1
|
Du L, Sun Y, Gan Y, Wang L, Li X, Yan S, Xiao X, Li S, Jin H. Study on the mechanism of Xanthoceras sorbifolia Bunge oil in the treatment of Alzheimer's disease by an integrated "network pharmacology-metabolomics" strategy. Ann Med 2025; 57:2499700. [PMID: 40340504 PMCID: PMC12064105 DOI: 10.1080/07853890.2025.2499700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/12/2025] [Accepted: 04/17/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Xanthoceras sorbifolia Bunge oil (XSBO) has garnered significant interest from researchers due to its distinctive anti-Alzheimer's disease (AD) properties. However, the underlying molecular mechanism remain unclear. This study aims to investigate the potential mechanisms by which XSBO may exert therapeutic effects on AD by employing a combination of network pharmacology analysis and experimental validation. METHODS The chemical composition and absorbed compounds of XSBO were identified using GC-MS and LC-MS. Network pharmacology analysis was performed using various computational tools to identify hub genes and construct compound-target-pathway networks. Subsequently, both in vitro and in vivo experiments were conducted to confirm the mechanisms by which XSBO may treat AD. RESULTS The results identified 43 active compounds in XSBO, targeting a total of 223 genes, of which 191 were associated with AD. Network analysis indicated that the active constituents in XSBO, such as 9,12-octadecadienoic acid, linoelaidic acid and 11-octadecenoic acid, interact with targets including MAPK1, MAPK3, AKT1, RXRA, RXRB, PPARD and PPARA to modulate inflammation-related signalling pathways and the sphingolipid signalling pathway. In vitro investigations corroborated that XSBO can significantly influence the viability of Aβ25-35-induced SH-SY5Y cells via the MAPK pathway. CONCLUSIONS This study demonstrated that XSBO has the potential to mitigate inflammation network disorders through the MAPK pathway and to restore sphingolipid metabolite levels in AD rats, thereby laying a groundwork for future studies.
Collapse
Affiliation(s)
- Lijing Du
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Jiyuan Neurohealth Industry Research Institute of Guangdong Pharmaceutical University, Jiyuan, China
| | - Yuanfang Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Gan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Leqi Wang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinyi Li
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shikai Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Xiao
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Jiyuan Neurohealth Industry Research Institute of Guangdong Pharmaceutical University, Jiyuan, China
| | - Shasha Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huizi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Jiyuan Neurohealth Industry Research Institute of Guangdong Pharmaceutical University, Jiyuan, China
| |
Collapse
|
2
|
Dalal D, Singh L, Singh A. Calycosin and kidney health: a molecular perspective on its protective mechanisms. Pharmacol Rep 2025; 77:658-669. [PMID: 40249500 DOI: 10.1007/s43440-025-00728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Kidney diseases encompass a diverse group of pathological conditions characterized by the progressive loss of renal function, leading to systemic complications and increased morbidity. Their global prevalence increasing, posing a substantial public health challenge. The underlying pathophysiology involves complex molecular interactions that drive inflammation, fibrosis, and tissue injury. Notably, the AGE/RAGE axis activates NF-κB, a pivotal transcription factor responsible for pro-inflammatory cytokine production. This response is further intensified by NLRP3-inflammasome activation, which detects cellular stress and promotes IL-1β release. Additionally, TGF-β signaling through SMADs and MAPK pathways induces ECM accumulation, contributing to tissue fibrosis. Besides this, oxidative stress-induced ferroptosis and apoptosis also play critical roles in disease progression. Given the multifactorial nature of kidney diseases, agents with multi-targeted actions are promising for effective renoprotection. Significant research interest has emerged in exploring calycosin's protective effects against kidney-related pathologies, owing to its diverse pharmacological properties, including anti-inflammatory, antioxidant, anti-apoptotic, and anti-fibrotic effects. Calycosin is a naturally occurring isoflavone primarily found in Astragalus membranaceus, a well-known medicinal herb in traditional Chinese medicine. Several studies have demonstrated that calycosin exerts its renoprotective effects by modulating key molecular mediators, including RAGE, NF-κB, TGF-β, MAPKs, NLRP3-inflammasome, Nrf-2, PPARγ, and Sirtuin-3, among others, thereby providing a multitargeted defense against kidney diseases. Considering the potential of calycosin in modulating these mediators, the present study was conceptualized to study the mechanistic interplay underlying its renoprotective effects. By investigating these interconnected pathways, this study will provide foundational insights that will enable future researchers to address existing gaps and further elucidate calycosin's potential in renal disorders.
Collapse
Affiliation(s)
- Diksha Dalal
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Anish Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
3
|
Ma X, Guan B, Pang L. Calycosin ameliorates albuminuria in nephrotic syndrome by targeting Notch1/Snail pathway. BMC Nephrol 2025; 26:198. [PMID: 40251522 PMCID: PMC12008911 DOI: 10.1186/s12882-025-04113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Heavy proteinuria is an important hallmark for kidney disease including nephrotic syndrome. Astragali Radix, a traditional Chinese herb, holds the potential to alleviate nephrotic syndrome; however, the underlying mechanism has not been completely clarified. The study aimed to explore the role of calycosin (C16H12O5), a major active component of Astragali Radix, in regulating adriamycin-induced proteinuria. METHODS A rat model of nephrotic syndrome was established through two adriamycin injections within two weeks (4 mg/kg for the first week and 2 mg/kg for the second week). After the induction of renal injury, 10 mg/kg or 20 mg/kg calycosin was intraperitoneally injected into rats for four weeks. Before euthanasia of rats, urine and blood samples were collected, and body weight was recorded. Then, 24 h urine protein content, kidney index, total cholesterol (TC), triglyceride (TG), as well as renal function indicators including blood urea nitrogen (BUN), serum creatinine (SCR), and urine albumin excretory rate (UAE) were measured. Hematoxylin-eosin staining for renal cortex tissues was performed to evaluate glomerular structural damage. TUNEL assay was performed to evaluate renal cell apoptosis. Western blotting was conducted to measure protein levels of podocyte-specific markers (podocin and nephrin), Notch1, and Snail in rat renal tissues. RESULTS Calycosin reversed adriamycin-induced increase in proteinuria content, kidney index, and concentrations of renal function indicators. Calycosin ameliorated glomerular structural damage, inflammatory cell infiltration, and basement membrane thickening in model rats. In addition, calycosin rescued the suppressive impact of adriamycin on renal cell apoptosis and protein levels of podocyte markers. The activated Notch1/Snail signaling in model rats was suppressed by calycosin intervention. CONCLUSION Calycosin exerts a protective role against adriamycin-induced nephrotic syndrome via inhibition of the Notch1/Snail signaling. CLINICAL TRIAL DETAILS Not applicable.
