1
|
Tümmler B, Pallenberg ST, Dittrich AM, Graeber SY, Naehrlich L, Sommerburg O, Mall MA. Progress of personalized medicine of cystic fibrosis in the times of efficient CFTR modulators. Mol Cell Pediatr 2025; 12:6. [PMID: 40320452 PMCID: PMC12050259 DOI: 10.1186/s40348-025-00194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is a systemic disorder of exocrine glands that is caused by mutations in the CFTR gene. MAIN BODY The basic defect in people with CF (pwCF) leads to impaired epithelial transport of chloride and bicarbonate that can be assessed by CFTR biomarkers, i.e. the β-adrenergic sweat rate and sweat chloride concentration (SCC), chloride conductance of the nasal respiratory epithelium (NPD), urine secretion of bicarbonate, intestinal current measurements (ICM) of chloride secretory responses in rectal biopsies and in bioassays of chloride transport in organoids or cell cultures. CFTR modulators are a novel class of drugs that improve defective posttranslational processing, trafficking and function of mutant CFTR. By April 2025, triple combination therapy with the CFTR potentiator ivacaftor (IVA) and the CFTR correctors elexacaftor (ELX) and tezacaftor (TEZ) has been approved in Europe for the treatment of all pwCF who do not carry two minimal function CFTR mutations. Previous phase 3 and post-approval phase 4 studies in pwCF who harbour one or two alleles of the major mutation F508del consistently reported significant improvements of lung function and anthropometry upon initiation of ELX/TEZ/IVA compared to baseline. Normalization of SCC, NPD and ICM correlated with clinical outcomes on the population level, but the restoration of CFTR function was diverse and not predictive for clinical outcome in the individual patient. Theratyping of non-F508del CF genotypes in patient-derived organoids and cell cultures revealed for most cases clinically meaningful increases of CFTR activity upon exposure to ELX/TEZ/IVA. Likewise, every second CF patient with non-F508del genotypes improved in SCC and clinical outcome upon exposure to ELX/TEZ/IVA indicating that triple CFTR modulator therapy is potentially beneficial for all pwCF who do not carry two minimal function CFTR mutations. This group who is not eligible for CFTR modulators may opt for gene addition therapy in the future, as the first-in-human trial with a recombinant lentiviral vector is underway. FUTURE DIRECTIONS The upcoming generation of pwCF will probably experience a rather normal life in childhood and adolescence. To classify the upcoming personal signatures of CF disease in the times of efficient modulators, we need more sensitive CFTR biomarkers that address the long-term course of airway and gut microbiome, host defense, epithelial homeostasis and multiorgan metabolism.
Collapse
Affiliation(s)
- Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany.
| | - Sophia Theres Pallenberg
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Lutz Naehrlich
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Olaf Sommerburg
- Division of Pediatric Pneumology and Allergy, and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL),, University of Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| |
Collapse
|
2
|
Leo-Hansen C, Faurholt-Jepsen D, Qvist T, Højte C, Nielsen BU, Bryrup T, Henriksen EH, Katzenstein T, Skov M, Mathiesen IH, Jeppesen M, Jensen-Fangel S, Olesen HV, Buchvald FF, Nielsen KG, Jimenez-Solem E, Ritz C, Pressler T, Olsen MF, the TransformCF Study Group. Lung function improvement on triple modulators: high-resolution, nationwide data from the Danish Cystic Fibrosis Cohort. ERJ Open Res 2024; 10:00339-2024. [PMID: 39655171 PMCID: PMC11626609 DOI: 10.1183/23120541.00339-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/29/2024] [Indexed: 12/12/2024] Open
Abstract
Background People living with cystic fibrosis in Denmark had early, universal access to triple modulator treatment with elexacaftor/tezacaftor/ivacaftor. Close monitoring allowed us to assess the impact of treatment on lung function and progression of lung disease in an unselected nationwide cystic fibrosis population from 6 years of age. Methods Data were analysed using linear mixed-effect models to assess changes in levels and annual rates of change (slopes) in percent predicted (pp) forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and forced expiratory flow at 25-75% of FVC (ppFEF25-75%) between the 12 months pre-treatment and treatment periods. Subgroup analyses assessed the impact of elexacaftor/tezacaftor/ivacaftor among those with/without previous modulator treatment, normal/mild/moderate/severe lung disease at treatment initiation, children/adults and birth cohorts. Results We included 392 people living with cystic fibrosis with a median (interquartile range) 12 (nine to 15) spirometry measurements per person. The mean (95% CI) improvement in ppFEV1 was 13.0 (11.3-14.6) 12 months after initiation of elexacaftor/tezacaftor/ivacaftor treatment. The annual rate of change improved from -1.4 (-2.1 - -0.6) ppFEV1 in the pre-treatment year to 2.7 (1.8-3.5) ppFEV1 per year during treatment. Similarly, ppFVC increased by 8.0 (7.1-8.9) and FEF25--75% by 19.5 (17.0-21.9). Conclusions Using high-resolution data from a nationwide real-world setting, our study documents the impact of elexacaftor/tezacaftor/ivacaftor on lung function across subgroups based on age, disease severity and treatment history. These findings point towards a new period of consistent lung function improvement among people living with cystic fibrosis on elexacaftor/tezacaftor/ivacaftor.
