1
|
Sun L, Chen W, Yuan W, Huang Q, Yang H, Zhang W, Tang J, Hu P. Ginkgetin inhibits the proliferation and migration of lung cancer cells via FAK/STAT3/AKT pathway. Mol Biol Rep 2025; 52:458. [PMID: 40366441 DOI: 10.1007/s11033-025-10540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE Lung cancer has become a primary illness that severely endangers human life and health due to its extremely high morbidity and mortality rates. Ginkgetin has been proven to have toxic effects on various tumor cells. Nevertheless, the mechanism of Ginkgetin on lung cancer is uncertain. In the present study, the effect and possible mechanism of Ginkgetin on lung cancer were explored. METHODS The cell counting kit-8 assay and colony formation assay were performed to detect the effect of Ginkgetin on cell proliferation. The wound healing assay was performed to detect the effect of Ginkgetin on cell migration. Additionally, western blot and immunofluorescence assay were performed to detect the expression of proteins. RESULTS Our results demonstrated that Ginkgetin effectively inhibited the proliferation and migration of A549 and H1299 cells. Mechanistically, Ginkgetin downregulated the phosphorylated expression of focal adhesion kinase (FAK), signal transducer and activator of transcription 3 (STAT3), and protein kinase B (AKT) and blocked the FAK/STAT3/AKT phosphorylation induced by epidermal growth factor (EGF). Furthermore, Ginkgetin suppressed the proliferation and migration of A549 and H1299 cells induced by EGF. Notably, Ginkgetin decreased the Cyclin A2 and Cyclin D1 expression. CONCLUSION Collectively, these findings concluded that Ginkgetin may suppress the proliferation and migration of lung cancer cells via the FAK/STAT3/AKT pathway, suggesting that Ginkgetin has potential applications in lung cancer treatment.
Collapse
Affiliation(s)
- Longhua Sun
- The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, 330200, P.R. China
| | - Wen Chen
- The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Wenxin Yuan
- Department of Ultrasonography, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Qianwen Huang
- The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Hong Yang
- The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Wei Zhang
- The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Jianjun Tang
- The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, 330200, P.R. China
| | - Ping Hu
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China.
- Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, P.R. China.
| |
Collapse
|
2
|
Faraji N, Ebadpour N, Abavisani M, Gorji A. Unlocking Hope: Therapeutic Advances and Approaches in Modulating the Wnt Pathway for Neurodegenerative Diseases. Mol Neurobiol 2025; 62:3630-3652. [PMID: 39313658 PMCID: PMC11790780 DOI: 10.1007/s12035-024-04462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Neurodegenerative diseases (NDs) are conditions characterized by sensory, motor, and cognitive impairments due to alterations in the structure and function of neurons in the central nervous system (CNS). Despite their widespread occurrence, the exact causes of NDs remain largely elusive, and existing treatments fall short in efficacy. The Wnt signaling pathway is an emerging molecular pathway that has been linked to the development and progression of various NDs. Wnt signaling governs numerous cellular processes, such as survival, polarity, proliferation, differentiation, migration, and fate specification, via a complex network of proteins. In the adult CNS, Wnt signaling regulates synaptic transmission, plasticity, memory formation, neurogenesis, neuroprotection, and neuroinflammation, all essential for maintaining neuronal function and integrity. Dysregulation of both canonical and non-canonical Wnt signaling pathways contributes to neurodegeneration through various mechanisms, such as amyloid-β accumulation, tau protein hyperphosphorylation, dopaminergic neuron degeneration, and synaptic dysfunction, prompting investigations into Wnt modulation as a therapeutic target to restore neuronal function and prevent or delay neurodegenerative processes. Modulating Wnt signaling has the potential to restore neuronal function and impede or postpone neurodegenerative processes, offering a therapeutic approach for targeting NDs. In this article, the current knowledge about how Wnt signaling works in Alzheimer's disease and Parkinson's disease is discussed. Our study aims to explore the molecular mechanisms, recent discoveries, and challenges involved in developing Wnt-based therapies.