Collapse
Affiliation(s)
- Xiaohong Ma
- Department of Nephrology, Shenzhen Bao'an Authentic TCM Therapy Hospital, Room 1703, Block G, Jiazhou Business Center, Baomin 1 Road, Xin 'an Street, Bao 'an District, Shenzhen, Guangdong, 518100, China.
| | - Binghe Guan
- Department of Internal Medicine, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, 518100, China
| | - Linrong Pang
- Department of Internal Medicine, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, 518100, China
| |
Collapse
|
4
|
Xiaoyun G, Hongjun L, Cuijing M, Li R, Mei Z. MicroRNA-204 may predict the renal function in patients with chronic kidney disease. Medicine (Baltimore) 2025; 104:e41202. [PMID: 40184113 PMCID: PMC11709218 DOI: 10.1097/md.0000000000041202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Chronic kidney disease significantly affects human health by loss of excretory kidney function. MicroRNAs have potential predictive and therapeutic significance for chronic kidney disease and fibrosis-related kidney diseases. This study aimed to investigate expression profiling and clinical significance of microRNA-204 (miR-204) expression in patients with chronic kidney disease. METHODS A total of 126 patients with chronic kidney disease and age-matched 126 healthy controls were enrolled in this study. Blood samples were collected from participants and expression levels of miR-204 were detected using reverse transcription quantitative polymerase chain reaction. Expression of inflammatory cytokines in glomerular cells was measured using reverse transcription quantitative polymerase chain reaction. Inflammatory cytokines in serum were analyzed using enzyme-linked immunosorbent assay in all participants. Multivariate Cox-regression analysis was used to analyze the association between serum level of miR-204 and inflammation, renal fibrosis, and degree of chronic kidney disease. RESULTS Chronic kidney disease patients had higher inflammatory cytokines including IL-1β, IL-6, TNF-α, IL-10, and IL-17 than healthy volunteers. Expression levels of inflammatory cytokines (IL-1β, IL-6, TNF-α, IL-10, and IL-17) were upregulated in patients with chronic kidney disease compared to healthy volunteers. Serum level of miR-204 was lower in chronic kidney disease patients than healthy patients. Expression of miR-204 was higher in healthy volunteers than patients with chronic kidney disease. In addition, expression of miR-204 was lower in glomerular cells in chronic kidney disease patients than those in the healthy volunteers. Furthermore, higher serum level of miR-204 was associated with better renal function in chronic kidney disease patients than patients who had lower serum level of miR-204. High serum levels of miR-204 were associated with degree of renal fibrosis and injury of chronic kidney disease patients. Multivariate Cox-regression analysis identified expression of miR-204 was positively correlated with inflammation in patients with chronic kidney disease. CONCLUSION Outcomes indicate that serum levels of miR-204 are downregulated in serum in patients with chronic kidney disease. Data suggest that serum levels of miR-204 can be used to evaluate the renal function in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Guo Xiaoyun
- Department of Nephrology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Li Hongjun
- Department of Infection Immunity, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Meng Cuijing
- Department Medical Record, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang, China
| | - Rong Li
- Department of Nephrology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhang Mei
- Department of Rheumatology, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Huang C, Zhang X, Wu SX, Chang Q, Zheng ZK, Xu J. METTL3, m6A modification, and EGR1: interplay affecting myocardial I/R injury outcomes. Cell Biol Toxicol 2024; 41:7. [PMID: 39707117 PMCID: PMC11662061 DOI: 10.1007/s10565-024-09937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/16/2024] [Indexed: 12/23/2024]
Abstract
The occurrence of severe myocardial ischemia/reperfusion (I/R) injury is associated with the clinical application of reestablishment technique for heart disease, and understanding its underlying mechanisms is currently an urgent issue. Prior investigations have demonstrated the potential enhancement of MIRI through EGR1 suppression, although the precise underlying regulatory pathways require further elucidation. The core focus of this investigation is to examine the molecular pathways through EGR1 regulates mitophagy-mediated myocardial cell pyroptosis and its impact on MIRI. Cardiomyocyte hypoxia/reoxygenation (H/R) injury models and mouse models of myocardial I/R injury were used to investigate the involvement of EGR1 in regulating mitophagy-mediated myocardial cell pyroptosis in myocardial I/R injury. The research outcomes demonstrated that under H/R conditions, EGR1 expression was upregulated and inhibited the JAK2/STAT3 pathway, leading to enhanced mitophagy and disrupted mitochondrial fusion/fission dynamics, ultimately resulting in myocardial cell pyroptosis. Further research revealed that the upregulation of EGR1 expression was mediated by methyltransferase like 3 (METTL3)-mediated m6A modification of EGR1 mRNA and depended on the binding of insulin like growth factor 2 mrna binding protein 2 (IGF2BP2) to the N6-methyladenosine (m6A) modification site to enhance mRNA stability. In vivo animal experiments confirmed that METTL3 upregulated EGR1 expression through IGF2BP2 and suppressed activation of the janus kinase 2 (JAK2) /signal transducer and activator of transcription 3 (STAT3) pathway, thereby inhibiting mitophagy, disrupting mitochondrial dynamics, promoting myocardial cell pyroptosis, and exacerbating I/R injury.
Collapse
Affiliation(s)
- Chen Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xun Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shi-Xiong Wu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Qing Chang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhi-Kun Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Jing Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
6
|
Xia X, Wei Y, Huang Q, Zhou Y, Wang X, Shi Y, Yang X, Yang W, Zhang Y, Lei T, Huang Y, Li H, Qin M, Gao H. Counteracting Alzheimer's disease via normalizing neurovascular unit with a self-regulated multi-functional nano-modulator. Acta Pharm Sin B 2024; 14:5464-5478. [PMID: 39807324 PMCID: PMC11725031 DOI: 10.1016/j.apsb.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 01/16/2025] Open
Abstract
The neurovascular unit (NVU) is highly responsible for cerebral homeostasis and its dysfunction emerges as a critical contributor to Alzheimer's disease (AD) pathology. Hence, rescuing NVU dysfunction might be a viable approach to AD treatments. Here, we fabricated a self-regulated muti-functional nano-modulator (siR/PIO@RP) that can intelligently navigate to damaged blood-brain barrier and release therapeutical cargoes for synergetic AD therapy. The resulting siR/PIO@RP enables self-regulation of its distribution in accordance with the physio/pathological state (low/high RAGE expression) of the target site via a feedback loop. siR/PIO@RP is capable of performing intricate tasks and goes beyond the capabilities of single-target therapeutic agents utilized in AD therapy, such as reducing cerebral Aβ load, relieving neuroinflammation, and alleviating the dysfunction of NVU. Overall, the current study provides proof of concept that normalizing NVU holds promise as a means of alleviating AD symptoms.