Collapse
Affiliation(s)
- Christian Leo-Hansen
- Department of Infectious Diseases, Center for Cystic Fibrosis, Rigshospitalet, Copenhagen, Denmark
| | - Daniel Faurholt-Jepsen
- Department of Infectious Diseases, Center for Cystic Fibrosis, Rigshospitalet, Copenhagen, Denmark
- Department Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tavs Qvist
- Department of Infectious Diseases, Center for Cystic Fibrosis, Rigshospitalet, Copenhagen, Denmark
| | - Christine Højte
- Department of Infectious Diseases, Center for Cystic Fibrosis, Rigshospitalet, Copenhagen, Denmark
| | - Bibi U. Nielsen
- Department of Infectious Diseases, Center for Cystic Fibrosis, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Bryrup
- Department of Infectious Diseases, Center for Cystic Fibrosis, Rigshospitalet, Copenhagen, Denmark
| | - Esben H. Henriksen
- Department of Infectious Diseases, Center for Cystic Fibrosis, Rigshospitalet, Copenhagen, Denmark
| | - Terese Katzenstein
- Department of Infectious Diseases, Center for Cystic Fibrosis, Rigshospitalet, Copenhagen, Denmark
| | - Marianne Skov
- Department of Pediatrics and Adolescent Medicine, Center for Cystic Fibrosis, Rigshospitalet, Copenhagen, Denmark
| | - Inger H.M. Mathiesen
- Department of Infectious Diseases, Center for Cystic Fibrosis, Rigshospitalet, Copenhagen, Denmark
| | - Majbritt Jeppesen
- Department of Infectious Diseases, Center for Cystic Fibrosis, Aarhus University Hospital, Copenhagen, Denmark
| | - Søren Jensen-Fangel
- Department of Infectious Diseases, Center for Cystic Fibrosis, Aarhus University Hospital, Copenhagen, Denmark
| | - Hanne V. Olesen
- Department of Pediatrics and Adolescent Medicine, Center for Cystic Fibrosis, Aarhus University Hospital, Copenhagen, Denmark
| | - Frederik Fouirnaies Buchvald
- Department of Pediatrics and Adolescent Medicine, Center for Cystic Fibrosis, Rigshospitalet, Copenhagen, Denmark
| | - Kim Gjerum Nielsen
- Department Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, Center for Cystic Fibrosis, Rigshospitalet, Copenhagen, Denmark
| | - Espen Jimenez-Solem
- Department Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, Copenhagen, Denmark
- Copenhagen Phase IV Unit, Center for Clinical Research and Prevention, Frederiksberg Hospital, Copenhagen, Denmark
| | - Christian Ritz
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Tacjana Pressler
- Department of Infectious Diseases, Center for Cystic Fibrosis, Rigshospitalet, Copenhagen, Denmark
| | - Mette F. Olsen
- Department of Infectious Diseases, Center for Cystic Fibrosis, Rigshospitalet, Copenhagen, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
3
|
Pioch CO, Ziegahn N, Allomba C, Busack LM, Schnorr AN, Tosolini A, Fuhlrott BR, Zagkla S, Othmer T, Syunyaeva Z, Graeber SY, Yoosefi M, Thee S, Steinke E, Röhmel J, Mall MA, Stahl M. Elexacaftor/tezacaftor/ivacaftor improves nasal nitric oxide in patients with cystic fibrosis. J Cyst Fibros 2024; 23:863-869. [PMID: 38508948 DOI: 10.1016/j.jcf.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND In health, nitric oxide (NO) shows high concentrations in the upper airways, while nasal NO (nNO) is significantly lower in patients with sinonasal inflammation, such as people with cystic fibrosis (PwCF). In PwCF treated with elexacaftor/tezacaftor/ivacaftor (ETI; PwCF-ETI), clinical improvement of sinonasal symptoms and inflammation was observed. We therefore hypothesised that ETI may increase nNO in PwCF. METHODS 25 PwCF-ETI underwent nNO measurement at baseline and after 3 to 24 months of ETI treatment. NNO was measured using velum closure (VC) techniques in cooperative patients and tidal breathing (TB) for all patients. As controls, 7 CF patients not eligible for ETI (PwCF-non ETI) and 32 healthy controls (HC) were also repeatedly investigated. RESULTS In PwCF-ETI, sinonasal symptoms, lung function parameters and sweat chloride levels improved from baseline to follow-up whereas there was no change in PwCF-non ETI and HC. NNO increased from a median (IQR) value at baseline to follow-up from 348.2 (274.4) ppb to 779.6 (364.7) ppb for VC (P < 0.001) and from 198.2 (107.0) ppb to 408.3 (236.1) ppb for TB (P < 0.001). At follow-up, PwCF-ETI reached nNO values in the normal range. In PwCF-non ETI as well as HC, nNO did not change between baseline and follow-up. CONCLUSIONS In PwCF-ETI, the nNO values significantly increased after several months of ETI treatment in comparison to baseline and reached values in the normal range. This suggests that nNO is a potential non-invasive biomarker to examine sinonasal inflammatory disease in PwCF and supports the observation of clinical improvement in these patients.
