 DOI: 10.1016/j.molimm.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease of unknown etiology. It is marked by the production of pathogenic autoantibodies and the deposition of immune complexes. Lupus nephritis (LN) is a prevalent and challenging clinical complications of SLE. Cortex Moutan contains paeonol as its main effective component. In this study, using the animal model of SLE induced by R848, it was found that paeonol could alleviate the lupus-like symptoms of lupus mouse model induced by R848 activating TLR7, reduce the mortality and ameliorate the renal damage of mice. In order to explore the mechanism of paeonol on lupus nephritis, we studied the effect of paeonol on the polarization of Raw264.7 macrophages in vitro. The experimental results show that paeonol can inhibit the polarization of macrophages to M1 and promote their polarization to M2, which may be related to the inhibition of MAPK and NF-κB signaling pathways. Our research provides a new insight into paeonol in the treatment of lupus nephritis, which is of great importance for the treatment of systemic lupus erythematosus and its complications.
Collapse
Affiliation(s)
- Yuzhen Niu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yingying Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yongxi Hao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Liang
- Department of Traditional Chinese Medicine, Air Force Hospital, Eastern Theater of the Chinese People's Liberation Army, Nanjing, Jiangsu, China
| | - Fan Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ziyi Qin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tao Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Le Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Wu R, Liu Y, Zhang F, Dai S, Xue X, Peng C, Li Y, Li Y. Protective mechanism of Paeonol on central nervous system. Phytother Res 2024; 38:470-488. [PMID: 37872838 DOI: 10.1002/ptr.8049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/25/2023]
Abstract
Cerebrovascular diseases involve neuronal damage, resulting in degenerative neuropathy and posing a serious threat to human health. The discovery of effective drug components from natural plants and the study of their mechanism are a research idea different from chemical synthetic medicines. Paeonol is the main active component of traditional Chinese medicine Paeonia lactiflora Pall. It widely exists in many medicinal plants and has pharmacological effects such as anti-atherosclerosis, antiplatelet aggregation, anti-oxidation, and anti-inflammatory, which keeps generally used in the treatment of cardiovascular and cerebrovascular diseases. Based on the therapeutic effects of Paeonol for cardiovascular and cerebrovascular diseases, this article reviewed the pharmacological effects of Paeonol in Alzheimer's disease, Parkinson's disease, stroke, epilepsy, diabetes encephalopathy, and other neurological diseases, providing a reference for the research of the mechanism of Paeonol in central nervous system diseases.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Wang L, Niu X. Immunoregulatory Roles of Osteopontin in Diseases. Nutrients 2024; 16:312. [PMID: 38276550 PMCID: PMC10819284 DOI: 10.3390/nu16020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Osteopontin (OPN) is a multifunctional protein that plays a pivotal role in the immune system. It is involved in various biological processes, including cell adhesion, migration and survival. The study of the immunomodulatory effects of OPN is of paramount importance due to its potential therapeutic applications. A comprehensive understanding of how OPN regulates the immune response could pave the way for the development of novel treatments for a multitude of diseases, including autoimmune disorders, infectious diseases and cancer. Therefore, in the following paper, we provide a systematic overview of OPN and its immunoregulatory roles in various diseases, laying the foundation for the development of OPN-based therapies in the future.
Collapse
Affiliation(s)
- Lebei Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
12
|
Zhou M, Ma X, Gao M, Wu H, Liu Y, Shi X, Dai M. Paeonol Attenuates Atherosclerosis by Inhibiting Vascular Smooth Muscle Cells Senescence via SIRT1/P53/TRF2 Signaling Pathway. Molecules 2024; 29:261. [PMID: 38202844 PMCID: PMC10780795 DOI: 10.3390/molecules29010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease leading to various vascular diseases. Vascular smooth muscle cell (VSMC) senescence promotes atherosclerotic inflammation and the formation of plaque necrosis core, in part through telomere damage mediated by a high-fat diet. Our previous research found that paeonol, a potential anti-inflammatory agent extracted from Cortex Moutan, could significantly improve VSMCs dysfunction. However, the impact of paeonol on the senescence of VSMCs remains unexplored. This study presents the protective effects of paeonol on VSMCs senescence, and its potential activity in inhibiting the progression of atherosclerosis in vivo and in vitro. Sirtuin 1 (SIRT1) is a nuclear deacetylase involved in cell proliferation, senescence, telomere damage, and inflammation. Here, SIRT1 was identified as a potential target of paeonol having anti-senescence and anti-atherosclerosis activity. Mechanistic studies revealed that paeonol binds directly to SIRT1 and then activates the SIRT1/P53/TRF2 pathway to inhibit VSMCs senescence. Our results suggested that SIRT1-mediated VSMCs senescence is a promising druggable target for atherosclerosis, and that pharmacological modulation of the SIRT1/P53/TRF2 signaling pathway by paeonol is of potential benefit for patients with atherosclerosis.