Collapse
Affiliation(s)
- Navid Faraji
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Epilepsy Research Center, Münster University, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neurosurgery Department, Münster University, Münster, Germany.
| |
Collapse
|
3
|
Duan Q, Cui Z, Wang M, Li R, Han F, Ma J. Ginkgetin enhances breast cancer radiotherapy sensitization by suppressing NRF2-HO-1 axis activity. Toxicol Appl Pharmacol 2025; 495:117199. [PMID: 39653086 DOI: 10.1016/j.taap.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer (BC) is a critical threat to women's lives. Radiotherapy (RT) is a pivotal treatment modality for BC, but the failure of RT due to radioresistance is still not well facilitated. Ginkgetin (GK) has a potent anti-tumor activity intimately associated with ferroptosis. This study applied in vitro and in vivo experimental models to ascertain the GK mechanism of action on BC radioresistance. The outcomes reported that GK could inhibit BC cell growth and increase apoptosis. In addition, when BC cells generated radioresistance, GK promoted ferroptosis of radioresistant BC cells by mitigating NRF2 expression, suppressing HO-1 and NQO1 expression, increasing the intracellular content of reactive oxygen species (ROS) and ferrous ions, accelerating the glutathione (GSH) depletion, and decreasing GPX4 expression. Notably, GK can damage intracellular mitochondria and cause a substantial increase in ferrous ions in BC cells. Therefore, GK shows immense potential for enhancing breast cancer radiotherapy sensitivity, which may provide pivotal evidence for subsequent RT sensitization.
Collapse
Affiliation(s)
- Qiong Duan
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang 222042, Jiangsu, China
| | - Zhenting Cui
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang 222042, Jiangsu, China
| | - Mingxiao Wang
- Sichuan Integrative Medicine Hospital, Chengdu 610000, Sichuan, China
| | - Ruochen Li
- Sichuan Integrative Medicine Hospital, Chengdu 610000, Sichuan, China
| | - Feng Han
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang 222042, Jiangsu, China; Cancer Research Institute, Shanghai Jiao Tong University, Shanghai 200000, China.
| | - Jianxin Ma
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang 222042, Jiangsu, China.
| |
Collapse
|
4
|
Yan X, Inta A, Yang X, Pandith H, Disayathanoowat T, Yang L. An Investigation of the Effect of the Traditional Naxi Herbal Formula Against Liver Cancer Through Network Pharmacology, Molecular Docking, and In Vitro Experiments. Pharmaceuticals (Basel) 2024; 17:1429. [PMID: 39598341 PMCID: PMC11597843 DOI: 10.3390/ph17111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The formula Chong-Lou-Yao-Fang (CLYF) is an herbal medicinal formulation developed by the indigenous Naxi people for treating liver cancer. This study was to reveal the biological activity, potential targets, and molecular mechanisms of CLYF for cancer treatment. Methods: Network pharmacology, microarray data analysis, survival analysis, and molecular docking were employed to predict potential compounds, targets, and pathways for the treatment of liver cancer. In vitro experiments and Western blot validation were conducted to confirm these predictions. Results: 35 key compounds and 20 core targets were screened from CLYF, involving signaling pathways for PI3K-Akt, MAPK, hepatitis B and C, which were effective for liver cancer treatment. Microarray data analysis and survival analysis indicated that EGFR and TP53 serve as promising biomarkers for diagnosis and prognosis in liver cancer. Molecular docking revealed stable binding between EGFR, TP53, and AKT1 with active ingredients. Cell experiments confirmed that CLYF-A suppressed cell proliferation, induced apoptosis, and caused cell cycle arrest in HepG2 cells, which were associated with a loss of mitochondrial membrane potential. Compared to the control group, the relative protein expression levels of EGFR and AKT1 significantly decreased following treatment with CLYF-A, while TP53 levels increased significantly. Conclusions: Verification of the anticancer activity of CLYF and its potential mechanisms may have important implications for anticancer therapies. Our results may provide a scientific basis for the clinical use of CLYF for cancer treatment and have important implications for developing pharmaceutical preparations, which also need more pharmacological experiments, clinical experiments, and in vivo experiments.
Collapse
Affiliation(s)
- Xiuxiang Yan
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.Y.); (X.Y.)
- Department of Biology, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand; (A.I.); (H.P.)
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand; (A.I.); (H.P.)
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.Y.); (X.Y.)