Collapse
Affiliation(s)
- Charlotte O Pioch
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Niklas Ziegahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christine Allomba
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie M Busack
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexandra N Schnorr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Apolline Tosolini
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bent R Fuhlrott
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Styliani Zagkla
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Till Othmer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Zulfiya Syunyaeva
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), associated partner, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mehrak Yoosefi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Steinke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), associated partner, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), associated partner, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), associated partner, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), associated partner, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Reasoner SA, Bernard R, Waalkes A, Penewit K, Lewis J, Sokolow AG, Brown RF, Edwards KM, Salipante SJ, Hadjifrangiskou M, Nicholson MR. Longitudinal profiling of the intestinal microbiome in children with cystic fibrosis treated with elexacaftor-tezacaftor-ivacaftor. mBio 2024; 15:e0193523. [PMID: 38275294 PMCID: PMC10865789 DOI: 10.1128/mbio.01935-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The intestinal microbiome influences growth and disease progression in children with cystic fibrosis (CF). Elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA), the newest pharmaceutical modulator for CF, restores the function of the pathogenic mutated CF transmembrane conductance regulator (CFTR) channel. We performed a single-center longitudinal analysis of the effect of ELX/TEZ/IVA on the intestinal microbiome, intestinal inflammation, and clinical parameters in children with CF. Following ELX/TEZ/IVA, children with CF had significant improvements in body mass index and percent predicted forced expiratory volume in one second, and required fewer antibiotics for respiratory infections. Intestinal microbiome diversity increased following ELX/TEZ/IVA coupled with a decrease in the intestinal carriage of Staphylococcus aureus, the predominant respiratory pathogen in children with CF. There was a reduced abundance of microbiome-encoded antibiotic resistance genes. Microbial pathways for aerobic respiration were reduced after ELX/TEZ/IVA. The abundance of microbial acid tolerance genes was reduced, indicating microbial adaptation to increased CFTR function. In all, this study represents the first comprehensive analysis of the intestinal microbiome in children with CF receiving ELX/TEZ/IVA.IMPORTANCECystic fibrosis (CF) is an autosomal recessive disease with significant gastrointestinal symptoms in addition to pulmonary complications. Recently approved treatments for CF, CF transmembrane conductance regulator (CFTR) modulators, are anticipated to substantially improve the care of people with CF and extend their lifespans. Prior work has shown that the intestinal microbiome correlates with health outcomes in CF, particularly in children. Here, we study the intestinal microbiome of children with CF before and after the CFTR modulator, ELX/TEZ/IVA. We identify promising improvements in microbiome diversity, reduced measures of intestinal inflammation, and reduced antibiotic resistance genes. We present specific bacterial taxa and protein groups which change following ELX/TEZ/IVA. These results will inform future mechanistic studies to understand the microbial improvements associated with CFTR modulator treatment. This study demonstrates how the microbiome can change in response to a targeted medication that corrects a genetic disease.