Collapse
Affiliation(s)
- Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ya Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianqian Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yulong Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaotong Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiwei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- Key Laboratory of Coarse Cereal Processing, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Huang G, Zhang Y, Zhang Y, Zhou X, Xu Y, Wei H, Chen X, Ma Y. Oridonin Attenuates Diabetes‑induced Renal Fibrosis via the Inhibition of TXNIP/NLRP3 and NF‑κB Pathways by Activating PPARγ in Rats. Exp Clin Endocrinol Diabetes 2024; 132:536-544. [PMID: 38718831 DOI: 10.1055/a-2322-7438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Oridonin possesses remarkable anti-inflammatory, immunoregulatory properties. However, the renoprotective effects of oridonin and the underlying molecular mechanisms in diabetic nephropathy (DN). We hypothesized that oridonin could ameliorate diabetes‑induced renal fibrosis. METHODS Streptozocin (STZ)-induced diabetic rats were provided with a high-fat diet to establish a type 2 diabetes mellitus (T2DM) animal model, and then treated with Oridonin (10, 20 mg/kg/day) for two weeks. Kidney function and renal fibrosis were assessed. High glucose-induced human renal proximal tubule epithelial cells (HK-2) were also treated with oridonin. The expression of inflammatory factors and fibrotic markers were analyzed. RESULTS Oridonin treatment preserved kidney function and markedly limited the renal fibrosis size in diabetic rats. The renal fibrotic markers were inhibited in the oridonin 10 mg/kg/day and 20 mg/kg/day groups compared to the T2DM group. The expression of thioredoxin-interacting proteins/ nod-like receptor protein-3 (TXNIP/NLRP3) and nuclear factor (NF)‑κB pathway decreased, while that of peroxisome proliferator-activated receptor-gamma (PPARγ) increased in the oridonin treatment group compared to the non-treated group. In vitro, PPARγ intervention could significantly regulate the effect of oridonin on the high glucose-induced inflammatory changes in HK-2 cells. CONCLUSION Oridonin reduces renal fibrosis and preserves kidney function via the inhibition of TXNIP/NLRP3 and NF‑κB pathways by activating PPARγ in rat T2DM model, which indicates potential effect of oridonin in the treatment of DN.
Collapse
Affiliation(s)
- Gengzhen Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Second people's Hospital, Chengdu, China
| | - Yaodan Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingying Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaotao Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huiting Wei
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuerong Ma
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Zhang ZH, Yuan CY, Xu M, Wang MF, Feng T, Wang Y, Zheng SF, Zhang HL, Shi GH, Cao DL, Wang ZL, Ye DW. Calycosin inhibits the proliferation and metastasis of renal cell carcinoma through the MAZ/HAS2 signaling pathway. Phytother Res 2024; 38:4774-4791. [PMID: 39120474 DOI: 10.1002/ptr.8295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/03/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
Calycosin (Caly), a flavonoid compound, demonstrates a variety of beneficial properties. However, the specific mechanisms behind Caly's anticancer effects remain largely unexplored. Network pharmacology was used to explore the potential targets of Caly in renal cancer. Additionally, RNA-seq sequencing was used to detect changes in genes in renal cancer cells after Caly treatment. Validation was carried out through quantitative reverse transcription-PCR and Western blot analysis. The luciferase reporter assay was applied to pinpoint the interaction site between MAZ and HAS2. Furthermore, the immunoprecipitation assay was utilized to examine the ubiquitination and degradation of MAZ. In vivo experiments using cell line-derived xenograft mouse models were performed to assess Calycosin's impact on cancer growth. Network pharmacology research suggests Caly plays a role in promoting apoptosis and inhibiting cell adhesion in renal cancer. In vitro, Caly has been observed to suppress proliferation, colony formation, and metastasis of renal cancer cells while also triggering apoptosis. Additionally, it appears to diminish hyaluronic acid synthesis by downregulating HAS2 expression. MAZ is identified as a transcriptional regulator of HAS2 expression. Calycosin further facilitates the degradation of MAZ via the ubiquitin-proteasome pathway. Notably, Caly demonstrates efficacy in reducing the growth of renal cell carcinoma xenograft tumors in vivo. Our findings indicate that Caly suppresses the proliferation, metastasis, and progression of renal cell carcinoma through its action on the MAZ/HAS2 signaling pathway. Thus, Caly represents a promising therapeutic candidate for the treatment of renal cell carcinoma.
Collapse
Affiliation(s)
- Zi-Hao Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Urology, School of Life Medicine, Fudan University Shanghai Cancer Center, Qingdao Institute, Fudan University, Qingdao, China
| | - Cheng-Yue Yuan
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Xu
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng-Fei Wang
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Feng
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Urology, School of Life Medicine, Fudan University Shanghai Cancer Center, Qingdao Institute, Fudan University, Qingdao, China
| | - Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sheng-Feng Zheng
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Urology, School of Life Medicine, Fudan University Shanghai Cancer Center, Qingdao Institute, Fudan University, Qingdao, China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guo-Hai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Long Cao
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zi-Liang Wang
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Urology, School of Life Medicine, Fudan University Shanghai Cancer Center, Qingdao Institute, Fudan University, Qingdao, China
| |
Collapse
|
9
|
Zhang NX, Guan C, Li CY, Xu LY, Xin YL, Song Z, Li TY, Yang CY, Zhao L, Che L, Wang YF, Man XF, Xu Y. Formononetin Alleviates Ischemic Acute Kidney Injury by Regulating Macrophage Polarization through KLF6/STAT3 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1487-1505. [PMID: 39169449 DOI: 10.1142/s0192415x24500587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Recent research has indicated that formononetin demonstrates a potent anti-inflammatory effect in various diseases. However, its impact on sterile inflammation kidney injury, specifically acute kidney injury (AKI), remains unclear. In this study, we utilized an ischemia/reperfusion-induced AKI (IRI-AKI) mouse model and bone marrow-derived macrophages (BMDMs) to investigate the effects of formononetin on sterile inflammation of AKI and to explore the underlying mechanism. The administration of formononetin significantly preserved kidney function from injury, as evidenced by lower serum creatinine and blood urea nitrogen levels compared to IRI-AKI mice without treatment. This was further confirmed by less pathological changes in renal tubules and low expression of tubular injury markers such as KIM-1 and NGAL in the formononetin-treated IRI-AKI group. Furthermore, formononetin effectively suppressed the expression of pro-inflammatory cytokines (MCP-1, TNF-α, and IL-1β) and macrophage infiltration into the kidneys of AKI mice. In vitro studies showed that formononetin led to less macrophage polarization towards a pro-inflammatory phenotype in BMDMs stimulated by LPS and IFN-[Formula: see text]. The mechanism involved the KLF6 and p-STAT3 pathway, as overexpression of KLF6 restored pro-inflammatory cytokine levels and pro-inflammatory polarization. Our findings demonstrate that formononetin can significantly improve renal function and reduce inflammation in IRI-AKI, which may be attributed to the inhibition of KLF6/STAT3-mediated macrophage pro-inflammatory polarization. This discovery presents a new promising therapeutic option for the treatment of IRI-AKI.
