1
|
Zhang YS, Chen HC, Cao JX, Zhou SW, Ma YZ, Jing YH. Oxytocin-Mediate Modulation of Splenic Immunosuppression in Chronic Social Stress Through Neuroendocrine Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500849. [PMID: 40285614 DOI: 10.1002/advs.202500849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Chronic social stress (CSS) is a significant public health challenge that negatively impacts behavior and immune function through brain-spleen interactions. Oxytocin (OT), a neuropeptide critical for social behavior and immune regulation, is upregulated during CSS, though its underlying mechanisms remain unclear. This study investigates the role of OT in splenic immune modulation using a murine model of CSS. Behavioral evaluations, serum oxytocin quantification, and splenic immunophenotypic analysis were performed. Splenic denervation confirmed OT's neuromodulatory role, whereas OTR antagonism revealed its endocrine function. CSS-induced OT elevation was associated with immunosuppression, characterized by increased Foxp3⁺ regulatory T cells and reduced CD4⁺ T and CD19⁺ B cells. OT also modulated macrophage polarization, inhibiting M1-like (pro-inflammatory) and enhancing M2-like (anti-inflammatory) phenotypes. Denervation or pharmacological blockade of OT signaling partly reversed CSS-induced splenic immunosuppression but adversely affected survival in CSS-exposed mice. Additionally, denervation or OTR antagonism reduced the mice's response to social defeat, as shown by decreased social avoidance behavior. These findings suggest that OT-mediated immunosuppression likely represents a compensatory mechanism in response to chronic social stress. Targeting the OT-immune axis could offer innovative therapeutic approaches for stress-associated disorders by restoring immune homeostasis while maintaining behavioral integrity.
Collapse
Affiliation(s)
- Yi-Shu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 212696, P. R. China
| | - Hai-Chao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 212696, P. R. China
| | - Jia-Xin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 212696, P. R. China
| | - Si-Wei Zhou
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 212696, P. R. China
| | - Yue-Zhang Ma
- Department of Immunization Program, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, P. R. China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 212696, P. R. China
- Key Laboratory of Preclinical Study for New Drugs of Gansu province, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
2
|
Wang T, Zhao X, Li J, Yin C, Jiang B, Xie J, Wang B, Wang Y, Cao Z, Yao Q, Zheng S, Sui J, Zhu K. Oxytocin-loaded hydrogel promotes cartilage regeneration and regulates microenvironment. Biofabrication 2025; 17:025030. [PMID: 40096748 DOI: 10.1088/1758-5090/adc158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
Osteoarthritis is a common orthopedic condition, and traditional treatment methods often fail to regenerate cartilage effectively. Oxytocin (OXT) is a neuropeptide that plays a crucial role in the skeletal system. Hyaluronic acid (HAMA) hydrogel has emerged as a key carrier for cartilage repair due to its excellent biocompatibility and biodegradability. Combining OXT with HAMA hydrogel and implanting it at the site of cartilage defects can effectively promote cartilage regeneration. Cartilage damage often results in an altered microenvironment, characterized by macrophage polarization and high levels of reactive oxygen species (ROS). Oxidative stress can stimulate macrophages to produce more pro-inflammatory factors. OXT can inhibit the secretion of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1βby interacting with the STAT3/NF-κB signaling pathway, as well as the PI3K/Akt and mitogen-activated protein kinase pathways, thereby inducing the polarization of macrophages from the M1 phenotype to the M2 phenotype and alleviating the inflammatory response. OXT can also enhance the expression of NRF and HO-1, which helps eliminate ROS and suppress the expression of pro-inflammatory factors. Regulating the microenvironment of cartilage damage is beneficial for cartilage protection and repair. OXT activates the CFOS/AP-1 and STAT1/JAK2 pathways, which together act on MMP2 and MMP9 to alleviate cartilage degeneration. The STAT1/JAK2 pathway can further increase the expression of Col2, thereby protecting chondrocytes. Additionally, OXT can directly boost the protein levels of SOX9 and COMP, promoting chondrocyte proliferation and cartilage protection, ultimately achieving the therapeutic goal for arthritis. This study explores the potential of HAMA hydrogel as a delivery system for OXT and analyzes their impact on cartilage regeneration and anti-inflammatory properties. This research provides a novel strategy for the treatment of cartilage injuries.