Collapse
Affiliation(s)
- Min Zhou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
| | - Xiaolin Ma
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
| | - Menglong Gao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
| | - Hongfei Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
- Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei 230012, China
| | - Yarong Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
- Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei 230012, China
| | - Xiaoyan Shi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
| | - Min Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
- Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei 230012, China
| |
Collapse
|
13
|
Yang K, Du G, Liu J, Zhao S, Dong W. Gut microbiota and neonatal acute kidney injury biomarkers. Pediatr Nephrol 2023; 38:3529-3547. [PMID: 36997773 DOI: 10.1007/s00467-023-05931-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 04/01/2023]
Abstract
One of the most frequent issues in newborns is acute kidney injury (AKI), which can lengthen their hospital stay or potentially raise their chance of dying. The gut-kidney axis establishes a bidirectional interplay between gut microbiota and kidney illness, particularly AKI, and demonstrates the importance of gut microbiota to host health. Since the ability to predict neonatal AKI using blood creatinine and urine output as evaluation parameters is somewhat constrained, a number of interesting biomarkers have been developed. There are few in-depth studies on the relationships between these neonatal AKI indicators and gut microbiota. In order to gain fresh insights into the gut-kidney axis of neonatal AKI, this review is based on the gut-kidney axis and describes relationships between gut microbiota and neonatal AKI biomarkers.
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Guoxia Du
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Jinjing Liu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Shuai Zhao
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China.
| |
Collapse
|
14
|
Liu Y, Wu H, Wang T, Shi X, He H, Huang H, Yang Y, Dai M. Paeonol reduces microbial metabolite α-hydroxyisobutyric acid to alleviate the ROS/TXNIP/NLRP3 pathway-mediated endothelial inflammation in atherosclerosis mice. Chin J Nat Med 2023; 21:759-774. [PMID: 37879794 DOI: 10.1016/s1875-5364(23)60506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Indexed: 10/27/2023]
Abstract
Gut microbiota dysbiosis is an avenue for the promotion of atherosclerosis (AS) and this effect is mediated partly via the circulating microbial metabolites. More microbial metabolites related to AS vascular inflammation, and the mechanisms involved need to be clarified urgently. Paeonol (Pae) is an active compound isolated from Paeonia suffruticoas Andr. with anti-AS inflammation effect. However, considering the low oral bioavailability of Pae, it is worth exploring the mechanism by which Pae reduces the harmful metabolites of the gut microbiota to alleviate AS. In this study, ApoE-/- mice were fed a high-fat diet (HFD) to establish an AS model. AS mice were administrated with Pae (200 or 400 mg·kg-1) by oral gavage and fecal microbiota transplantation (FMT) was conducted. 16S rDNA sequencing was performed to investigate the composition of the gut microbiota, while metabolomics analysis was used to identify the metabolites in serum and cecal contents. The results indicated that Pae significantly improved AS by regulating gut microbiota composition and microbiota metabolic profile in AS mice. We also identified α-hydroxyisobutyric acid (HIBA) as a harmful microbial metabolite reduced by Pae. HIBA supplementation in drinking water promoted AS inflammation in AS mice. Furthermore, vascular endothelial cells (VECs) were cultured and stimulated by HIBA. We verified that HIBA stimulation increased intracellular ROS levels, thereby inducing VEC inflammation via the TXNIP/NLRP3 pathway. In sum, Pae reduces the production of the microbial metabolite HIBA, thus alleviating the ROS/TXNIP/NLRP3 pathway-mediated endothelial inflammation in AS. Our study innovatively confirms the mechanism by which Pae reduces the harmful metabolites of gut microbiota to alleviate AS and proposes HIBA as a potential biomarker for AS clinical judgment.