Collapse
Affiliation(s)
- Ning-Xin Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Guan
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen-Yu Li
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, München, Germany
| | - Ling-Yu Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Lu Xin
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhuo Song
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tian-Yang Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cheng-Yu Yang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Long Zhao
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Che
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Fei Wang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-Fei Man
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Wang HL, Peng Z, Li YQ, Wang YX, Li JC, Tan RZ, Su HW, Shen HP, Zhao CY, Liu J, Wang L. Calycosin inhibited MIF-mediated inflammatory chemotaxis of macrophages to ameliorate ischemia reperfusion-induced acute kidney injury. Inflamm Res 2024; 73:1267-1282. [PMID: 38844677 DOI: 10.1007/s00011-024-01899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Inflammatory macrophage infiltration plays a critical role in acute kidney disease induced by ischemia-reperfusion (IRI-AKI). Calycosin is a natural flavone with multiple bioactivities. This study aimed to investigate the therapeutic role of calycosin in IRI-AKI and its underlying mechanism. METHODS The renoprotective and anti-inflammatory effects of calycosin were analyzed in C57BL/6 mice with IRI-AKI and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA-seq was used for mechanism investigation. The molecular target of calycosin was screened by in silico methods and validated by surface plasmon resonance (SPR). Macrophage chemotaxis was analyzed using Transwell and agarose gel spot assays. RESULTS Calycosin treatment significantly reduced serum creatinine and urea nitrogen and attenuated tubular destruction in IRI-AKI mice. Additionally, calycosin markedly suppressed NF-κB signaling activation and the expression of inflammatory mediators IL-1β and TNF-α in IRI-AKI kidneys and LPS-stimulated RAW 264.7 cells. Interestingly, RNA-seq revealed calycosin remarkably downregulated chemotaxis-related pathways in RAW 264.7 cells. Among the differentially expressed genes, Ccl2/MCP-1, a critical chemokine mediating macrophage inflammatory chemotaxis, was downregulated in both LPS-stimulated RAW 264.7 cells and IRI-AKI kidneys. Consistently, calycosin treatment attenuated macrophage infiltration in the IRI-AKI kidneys. Importantly, in silico target prediction, molecular docking, and SPR assay demonstrated that calycosin directly binds to macrophage migration inhibitory factor (MIF). Functionally, calycosin abrogated MIF-stimulated NF-κB signaling activation and Ccl2 expression and MIF-mediated chemotaxis in RAW 264.7 cells. CONCLUSIONS In summary, calycosin attenuates IRI-AKI by inhibiting MIF-mediated macrophage inflammatory chemotaxis, suggesting it could be a promising therapeutic agent for the treatment of IRI-AKI.
Collapse
Affiliation(s)
- Hong-Lian Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182, Chunhui Road, District of Longmatan, Luzhou, Sichuan Province, 646000, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Ze Peng
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yu-Qing Li
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yi-Xuan Wang
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jian-Chun Li
- Research Center for Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182, Chunhui Road, District of Longmatan, Luzhou, Sichuan Province, 646000, China
| | - Rui-Zhi Tan
- Research Center for Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182, Chunhui Road, District of Longmatan, Luzhou, Sichuan Province, 646000, China
| | - Hong-Wei Su
- The Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Hong-Ping Shen
- The Clinical Trial Research Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Chang-Ying Zhao
- The Department of Endocrinology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jian Liu
- The Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182, Chunhui Road, District of Longmatan, Luzhou, Sichuan Province, 646000, China.
| | - Li Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182, Chunhui Road, District of Longmatan, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
11
|
陶 怀, 骆 金, 闻 志, 虞 亘, 苏 萧, 王 鑫, 关 翰, 陈 志. [High STING expression exacerbates renal ischemia-reperfusion injury in mice by regulating the TLR4/NF-κB/NLRP3 pathway and promoting inflammation and apoptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1345-1354. [PMID: 39051080 PMCID: PMC11270667 DOI: 10.12122/j.issn.1673-4254.2024.07.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To investigate renal expression level of STING in mice with renal ischemia-reperfusion injury (IRI) and its regulatory role in IRI. METHODS C57BL/6 mice were divided into sham operation group, IRI (induced by clamping the renal artery) model group, IRI+DMSO treatment group, and IRI+SN-011 treatment group. Serum creatinine and blood urea nitrogen of the mice were analyzed, and pathological changes in the renal tissue were assessed with PAS staining. RT-qPCR, ELISA, Western blotting, and immunohistochemistry were used to detect the expression levels of STING, KIM-1, Bcl-2, Bax, caspase-3, TLR4, P65, NLRP3, caspase-1, CD68, MPO, IL-1β, IL-6, and TNF-α in the renal tissues. In the cell experiment, HK-2 cells exposed to hypoxia-reoxygenation (H/R) were treated with DMSO or SN-011, and cellular STING expression levels and cell apoptosis were analyzed using RT-qPCR, Western blotting or flow cytometry. RESULTS In C57BL/6 mice, renal IRI induced obvious renal tissue damage, elevation of serum creatinine and blood urea nitrogen levels and renal expression levels of KIM-1, STING, TLR4, P65, NLRP3, caspase-1, caspase-3, Bax, CD68, MPO, IL-1β, IL-6, and TNF-α, and reduction of Bcl-2 expression level. Treatment of the mouse models with SN-011 for inhibiting STING expression significantly alleviated these changes. In HK-2 cells, H/R exposure caused significant elevation of cellular STING expression and obviously increased cell apoptosis rate, which was significantly lowered by treatment with SN-011. CONCLUSION Renal STING expression is elevated in mice with renal IRI to exacerbate renal injury by regulating the TLR4/NF-κB/NLRP3 pathway and promoting inflammation and apoptosis in the renal tissues.
