1
|
Daniel P, Balušíková K, Truksa J, Černý J, Jaček M, Jelínek M, Mulenga MJV, Voráčová K, Chen L, Wei L, Sun Y, Ojima I, Kovář J. Effect of substituents at the C3´, C3´N, C10 and C2-meta-benzoate positions of taxane derivatives on their activity against resistant cancer cells. Toxicol Appl Pharmacol 2024; 489:116993. [PMID: 38870637 PMCID: PMC11257372 DOI: 10.1016/j.taap.2024.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
We tested the effect of substituents at the (1) C3´, C3´N, (2) C10, and (3) C2-meta-benzoate positions of taxane derivatives on their activity against sensitive versus counterpart paclitaxel-resistant breast (MCF-7) and ovarian (SK-OV-3) cancer cells. We found that (1) non-aromatic groups at both C3´ and C3´N positions, when compared with phenyl groups at the same positions of a taxane derivative, significantly reduced the resistance of ABCB1 expressing MCF-7/PacR and SK-OV-3/PacR cancer cells. This is, at least in the case of the SB-T-1216 series, accompanied by an ineffective decrease of intracellular levels in MCF-7/PacR cells. The low binding affinity of SB-T-1216 in the ABCB1 binding cavity can elucidate these effects. (2) Cyclopropanecarbonyl group at the C10 position, when compared with the H atom, seems to increase the potency and capability of the derivative in overcoming paclitaxel resistance in both models. (3) Derivatives with fluorine and methyl substituents at the C2-meta-benzoate position were variously potent against sensitive and resistant cancer cells. All C2 derivatives were less capable of overcoming acquired resistance to paclitaxel in vitro than non-substituted analogs. Notably, fluorine derivatives SB-T-121205 and 121,206 were more potent against sensitive and resistant SK-OV-3 cells, and derivatives SB-T-121405 and 121,406 were more potent against sensitive and resistant MCF-7 cells. (4) The various structure-activity relationships of SB-T derivatives observed in two cell line models known to express ABCB1 favor their complex interaction not based solely on ABCB1.
Collapse
Affiliation(s)
- Petr Daniel
- Division of Cell and Molecular Biology, Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Kamila Balušíková
- Division of Cell and Molecular Biology, Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Truksa
- Division of Cell and Molecular Biology, Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic; Laboratory of Tumor Resistance, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Centre, Vestec, Czech Republic
| | - Jiří Černý
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Centre, Vestec, Czech Republic
| | - Martin Jaček
- Department of Hygiene, Epidemiology and Preventive Medicine, Third Faculty of Medicine, Charles Univesity, Prague, Czech Republic
| | - Michael Jelínek
- Division of Cell and Molecular Biology, Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Mutale Jane Vobruba Mulenga
- Division of Cell and Molecular Biology, Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Voráčová
- Division of Cell and Molecular Biology, Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lei Chen
- Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Longfei Wei
- Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Yi Sun
- Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Jan Kovář
- Division of Cell and Molecular Biology, Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
2
|
Sychra T, Spalenkova A, Balatka S, Vaclavikova R, Seborova K, Ehrlichova M, Truksa J, Sandoval-Acuña C, Nemcova V, Szabo A, Koci K, Tesarova T, Chen L, Ojima I, Oliverius M, Soucek P. Third-generation taxanes SB-T-121605 and SB-T-121606 are effective in pancreatic ductal adenocarcinoma. iScience 2024; 27:109044. [PMID: 38357661 PMCID: PMC10865389 DOI: 10.1016/j.isci.2024.109044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Pancreatic cancer is a severe malignancy with increasing incidence and high mortality due to late diagnosis and low sensitivity to treatments. Search for the most appropriate drugs and therapeutic regimens is the most promising way to improve the treatment outcomes of the patients. This study aimed to compare (1) in vitro efficacy and (2) in vivo antitumor effects of conventional paclitaxel and the newly synthesized second (SB-T-1216) and third (SB-T-121605 and SB-T-121606) generation taxanes in KRAS wild type BxPC-3 and more aggressive KRAS G12V mutated Paca-44 pancreatic cancer cell line models. In vitro, paclitaxel efficacy was 27.6 ± 1.7 nM, while SB-Ts showed 1.7-7.4 times higher efficacy. Incorporation of SB-T-121605 and SB-T-121606 into in vivo therapeutic regimens containing paclitaxel was effective in suppressing tumor growth in Paca-44 tumor-bearing mice at small doses (≤3 mg/kg). SB-T-121605 and SB-T-121606 in combination with paclitaxel are promising candidates for the next phase of preclinical testing.
Collapse
Affiliation(s)
- Tomas Sychra
- Department of Surgery, University Hospital Kralovske Vinohrady, 100 00 Prague, Czech Republic
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Alzbeta Spalenkova
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Stepan Balatka
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Radka Vaclavikova
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Karolina Seborova
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Marie Ehrlichova
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, 252 50 Vestec, Czech Republic
| | - Cristian Sandoval-Acuña
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, 252 50 Vestec, Czech Republic
| | - Vlasta Nemcova
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Arpad Szabo
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
- Department of Pathology University Hospital Kralovske Vinohrady, 100 00 Prague, Czech Republic
| | - Kamila Koci
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Tereza Tesarova
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Lei Chen
- Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Iwao Ojima
- Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Martin Oliverius
- Department of Surgery, University Hospital Kralovske Vinohrady, 100 00 Prague, Czech Republic
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Pavel Soucek
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| |
Collapse
|