Collapse
Affiliation(s)
- Yarong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China
| | - Tian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaoyan Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hai He
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hanwen Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yulong Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Min Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
15
|
Xi M, Liang D, Yan Y, Duan S, Leng H, Yang H, Shi X, Na X, Yang Y, Yang C, Szeto IMY, Zhao A. Functional proteins in breast milk and their correlation with the development of the infant gut microbiota: a study of mother-infant pairs. Front Microbiol 2023; 14:1239501. [PMID: 37771701 PMCID: PMC10524269 DOI: 10.3389/fmicb.2023.1239501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/03/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Proteins in breast milk play an important role in the growth and development of infants. This study aims to explore the correlation between functional proteins in breast milk and the infant gut microbiota. Methods Twenty-three mothers and their infants were enrolled and breast milk samples and infant fecal samples were collected. Breast milk protein content was determined by UPLC-MS/MS, and 16S rRNA sequencing was employed to analyze the gut microbiota of infant. Results The results indicated that the secretory immunoglobulin A (sIgA) content in breast milk was positively correlated with the abundance of Veillonella parvula. The κ-casein content was positively correlated with the abundance of Clostridium butyricum. The osteopontin (OPN) and lactalbumin contents were positively correlated with the abundance of Parabacteroides distasonis at 42 days. Functional pathway analysis showed that the OPN and κ-casein contents in breast milk were significantly correlated with amino acid, pyruvate, propionic acid, linoleic acid, and alpha-linolenic acid metabolic pathways in early life. Discussion The results of this study suggest that specific proteins in breast milk can influence the abundance of certain gut microbes in infants, playing an important role in early immune and metabolic development.
Collapse
Affiliation(s)
- Menglu Xi
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Dong Liang
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yalu Yan
- Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
| | - Sufang Duan
- Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
| | - Houxi Leng
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
| | - Haibing Yang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Xiaojin Shi
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Xiaona Na
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Yucheng Yang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Celi Yang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Jing J, Guo J, Dai R, Zhu C, Zhang Z. Targeting gut microbiota and immune crosstalk: potential mechanisms of natural products in the treatment of atherosclerosis. Front Pharmacol 2023; 14:1252907. [PMID: 37719851 PMCID: PMC10504665 DOI: 10.3389/fphar.2023.1252907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory reaction that primarily affects large and medium-sized arteries. It is a major cause of cardiovascular disease and peripheral arterial occlusive disease. The pathogenesis of AS involves specific structural and functional alterations in various populations of vascular cells at different stages of the disease. The immune response is involved throughout the entire developmental stage of AS, and targeting immune cells presents a promising avenue for its treatment. Over the past 2 decades, studies have shown that gut microbiota (GM) and its metabolites, such as trimethylamine-N-oxide, have a significant impact on the progression of AS. Interestingly, it has also been reported that there are complex mechanisms of action between GM and their metabolites, immune responses, and natural products that can have an impact on AS. GM and its metabolites regulate the functional expression of immune cells and have potential impacts on AS. Natural products have a wide range of health properties, and researchers are increasingly focusing on their role in AS. Now, there is compelling evidence that natural products provide an alternative approach to improving immune function in the AS microenvironment by modulating the GM. Natural product metabolites such as resveratrol, berberine, curcumin, and quercetin may improve the intestinal microenvironment by modulating the relative abundance of GM, which in turn influences the accumulation of GM metabolites. Natural products can delay the progression of AS by regulating the metabolism of GM, inhibiting the migration of monocytes and macrophages, promoting the polarization of the M2 phenotype of macrophages, down-regulating the level of inflammatory factors, regulating the balance of Treg/Th17, and inhibiting the formation of foam cells. Based on the above, we describe recent advances in the use of natural products that target GM and immune cells crosstalk to treat AS, which may bring some insights to guide the treatment of AS.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Dai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaojun Zhu
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Zhang
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
17
|