Collapse
|
12
|
Wang Y, Shen Z, Mo S, Zhang H, Chen J, Zhu C, Lv S, Zhang D, Huang X, Gu Y, Yu X, Ding X, Zhang X. Crosstalk among proximal tubular cells, macrophages, and fibroblasts in acute kidney injury: single-cell profiling from the perspective of ferroptosis. Hum Cell 2024; 37:1039-1055. [PMID: 38753279 PMCID: PMC11194220 DOI: 10.1007/s13577-024-01072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/27/2024] [Indexed: 06/24/2024]
Abstract
The link between ferroptosis, a form of cell death mediated by iron and acute kidney injury (AKI) is recently gaining widespread attention. However, the mechanism of the crosstalk between cells in the pathogenesis and progression of acute kidney injury remains unexplored. In our research, we performed a non-negative matrix decomposition (NMF) algorithm on acute kidney injury single-cell RNA sequencing data based specifically focusing in ferroptosis-associated genes. Through a combination with pseudo-time analysis, cell-cell interaction analysis and SCENIC analysis, we discovered that proximal tubular cells, macrophages, and fibroblasts all showed associations with ferroptosis in different pathways and at various time. This involvement influenced cellular functions, enhancing cellular communication and activating multiple transcription factors. In addition, analyzing bulk expression profiles and marker genes of newly defined ferroptosis subtypes of cells, we have identified crucial cell subtypes, including Egr1 + PTC-C1, Jun + PTC-C3, Cxcl2 + Mac-C1 and Egr1 + Fib-C1. All these subtypes which were found in AKI mice kidneys and played significantly distinct roles from those of normal mice. Moreover, we verified the differential expression of Egr1, Jun, and Cxcl2 in the IRI mouse model and acute kidney injury human samples. Finally, our research presented a novel analysis of the crosstalk of proximal tubular cells, macrophages and fibroblasts in acute kidney injury targeting ferroptosis, therefore, contributing to better understanding the acute kidney injury pathogenesis, self-repairment and acute kidney injury-chronic kidney disease (AKI-CKD) progression.
Collapse
Affiliation(s)
- Yulin Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Ziyan Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Institute of Kidney and Dialysis, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Han Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Cheng Zhu
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shiqi Lv
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Di Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Xinhui Huang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yulu Gu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213100, Jiangsu, China
| | - Xixi Yu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Institute of Kidney and Dialysis, No. 180 Fenglin Road, Shanghai, 200032, China.
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Institute of Kidney and Dialysis, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
13
|
Li R, Liu X. FGF21 Inhibits Hypoxia/Reoxygenation-induced Renal Tubular Epithelial Cell Injury by Regulating the PPARγ/NF-κB Signaling Pathway. Cell Biochem Biophys 2024; 82:909-918. [PMID: 38459267 DOI: 10.1007/s12013-024-01242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
As a predominant trigger of acute kidney injury, renal ischemia-reperfusion injury can cause permanent renal impairment, and the effective therapies are lacking. Fibroblast growth factor 21 (FGF21) plays a critical regulatory role in a variety of biological activities. This study was conducted to explore the functional of FGF21 in renal ischemia-reperfusion injury and to discuss the hidden reaction mechanism. To simulate renal ischemia-reperfusion injury in vitro, HK2 cells were induced by hypoxia/reoxygenation (H/R). The effects of FGF21 on H/R-induced HK2 cell viability were evaluated utilizing cell counting kit-8 (CCK-8). The levels of lactate dehydrogenase (LDH) and inflammatory cytokines in H/R-induced HK2 cells were assessed by means of LDH assay and enzyme-linked immunosorbent assay (ELISA). The levels of oxidative stress markers were appraised with corresponding assay kits and western blot was applied to estimate the expressions of oxidative stress-related proteins. The apoptosis of H/R-induced HK2 cells was assessed by virtue of flow cytometry. The expressions of apoptosis- and PPARγ/NF-κB signaling pathway-related proteins were evaluated with western blot. To discuss the reaction mechanism of PPARγ/NF-κB pathway in H/R-induced HK2 cells, PPARγ inhibitor GW9662 was employed to treat cells and the above experiments were then conducted again. This study found that FGF21 treatment inhibited the inflammatory response, oxidative stress and apoptosis in H/R-induced HK2 cells. Moreover, FGF21 regulated PPARγ/NF-κB signaling pathway and GW9662 partially reversed the impacts of FGF21 on the inflammatory response, oxidative stress and apoptosis in H/R-exposed HK2 cells. Collectively, FGF21 protected against H/R-induced renal tubular epithelial cell injury by regulating the PPARγ/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ruixue Li
- Nephrology Department, The People's Hospital of Yubei District of Chongqing, Chongqing, 401120, PR China.
| | - Xi Liu
- Nephrology Department, The People's Hospital of Yubei District of Chongqing, Chongqing, 401120, PR China
| |
Collapse
|
14
|
Li Y, Wang HB, Cao JL, Zhang WJ, Wang HL, Xu CH, Li KP, Liu Y, Wang JR, Ha HL, Fu SJ, Yang L. Proteomic analysis of mitochondria associated membranes in renal ischemic reperfusion injury. J Transl Med 2024; 22:261. [PMID: 38461333 PMCID: PMC10925013 DOI: 10.1186/s12967-024-05021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/23/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND The mitochondria and endoplasmic reticulum (ER) communicate via contact sites known as mitochondria associated membranes (MAMs). Many important cellular functions such as bioenergetics, mitophagy, apoptosis, and calcium signaling are regulated by MAMs, which are thought to be closely related to ischemic reperfusion injury (IRI). However, there exists a gap in systematic proteomic research addressing the relationship between these cellular processes. METHODS A 4D label free mass spectrometry-based proteomic analysis of mitochondria associated membranes (MAMs) from the human renal proximal tubular epithelial cell line (HK-2 cells) was conducted under both normal (N) and hypoxia/reperfusion (HR) conditions. Subsequent differential proteins analysis aimed to characterize disease-relevant signaling molecules. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was applied to total proteins and differentially expressed proteins, encompassing Biological Process (BP), Cell Component (CC), Molecular Function (MF), and KEGG pathways. Further, Protein-Protein Interaction Network (PPI) exploration was carried out, leading to the identification of hub genes from differentially expressed proteins. Notably, Mitofusion 2 (MFN2) and BCL2/Adenovirus E1B 19-kDa interacting protein 3(BNIP3) were identified and subsequently validated both in vitro and in vivo. Finally, the impact of MFN2 on MAMs during hypoxia/reoxygenation was explored through regulation of gene expression. Subsequently, a comparative proteomics analysis was conducted between OE-MFN2 and normal HK-2 cells, providing further insights into the underlying mechanisms. RESULTS A total of 4489 proteins were identified, with 3531 successfully quantified. GO/KEGG analysis revealed that MAM proteins were primarily associated with mitochondrial function and energy metabolism. Differential analysis between the two groups showed that 688 proteins in HR HK-2 cells exhibited significant changes in expression level with P-value < 0.05 and HR/N > 1.5 or HR/N < 0.66 set as the threshold criteria. Enrichment analysis of differentially expressed proteins unveiled biological processes such as mRNA splicing, apoptosis regulation, and cell division, while molecular functions were predominantly associated with energy metabolic activity. These proteins play key roles in the cellular responses during HR, offering insights into the IRI mechanisms and potential therapeutic targets. The validation of hub genes MFN2 and BNIP3 both in vitro and vivo was consistent with the proteomic findings. MFN2 demonstrated a protective role in maintaining the integrity of mitochondria associated membranes (MAMs) and mitigating mitochondrial damage following hypoxia/reoxygenation injury, this protective effect may be associated with the activation of the PI3K/AKT pathway. CONCLUSIONS The proteins located in mitochondria associated membranes (MAMs) are implicated in crucial roles during renal ischemic reperfusion injury (IRI), with MFN2 playing a pivotal regulatory role in this context.