Collapse
Affiliation(s)
- Seth A. Reasoner
- Department of Pathology, Microbiology, and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rachel Bernard
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Janessa Lewis
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Andrew G. Sokolow
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Rebekah F. Brown
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Kathryn M. Edwards
- Department of Pediatrics, Division of Infectious Diseases, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Personalized Microbiology (CPMi), Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maribeth R. Nicholson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Xu W, Wu T, Zhou Z, Zuo Z. Efficacy and safety profile of elexacaftor-tezacaftor-ivacaftor triple therapy on cystic fibrosis: a systematic review and single arm meta-analysis. Front Pharmacol 2023; 14:1275470. [PMID: 38186649 PMCID: PMC10768559 DOI: 10.3389/fphar.2023.1275470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
Background: Elexacaftor-Tezacaftor-Ivacaftor (ELE/TEZ/IVA) is believed to be an effective and well-tolerated treatment for cystic fibrosis (CF), but the exact efficacy and safety profile are still unknown. Objective: This study aimed to clarify the extent of functional restoration when patients are given with triple combination treatment and demonstrate the prevalence of adverse events, to evaluate the overall profile of ELE/TEZ/IVA on CF. Methods: A literature search was conducted in PubMed, Web of Science and Cochrane Library. Random effects single-arm meta-analysis was performed to decipher the basal characteristics of CF, the improvement and safety profile after ELE/TEZ/IVA treatment. Results: A total 53 studies were included in this analysis. For all the patients in included studies. 4 weeks after ELE/TEZ/IVA treatment, the increasement of percentage of predicted Forced Expiratory Volume in the first second (ppFEV1) was 9.23% (95%CI, 7.77%-10.70%), the change of percentage of predicted Forced Vital Capacity (ppFVC) was 7.67% (95%CI, 2.15%-13.20%), and the absolute change of Cystic Fibrosis Questionnaire-Revised (CFQ-R) score was 21.46 points (95%CI, 18.26-24.67 points). The Sweat chloride (SwCl) was significantly decreased with the absolute change of -41.82 mmol/L (95%CI, -44.38 to -39.25 mmol/L). 24 weeks after treatment, the increasement of ppFEV1 was 12.57% (95%CI, 11.24%-13.90%), the increasement of ppFVC was 10.44% (95%CI, 7.26%-13.63%), and the absolute change of CFQ-R score was 19.29 points (95%CI, 17.19-21.39 points). The SwCl was significantly decreased with the absolute change of -51.53 mmol/L (95%CI, -56.12 to -46.94 mmol/L). The lung clearance index2.5 (LCI2.5) was also decreased by 1.74 units (95%CI, -2.42 to -1.07 units). The body mass index increased by 1.23 kg/m2 (95%CI, 0.89-1.57 kg/m2). As for adverse events, 0.824 (95%CI, 0.769-0.879) occurred during ELE/TEZ/IVA period, while the incidence of severe adverse events was 0.066 (95%CI, 0.028-0.104). Conclusion: ELE/TEZ/IVA is a highly effective strategy and relatively safe for CF patients and needs to be sustained to achieve better efficacy. Systematic Review Registration: Identifier: CRD42023441840.
Collapse
Affiliation(s)
- Wenye Xu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ting Wu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zijing Zhou
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihong Zuo
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|