Yang C, Cheng J, Zhu Q, Pan Q, Ji K, Li J. Review of the Protective Mechanism of Paeonol on Cardiovascular Disease. Drug Des Devel Ther 2023; 17:2193-2208. [PMID: 37525853 PMCID: PMC10387245 DOI: 10.2147/dddt.s414752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/19/2023] [Indexed: 08/02/2023] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death in the world. Paeonol(Pae) is a phenolic component extracted from peony bark, peony root and Xu Changqing. Studies have shown that Pae can protect cardiomyocytes by inhibiting oxidative stress, promoting mitochondrial fusion, regulating mitochondrial autophagy and inhibiting inflammation. In addition, Pae improves ventricular remodeling by inhibiting myocardial apoptosis, hypertrophy and fibrosis. Pae also has a good protective effect on blood vessels by inhibiting vascular inflammation, reducing the expression of adhesion molecules, inhibiting vascular proliferation, and inhibiting oxidative stress and endoplasmic reticulum stress(ERS). Pae also has the effect of anti-endothelial cell senescence, promoting thrombus recanalization and vasodilating. In conclusion, the molecular targets of Pae are very complex, and the relationship between different targets and signaling pathways cannot be clearly explained, which requires us to use systems biology methods to further study specific molecular targets of Pae. It has to be mentioned that the bioavailability of Pae is poor, and some nanotechnology-assisted drug delivery systems improve the therapeutic effect of Pae. We reviewed the protective mechanism of paeonol on the cardiovascular system, hoping to provide help for drug development in the treatment of CVD.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jiawen Cheng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Jun Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
18
|
Inceu AI, Neag MA, Craciun AE, Buzoianu AD. Gut Molecules in Cardiometabolic Diseases: The Mechanisms behind the Story. Int J Mol Sci 2023; 24:3385. [PMID: 36834796 PMCID: PMC9965280 DOI: 10.3390/ijms24043385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the most common cause of morbidity and mortality worldwide. Diabetes mellitus increases cardiovascular risk. Heart failure and atrial fibrillation are associated comorbidities that share the main cardiovascular risk factors. The use of incretin-based therapies promoted the idea that activation of alternative signaling pathways is effective in reducing the risk of atherosclerosis and heart failure. Gut-derived molecules, gut hormones, and gut microbiota metabolites showed both positive and detrimental effects in cardiometabolic disorders. Although inflammation plays a key role in cardiometabolic disorders, additional intracellular signaling pathways are involved and could explain the observed effects. Revealing the involved molecular mechanisms could provide novel therapeutic strategies and a better understanding of the relationship between the gut, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Elena Craciun
- Department of Diabetes, and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Zan C, An J, Wu Z, Li S. Engineering molecular nanoprobes to target early atherosclerosis: Precise diagnostic tools and promising therapeutic carriers. Nanotheranostics 2023; 7:327-344. [PMID: 37064609 PMCID: PMC10093416 DOI: 10.7150/ntno.82654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Atherosclerosis, an inflammation-driven chronic blood vessel disease, is a major contributor to devastating cardiovascular events, bringing serious social and economic burdens. Currently, non-invasive diagnostic and therapeutic techniques in combination with novel nanosized materials as well as established molecular targets are under active investigation to develop integrated molecular imaging approaches, precisely visualizing and/or even effectively reversing early-stage plaques. Besides, mechanistic investigation in the past decades provides many potent candidates extensively involved in the initiation and progression of atherosclerosis. Recent hotly-studied imaging nanoprobes for detecting early plaques mainly including optical nanoprobes, photoacoustic nanoprobes, magnetic resonance nanoprobes, positron emission tomography nanoprobes, and other dual- and multi-modality imaging nanoprobes, have been proven to be surface functionalized with important molecular targets, which occupy tailored physical and biological properties for atherogenesis. Of note, these engineering nanoprobes provide long blood-pool residence and specific molecular targeting, which allows efficient recognition of early-stage atherosclerotic plaques and thereby function as a novel type of precise diagnostic tools as well as potential therapeutic carriers of anti-atherosclerosis drugs. There have been no available nanoprobes applied in the clinics so far, although many newly emerged nanoprobes, as exemplified by aggregation-induced emission nanoprobes and TiO2 nanoprobes, have been tested for cell lines in vitro and atherogenic animal models in vivo, achieving good experimental effects. Therefore, there is an urgent call to translate these preclinical results for nanoprobes into clinical trials. For this reason, this review aims to give an overview of currently investigated nanoprobes in the context of atherosclerosis, summarize relevant published studies showing applications of different kinds of formulated nanoprobes in early detection and reverse of plaques, discuss recent advances and some limitations thereof, and provide some insights into the development of the new generation of more precise and efficient molecular nanoprobes, with a critical property of specifically targeting early atherosclerosis.
Collapse
Affiliation(s)
- Chunfang Zan
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Jie An
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
- ✉ Corresponding authors: Prof. Zhifang Wu, E-mail: . Prof. Sijin Li, E-mail:
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
- ✉ Corresponding authors: Prof. Zhifang Wu, E-mail: . Prof. Sijin Li, E-mail:
| |
Collapse
|