Collapse
Affiliation(s)
- Yi Li
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hua-Bin Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Jin-Long Cao
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wen-Jun Zhang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Department of Nephrology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hai-Long Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Chang-Hong Xu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Kun-Peng Li
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yi Liu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Ji-Rong Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hua-Lan Ha
- Department of Nephrology, The First People's Hospital of Lanzhou City, Lanzhou, 730030, Gansu, China
| | - Sheng-Jun Fu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Li Yang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
15
|
Liu YX, Song XM, Dan LW, Tang JM, Jiang Y, Deng C, Zhang DD, Li YZ, Wang W. Astragali Radix: comprehensive review of its botany, phytochemistry, pharmacology and clinical application. Arch Pharm Res 2024; 47:165-218. [PMID: 38493280 DOI: 10.1007/s12272-024-01489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Astragali Radix (A. Radix) is the dried root of Astragalus membranaceus var. mongholicus (Bge) Hsiao or Astragalus membranaceus (Fisch.) Bge., belonging to the family Leguminosae, which is mainly distributed in China. A. Radix has been consumed as a tonic in China for more than 2000 years because of its medicinal effects of invigorating the spleen and replenishing qi. Currently, more than 400 natural compounds have been isolated and identified from A. Radix, mainly including saponins, flavonoids, phenylpropanoids, alkaloids, and others. Modern pharmacological studies have shown that A. Radix has anti-tumor, anti-inflammatory, immunomodulatory, anti-atherosclerotic, cardioprotective, anti-hypertensive, and anti-aging effects. It has been clinically used in the treatment of tumors, cardiovascular diseases, and cerebrovascular complications associated with diabetes with few side effects and high safety. This paper reviewed the progress of research on its chemical constituents, pharmacological effects, clinical applications, developing applications, and toxicology, which provides a basis for the better development and utilization of A. Radix.
Collapse
Affiliation(s)
- Ya-Xiao Liu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Xiao-Mei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, 712046, Shaanxi, China
| | - Lin-Wei Dan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Jia-Mei Tang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Yi Jiang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, 712046, Shaanxi, China
| | - Chong Deng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, 712046, Shaanxi, China
| | - Dong-Dong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, 712046, Shaanxi, China
| | - Yu-Ze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China.
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, 712046, Shaanxi, China.
| | - Wei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China.
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, 712046, Shaanxi, China.
| |
Collapse
|
16
|
Jin T, Wang H, Liu Y, Wang H. Circular RNAs: Regulators of endothelial cell dysfunction in atherosclerosis. J Mol Med (Berl) 2024; 102:313-335. [PMID: 38265445 DOI: 10.1007/s00109-023-02413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024]
Abstract
Endothelial cell (EC) dysfunction is associated with atherosclerosis. Circular RNAs (circRNAs) are covalently closed loops formed by back-splicing, are highly expressed in a tissue-specific or cell-specific manner, and regulate ECs mainly through miRNAs (mircoRNAs) or protein sponges. This review describes the regulatory mechanisms and physiological functions of circRNAs, as well as the differential expression of circRNAs in aberrant ECs. This review focuses on their roles in inflammation, proliferation, migration, angiogenesis, apoptosis, senescence, and autophagy in ECs from the perspective of signaling pathways, such as nuclear factor κB (NF-κB), nucleotide-binding domain, leucine-rich-repeat family, pyrin-domain-containing 3 (NLRP3)/caspase-1, Janus kinase/signal transducer and activator of transcription (JAK/STAT), and phosphoinositide-3 kinase/protein kinase B (PI3K/Akt). Finally, we address the issues and recent advances in circRNAs as well as circRNA-mediated regulation of ECs to improve our understanding of the molecular mechanisms underlying the progression of atherosclerosis and provide a reference for studies on circRNAs that regulate EC dysfunction and thus affect atherosclerosis.
Collapse
Affiliation(s)
- Tengyu Jin
- Hebei Medical University, Shijiazhuang 050011, Hebei, China
- Hebei General Hospital, Affiliated to Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Haoyuan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yuelin Liu
- Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Hebo Wang
- Hebei Medical University, Shijiazhuang 050011, Hebei, China.
- Hebei General Hospital, Affiliated to Hebei Medical University, Shijiazhuang 050051, Hebei, China.
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang 050051, Hebei, China.
| |
Collapse
|
17
|
Jiang X, He Y, Zhao Y, Pan Z, Wang Y. Danggui Buxue Decoction exerts its therapeutic effect on rheumatoid arthritis through the inhibition of Wnt/β-catenin signaling pathway. J Orthop Surg Res 2023; 18:944. [PMID: 38066567 PMCID: PMC10709948 DOI: 10.1186/s13018-023-04439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Danggui Buxue Decoction (DBD) is a traditional Chinese medicine prescription, which has the functions of benefiting Qi, generating blood and regulating the immune system. At present, various clinical reports suggest that DBD has some efficacy in Rheumatoid arthritis (RA), but its mechanism of action is still unclear. Thus, the present study explored mechanism of this preparation on RA. METHODS The effect of DBD was evaluated by tumor necrosis factor (TNF)-α-induced Human fibroblast-like synoviocyte of rheumatoid arthritis (HFLS-RA) cell model and collagen-induced arthritis (CIA) rat model, respectively. Inflammatory factors including TNF-ɑ, IL-1β, IL-6 and IL-10 in the culture supernatants or rat serum were measured using ELISA. The related indexes including fur luster, mental state and activity of rat and the symptoms including swelling and deformation of toes and ankles were also measured. RESULTS In vitro results showed that DBD cannot only inhibit the proliferation of HFLS-RA cells but also reduce the levels of pro-inflammatory factors while increasing the level of anti-inflammatory factors. Similar results were obtained from in vivo experiments. Rats receiving DBD showed a decrease in the severity of rheumatoid arthritis in rat models. Moreover, the protein levels of c-myc and β-catenin decreased significantly, while the protein level of SFRP4 increased, which indicated that DBD might inhibit the inflammatory reaction by regulating Wnt/β-catenin signaling pathway, thus alleviating the symptoms of RA. CONCLUSION Our findings not only provide insights for understanding the molecular mechanism of DBD in treating RA, but also provide the theoretical basis for further clinical prevention and treatment.