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | - Hataichanok Pandith
- Department of Biology, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand; (A.I.); (H.P.)
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand; (A.I.); (H.P.)
| | - Lixin Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.Y.); (X.Y.)
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| |
Collapse
|
5
|
Kleandrova VV, Cordeiro MNDS, Speck-Planche A. Perturbation Theory Machine Learning Model for Phenotypic Early Antineoplastic Drug Discovery: Design of Virtual Anti-Lung-Cancer Agents. APPLIED SCIENCES 2024; 14:9344. [DOI: 10.3390/app14209344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Lung cancer is the most diagnosed malignant neoplasm worldwide and it is associated with great mortality. Currently, developing antineoplastic agents is a challenging, time-consuming, and costly process. Computational methods can speed up the early discovery of anti-lung-cancer chemicals. Here, we report a perturbation theory machine learning model based on a multilayer perceptron (PTML-MLP) model for phenotypic early antineoplastic drug discovery, enabling the rational design and prediction of new molecules as virtual versatile inhibitors of multiple lung cancer cell lines. The PTML-MLP model achieved an accuracy above 80%. We applied the fragment-based topological design (FBTD) approach to physicochemically and structurally interpret the PTML-MLP model. This enabled the extraction of suitable fragments with a positive influence on anti-lung-cancer activity against the different lung cancer cell lines. By following the aforementioned interpretations, we could assemble several suitable fragments to design four novel molecules, which were predicted by the PTML-MLP model as versatile anti-lung-cancer agents. Such predictions of potent multi-cellular anticancer activity against diverse lung cancer cell lines were rigorously confirmed by a well-established virtual screening tool reported in the literature. The present work envisages new opportunities for the application of PTML models to accelerate early antineoplastic discovery from phenotypic assays.
Collapse
Affiliation(s)
- Valeria V. Kleandrova
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - M. Natália D. S. Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Alejandro Speck-Planche
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
6
|
Wu T, Dong Y, Yang X, Mo L, You Y. Crosstalk between lncRNAs and Wnt/β-catenin signaling pathways in lung cancers: From cancer progression to therapeutic response. Noncoding RNA Res 2024; 9:667-677. [PMID: 38577016 PMCID: PMC10987302 DOI: 10.1016/j.ncrna.2024.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
Lung cancer (LC) is considered to have the highest mortality rate around the world. Because there are no early diagnostic signs or efficient clinical alternatives, distal metastasis and increasing numbers of recurrences are a challenge in the clinical management of LC. Long non-coding RNAs (lncRNAs) have recently been recognized as a critical regulator involved in the progression and treatment response to LC. The Wnt/β-catenin pathway has been shown to influence LC occurrence and progress. Therefore, discovering connections between Wnt signaling pathway and lncRNAs may offer new therapeutic targets for improving LC treatment and management. In this review, the purpose of this article is to present possible therapeutic approaches by reviewing particular relationships, key processes, and molecules associated to the beginning and development of LC.
Collapse
Affiliation(s)
- Ting Wu
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - YiRan Dong
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - XinZhi Yang
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Liang Mo
- Department of Thoracic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yong You
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
7
|
Liu X, Ren Y, Qin S, Yang Z. Exploring the mechanism of 6-Methoxydihydrosanguinarine in the treatment of lung adenocarcinoma based on network pharmacology, molecular docking and experimental investigation. BMC Complement Med Ther 2024; 24:202. [PMID: 38783288 PMCID: PMC11119275 DOI: 10.1186/s12906-024-04497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND 6-Methoxydihydrosanguinarine (6-MDS) has shown promising potential in fighting against a variety of malignancies. Yet, its anti‑lung adenocarcinoma (LUAD) effect and the underlying mechanism remain largely unexplored. This study sought to explore the targets and the probable mechanism of 6-MDS in LUAD through network pharmacology and experimental validation. METHODS The proliferative activity of human LUAD cell line A549 was evaluated by Cell Counting Kit-8 (CCK8) assay. LUAD related targets, potential targets of 6-MDS were obtained from databases. Venn plot analysis were performed on 6-MDS target genes and LUAD related genes to obtain potential target genes for 6-MDS treatment of LUAD. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was utilized to perform a protein-protein interaction (PPI) analysis, which was then visualized by Cytoscape. The hub genes in the network were singled out by CytoHubba. Metascape was employed for GO and KEGG enrichment analyses. molecular docking was carried out using AutoDock Vina 4.2 software. Gene expression levels, overall survival of hub genes were validated by the GEPIA database. Protein expression levels, promotor methylation levels of hub genes were confirmed by the UALCAN database. Timer database was used for evaluating the association between the expression of hub genes and the abundance of infiltrating immune cells. Furthermore, correlation analysis of hub genes expression with immune subtypes of LUAD were performed by using the TISIDB database. Finally, the results of network pharmacology analysis were validated by qPCR. RESULTS Experiments in vitro revealed that 6-MDS significantly reduced tumor growth. A total of 33 potential targets of 6-MDS in LUAD were obtained by crossing the LUAD related targets with 6-MDS targets. Utilizing CytoHubba, a network analysis tool, the top 10 genes with the highest centrality measures were pinpointed, including MMP9, CDK1, TYMS, CCNA2, ERBB2, CHEK1, KIF11, AURKB, PLK1 and TTK. Analysis of KEGG enrichment hinted that these 10 hub genes were located in the cell cycle signaling pathway, suggesting that 6-MDS may mainly inhibit the occurrence of LUAD by affecting the cell cycle. Molecular docking analysis revealed that the binding energies between 6-MDS and the hub proteins were all higher than - 6 kcal/Mol with the exception of AURKB, indicating that the 9 targets had strong binding ability with 6-MDS.These results were corroborated through assessments of mRNA expression levels, protein expression levels, overall survival analysis, promotor methylation level, immune subtypes andimmune infiltration. Furthermore, qPCR results indicated that 6-MDS can significantly decreased the mRNA levels of CDK1, CHEK1, KIF11, PLK1 and TTK. CONCLUSIONS According to our findings, it appears that 6-MDS could possibly serve as a promising option for the treatment of LUAD. Further investigations in live animal models are necessary to confirm its potential in fighting cancer and to delve into the mechanisms at play.
Collapse
Affiliation(s)
- Xingyun Liu
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, China
| | - Yanling Ren
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510086, China
| | - Shuanglin Qin
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, China.
| | - Zerui Yang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510086, China.
| |
Collapse
|
8
|
Wang C, Bai Y, Li T, Liu J, Wang Y, Ju S, Yao W, Xiong B. Ginkgetin exhibits antifibrotic effects by inducing hepatic stellate cell apoptosis via STAT1 activation. Phytother Res 2024; 38:1367-1380. [PMID: 38217097 DOI: 10.1002/ptr.8106] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/15/2024]
Abstract
Liver fibrosis affects approximately 800 million patients worldwide, with over 2 million deaths each year. Nevertheless, there are no approved medications for treating liver fibrosis. In this study, we investigated the impacts of ginkgetin on liver fibrosis and the underlying mechanisms. The impacts of ginkgetin on liver fibrosis were assessed in mouse models induced by thioacetamide or bile duct ligation. Experiments on human LX-2 cells and primary mouse hepatic stellate cells (HSCs) were performed to explore the underlying mechanisms, which were also validated in the mouse models. Ginkgetin significantly decreased hepatic extracellular matrix deposition and HSC activation in the fibrotic models induced by thioacetamide (TAA) and bile duct ligation (BDL). Beneficial effects also existed in inhibiting hepatic inflammation and improving liver function. In vitro experiments showed that ginkgetin markedly inhibited HSC viability and induced HSC apoptosis dose-dependently. Mechanistic studies revealed that the antifibrotic effects of ginkgetin depend on STAT1 activation, as the effects were abolished in vitro after STAT1 silencing and in vivo after inhibiting STAT1 activation by fludarabine. Moreover, we observed a meaningful cross-talk between HSCs and hepatocytes, in which IL-6, released by ginkgetin-induced apoptotic HSCs, enhanced hepatocyte proliferation by activating STAT3 signaling. Ginkgetin exhibits antifibrotic effects by inducing HSC apoptosis via STAT1 activation and enhances hepatocyte proliferation secondary to HSC apoptosis via the IL-6/STAT3 pathway.
Collapse
Affiliation(s)
- Chaoyang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongqiang Li
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|