Collapse
Affiliation(s)
- Xin Jiang
- College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yanxin He
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ying Zhao
- College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhi Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China.
| | - Yinghang Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China.
| |
Collapse
|
18
|
Guan C, Li C, Shen X, Yang C, Liu Z, Zhang N, Xu L, Zhao L, Zhou B, Man X, Luo C, Luan H, Che L, Wang Y, Xu Y. Hexarelin alleviates apoptosis on ischemic acute kidney injury via MDM2/p53 pathway. Eur J Med Res 2023; 28:344. [PMID: 37710348 PMCID: PMC10500723 DOI: 10.1186/s40001-023-01318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION Hexarelin exhibits significant protection against organ injury in models of ischemia/reperfusion (I/R)-induced injury (IRI). Nevertheless, the impact of Hexarelin on acute kidney injury (AKI) and its underlying mechanism remains unclear. In this study, we investigated the therapeutic potential of Hexarelin in I/R-induced AKI and elucidated its molecular mechanisms. METHODS We assessed the protective effects of Hexarelin through both in vivo and in vitro experiments. In the I/R-induced AKI model, rats were pretreated with Hexarelin at 100 μg/kg/d for 7 days before being sacrificed 24 h post-IRI. Subsequently, kidney function, histology, and apoptosis were assessed. In vitro, hypoxia/reoxygenation (H/R)-induced HK-2 cell model was used to investigate the impact of Hexarelin on apoptosis in HK-2 cells. Then, we employed molecular docking using a pharmmapper server and autodock software to identify potential target proteins of Hexarelin. RESULTS In this study, rats subjected to I/R developed severe kidney injury characterized by tubular necrosis, tubular dilatation, increased serum creatinine levels, and cell apoptosis. However, pretreatment with Hexarelin exhibited a protective effect by mitigating post-ischemic kidney pathological changes, improving renal function, and inhibiting apoptosis. This was achieved through the downregulation of conventional apoptosis-related genes, such as Caspase-3, Bax and Bad, and the upregulation of the anti-apoptotic protein Bcl-2. Consistent with the in vivo results, Hexarelin also reduced cell apoptosis in post-H/R HK-2 cells. Furthermore, our analysis using GSEA confirmed the essential role of the apoptosis pathway in I/R-induced AKI. Molecular docking revealed a strong binding affinity between Hexarelin and MDM2, suggesting the potential mechanism of Hexarelin's anti-apoptosis effect at least partially through its interaction with MDM2, a well-known negative regulator of apoptosis-related protein that of p53. To validate these findings, we evaluated the relative expression of MDM2 and p53 in I/R-induced AKI with or without Hexarelin pre-administration and observed a significant suppression of MDM2 and p53 by Hexarelin in both in vivo and in vitro experiments. CONCLUSION Collectively, Hexarelin was identified as a promising medication in protecting apoptosis against I/R-induced AKI.
Collapse
Affiliation(s)
- Chen Guan
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Chenyu Li
- Medizinische Klinik Und Poliklinik IV, Klinikum Der Universität, LMU München, Munich, Germany
| | - Xuefei Shen
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Chengyu Yang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Zengying Liu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Ningxin Zhang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Lingyu Xu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Long Zhao
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Bin Zhou
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Xiaofei Man
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Congjuan Luo
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Hong Luan
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Lin Che
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Yanfei Wang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Yan Xu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
19
|
Wang H, He L, Liu Z, Xu X, Zhang H, Mao P, Li M. Calycosin protects against chronic prostatitis in rats via inhibition of the p38MAPK/NF-κB pathway. Open Med (Wars) 2023; 18:20230770. [PMID: 37663231 PMCID: PMC10473462 DOI: 10.1515/med-2023-0770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Currently, the effect and molecular mechanism of calycosin, the main active ingredient of Qinshi Simiao San, which can alleviate chronic prostatitis (CP), on CP remain unclear. This study aimed to elucidate the potential mechanism of action of calycosin in CP in a rat CP model. The prostate tissue morphology was evaluated based on hematoxylin-eosin staining. Enzyme-linked immunosorbent assay was conducted to evaluate inflammatory cytokine and immune factor levels (secretory immunoglobulin A [SIgA]; immunoglobulin G [IgG]) in prostate tissues and serum. Additionally, representative biomarkers of oxidative stress, including malondialdehyde, superoxide dismutase, and catalase were detected using detection kits, and reactive oxygen species release was evaluated using immunofluorescence staining. Furthermore, the p38 mitogen-activated protein kinase (p38MAPK)/NF-kappaB (NF-κB) signaling pathway was analyzed by western blotting. The results showed that calycosin substantially ameliorated the pathological damage to prostate tissues of the CP rats. Moreover, calycosin significantly downregulated interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha, IgG, and SIgA levels. Furthermore, we found that calycosin considerably suppressed oxidative stress and inhibited the activation of the p38MAPK/NF-κB signaling pathway in rats with CP. In summary, our findings revealed that calycosin protects against CP in rats by inhibiting the p38MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Heng Wang
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Lei He
- Department of Acupuncture, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Zhaofei Liu
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Xiangjun Xu
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Haitao Zhang
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Pengfei Mao
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Ming Li
- Department of Pharmacy, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No.160 Chaoyang Middle Road, Haizhou District, Lianyungang 222000, China
| |
Collapse
|
20
|
Hu QD, Tan RZ, Zou YX, Li JC, Fan JM, Kantawong F, Wang L. Synergism of calycosin and bone marrow-derived mesenchymal stem cells to combat podocyte apoptosis to alleviate adriamycin-induced focal segmental glomerulosclerosis. World J Stem Cells 2023; 15:617-631. [PMID: 37424951 PMCID: PMC10324505 DOI: 10.4252/wjsc.v15.i6.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (MSCs) show podocyte-protective effects in chronic kidney disease. Calycosin (CA), a phytoestrogen, is isolated from Astragalus membranaceus with a kidney-tonifying effect. CA preconditioning enhances the protective effect of MSCs against renal fibrosis in mice with unilateral ureteral occlusion. However, the protective effect and underlying mechanism of CA-pretreated MSCs (MSCsCA) on podocytes in adriamycin (ADR)-induced focal segmental glomerulosclerosis (FSGS) mice remain unclear. AIM To investigate whether CA enhances the role of MSCs in protecting against podocyte injury induced by ADR and the possible mechanism involved. METHODS ADR was used to induce FSGS in mice, and MSCs, CA, or MSCsCA were administered to mice. Their protective effect and possible mechanism of action on podocytes were observed by Western blot, immunohistochemistry, immunofluorescence, and real-time polymerase chain reaction. In vitro, ADR was used to stimulate mouse podocytes (MPC5) to induce injury, and the supernatants from MSC-, CA-, or MSCsCA-treated cells were collected to observe their protective effects on podocytes. Subsequently, the apoptosis of podocytes was detected in vivo and in vitro by Western blot, TUNEL assay, and immunofluorescence. Overexpression of Smad3, which is involved in apoptosis, was then induced to evaluate whether the MSCsCA-mediated podocyte protective effect is associated with Smad3 inhibition in MPC5 cells. RESULTS CA-pretreated MSCs enhanced the protective effect of MSCs against podocyte injury and the ability to inhibit podocyte apoptosis in ADR-induced FSGS mice and MPC5 cells. Expression of p-Smad3 was upregulated in mice with ADR-induced FSGS and MPC5 cells, which was reversed by MSCCA treatment more significantly than by MSCs or CA alone. When Smad3 was overexpressed in MPC5 cells, MSCsCA could not fulfill their potential to inhibit podocyte apoptosis. CONCLUSION MSCsCA enhance the protection of MSCs against ADR-induced podocyte apoptosis. The underlying mechanism may be related to MSCsCA-targeted inhibition of p-Smad3 in podocytes.
Collapse
Affiliation(s)
- Qiong-Dan Hu
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Rui-Zhi Tan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yuan-Xia Zou
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jian-Chun Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jun-Ming Fan
- Department of Nephrology, The Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China.
| |
Collapse
|
21
|
Liu J, Li Z, Lao Y, Jin X, Wang Y, Jiang B, He R, Yang S. Network pharmacology, molecular docking, and experimental verification reveal the mechanism of San-Huang decoction in treating acute kidney injury. Front Pharmacol 2023; 14:1060464. [PMID: 36814499 PMCID: PMC9939458 DOI: 10.3389/fphar.2023.1060464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Background: Cisplatin is an effective anti-tumor drug. However, its usage is constrained by side effects such as nephron toxicity. Cisplatin-induced acute kidney injury (AKI) appears in approximately 20%-30% of cases. Hence, finding an effective protective strategy is necessary. San-Huang decoction (SHD) is a Chinese herbal decoction with good efficacy in treating chronic kidney disease (CKD). Nevertheless, the mechanism of SHD on AKI remains unclear. Consequently, we proposed to explore the potential mechanism of SHD against cisplatin-induced AKI. Methods: Active compounds, core target proteins, and associated signaling pathways of SHD were predicted through network pharmacology. Then confirmed by molecular docking. In vivo experiment, Cisplatin + SHD group was treated with SHD (6.5 g/kg/day) for 6 days before building the model. An AKI model was established with a single intraperitoneal injection of cisplatin at 20 mg/kg. After 72 h of cisplatin injection, all mice were sacrificed to collect blood and kidney tissues for verification of network pharmacology analysis. Results: We found that calycosin, rhein, and ginsenoside Rh2 may be SHD's primary active compounds in treating cisplatin-induced AKI, and AKT, TNF-α, IL-6, IL-1β, caspase-3, and MMP9 are the core target proteins. The relationship between the compound and target protein was further confirmed by molecular docking. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses predicted that SHD has an anti-inflammatory role through the TNF and IL-17 signaling pathway. Moreover, Western blot and immunohistochemistry validated the potential molecular mechanisms of SHD, predicted from network pharmacology analysis. The mechanism of cisplatin-induced AKI involves apoptosis and inflammation. In apoptosis, Caspase-3, caspase-8, caspase-9, and Bax proteins were down-regulated, while Bcl-2 was up-regulated by SHD. The differential expression of MMP protein is involved in the pathological process of AKI. MMP9 protects from glomerular tubule damage. MMP9 and PI3K/AKT anti-apoptosis pathway were up-regulated by SHD. In addition, we discovered that SHD alleviated AKI by inhibiting the NF-κB signaling pathway. Conclusion: SHD plays a critical role in anti-inflammation and anti-apoptosis via inhibiting the NF-κB signaling pathway and activating PI3K/AKT anti-apoptosis pathway, indicating that SHD is a candidate herbal drug for further investigation in treating cisplatin-induced AKI.
Collapse
Affiliation(s)
- Jiahui Liu
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, China
| | - Zhongtang Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yunlan Lao
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaoming Jin
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuzhi Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Beibei Jiang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Riming He
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China,*Correspondence: Riming He, ; Shudong Yang,
| | - Shudong Yang
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, China,Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China,*Correspondence: Riming He, ; Shudong Yang,
| |
Collapse
|
22
|
Zhang Z, Fang J, Sun D, Zheng Y, Liu X, Li H, Hu Y, Liu Y, Zhang M, Liu W, Zhang X, Liu X. Study on the Mechanism of Radix Astragali against Renal Aging Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6987677. [PMID: 36561604 PMCID: PMC9767736 DOI: 10.1155/2022/6987677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022]
Abstract
Radix Astragali is widely used in the traditional Chinese medicine with the effect of antiaging. The purpose of this study is to explore the main active ingredients and targets of Radix Astragali against renal aging by network pharmacology and further to verify the mechanism of the main active ingredients in vitro. TCMSP, ETCM, and TCMID databases were used to screen active ingredients of Radix Astragali. Targets of active ingredients were predicted using BATMAN-TCM and cross validated using kidney aging-related genes obtained from GeneCards and NCBI database. Pathways enrichment and protein-protein interaction (PPI) analysis were performed on core targets. Additionally, a pharmacological network was constructed based on the active ingredients-targets-pathways. HK-2 cell was treated with D-galactose to generate a cell model of senescence. CCK-8 and β-galactosidase were used to detect the effect of Radix Astragali active components on cell proliferation and aging. ELISA was used to detect the expression of senescence-associated secreted protein (TGF-β and IL-6) in the cell culture supernatant. Western blot was used to detect the expression of key proteins in the SIRT1/p53 pathway. Five active ingredients (Astragaloside I, II, III, IV and choline) were identified from Radix Astragali, and all these active ingredients target a total of 128 genes. Enrichment analysis showed these genes were implicated in 153 KEGG pathways, including the p53, FoxO, and AMPK pathway. 117 proteins and 572 interactions were found in PPI network. TP53 and SIRT1 were two hub genes in PPI network, which interacted with each other. The pharmacological network showed that the five main active ingredients target on some coincident genes, including TP53 and SIRT1. These targeted genes were involved in the p53, FoxO, and AMPK pathway. Proliferation of HK-2 cells was increased by Astragaloside IV treatment compared with that of the D-Gal treatment group. However, the proliferation of the SA-β-gal positive cells were inhibited. The expression of TGF-β and IL-6 in the D-Gal group was higher than that in the normal group, and the treatment of Astragaloside IV could significantly reduce the expression of TGF-β and IL-6. The expression of SIRT1 in the Astragaloside IV group was higher than that in the D-Gal group. However, the expression of p53 and p21 was less in the Astragaloside IV group than that in the D-Gal group. This study suggested that Astragaloside IV is an important active ingredient of Radix Astragali in the treatment of kidney aging via the SITR1-p53 pathway.
Collapse
Affiliation(s)
- Ziyuan Zhang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Jingai Fang
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Dalin Sun
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Yaqin Zheng
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Xinhui Liu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Hui Li
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Yaling Hu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Yuxiang Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Mingyu Zhang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Wenyuan Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Xiaodong Zhang
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Xuejun Liu
- Department of Geriatrics, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| |
Collapse
|