Collapse
Affiliation(s)
- Tianming Wang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, People's Republic of China
| | - Xiao Zhao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, People's Republic of China
| | - Jiayi Li
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, People's Republic of China
| | - Chongchong Yin
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, People's Republic of China
| | - Bo Jiang
- Children's Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Jiaming Xie
- Children's Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Binghao Wang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, People's Republic of China
| | - Yufeng Wang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, People's Republic of China
| | - Zhicheng Cao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, People's Republic of China
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, People's Republic of China
| | - Shengnai Zheng
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, People's Republic of China
| | - Jisheng Sui
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, People's Republic of China
| | - Kun Zhu
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, People's Republic of China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, People's Republic of China
| |
Collapse
|
3
|
Xing SJ, Gao YF, Liu L, Sui BD, Da NN, Liu JY, Wang H, Yuan Y, Qin Y, Liu PS, Ying SQ, Zhang K, Liu JX, Chen J, Liu YH, Xie X, Jin Y, Zhang S, Zheng CX. Integrated Phenotypic and Transcriptomic Analyses of Osteoporosis in Type 2 Diabetic Mice. Int J Med Sci 2025; 22:1773-1790. [PMID: 40225857 PMCID: PMC11983309 DOI: 10.7150/ijms.109537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/25/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Type 2 diabetes (T2D) is a global metabolic condition associated with complications of multiple organs, including the bone. However, the exact impact of T2D on bone along the disease progression, particularly in the early phase, remains largely unknown. Methods: Four-week and sixteen-week high-fat diet (HFD) feeding-induced T2D mouse models were established, and the glucose metabolic status was examined. Bone mass was evaluated by micro-computed tomography (micro-CT), and immunofluorescent (IF) staining was performed for bone histomorphometry with enzyme-linked immunosorbent assay (ELISA) determining serum markers. RNA sequencing analysis was performed to examine the transcriptome of bone, and single-cell RNA-sequencing (scRNA-seq) analysis was further applied. Bone marrow mesenchymal stem cells (BMMSCs) were isolated and analyzed for functional behaviors. Results: The occurrence of glucose metabolic disorders was confirmed at both four weeks and sixteen weeks of HFD feeding, showing increased blood glucose levels with impaired glucose tolerance and insulin sensitivity. Notably, early T2D osteoporosis symptoms were detected at four weeks, especially in the trabecular bone, demonstrating reduced bone mass and mineral density. Histological analysis confirmed that bone remodeling and immune-related inflammation were also altered in T2D mice, remarkably at the early phase, mainly reflected by suppressed bone formation, stimulated bone resorption, increased macrophages, and elevated tumor necrosis factor-alpha (TNF-α) levels. Transcriptomic sequencing further demonstrated significant yet distinct changes in the gene expression profile of bone during T2D progression, which confirmed the histological findings. Notably, overlapping genes with altered expression at four weeks and sixteen weeks of T2D compared to the respective control were identified, and bone marrow scRNA-seq analysis indicated many of them were expressed in BMMSCs, suggesting BMMSCs critically involved in T2D osteoporosis. Dysregulated molecular profiles and functional abnormalities of BMMSCs in T2D mice were validated by ex vivo assays, showing early and persistent occurrence of impaired colony-forming and proliferative capacities with biased differentiation potential. Conclusions: These findings elucidate the bone lesion phenotype in T2D, particularly at the early phase, uncover changes in gene expression profiles of bone during T2D progression, and clarify the functional alterations in bone stem cells, providing a basis for subsequent research and the development of treatment strategies.
Collapse
Affiliation(s)
- Shu-Juan Xing
- College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ying-Feng Gao
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ning-Ning Da
- College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jin-Yu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuan Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuan Qin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Pei-Sheng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Si-Qi Ying
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kai Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jie-Xi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ji Chen
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi-Han Liu
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, Beijing 100039, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Sha Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- College of Basic Medicine, Shaanxi Key Laboratory of Research on TCM Physical Constitution and Diseases Prevention and Treatment, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
4
|
Cao Y, Liu C, Ye W, Zhao T, Fu F. Functional Hydrogel Interfaces for Cartilage and Bone Regeneration. Adv Healthc Mater 2025; 14:e2403079. [PMID: 39791312 DOI: 10.1002/adhm.202403079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/08/2024] [Indexed: 01/12/2025]
Abstract
Effective treatment of bone diseases is quite tricky due to the unique nature of bone tissue and the complexity of the bone repair process. In combination with biological materials, cells and biological factors can provide a highly effective and safe treatment strategy for bone repair and regeneration, especially based on these multifunctional hydrogel interface materials. However, itis still a challenge to formulate hydrogel materials with fascinating properties (e.g., biological activity, controllable biodegradability, mechanical strength, excellent cell/tissue adhesion, and controllable release properties) for their clinical applications in complex bone repair processes. In this review, we will highlight recent advances in developing functional interface hydrogels. We then discuss the barriers to producing of functional hydrogel materials without sacrificing their inherent properties, and potential applications in cartilage and bone repair are discussed. Multifunctional hydrogel interface materials can serve as a fundamental building block for bone tissue engineering.
Collapse
Affiliation(s)
- Yucheng Cao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Changyi Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenjun Ye
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tianrui Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fanfan Fu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
5
|
Shen Y, Wang Y, Xu Y, Wang J, Yin C, Han Z, Shen F, Wang T. Therapeutic potential and mechanisms of umbilical cord mesenchymal stem cells differentiating into tendon cells and promotion of rotator cuff tendon-bone healing. J Tissue Eng 2025; 16:20417314251315185. [PMID: 39882545 PMCID: PMC11776009 DOI: 10.1177/20417314251315185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Rotator cuff tendon injuries often lead to shoulder pain and dysfunction. Traditional treatments such as surgery and physical therapy can provide temporary relief, but it is difficult to achieve complete healing of the tendon, mainly because of the limited repair capacity of the tendon cells. Therefore, it is particularly urgent to explore new treatment methods. In vitro experiments were performed to explore the mechanism of differentiation of umbilical cord mesenchymal stem cells (UCMSCs) to tendon cells and to evaluate their potential in promoting rotator cuff injury repair. Growth factors such as CTGF, GDF-6, and GDF-7 were used to induce the differentiation of UCMSCs, and gene expression changes during the differentiation process were analyzed by single-cell sequencing. Hes1 overexpression and animal models were constructed to study its role in UCMSCs differentiation and rotator cuff injury repair. CTGF was the optimal factor for inducing the differentiation of UCMSCs into tendon cells. With increasing induction time, UCMSCs exhibited obvious tendon cell characteristics, such as changes in cell morphology and increased expression of tendon-specific proteins (MKX, SCX, and TNC). Single-cell sequencing analysis revealed key cellular subpopulations and signaling pathways during differentiation. Furthermore, overexpression of the Hes1 gene significantly promoted the differentiation of UCMSCs to tendon cells and showed its therapeutic effect in rotator cuff injury repair in an animal model. This study confirmed the potential of UCMSCs in tendon injury repair, especially the critical role of Hes1 in promoting UCMSCs differentiation and rotator cuff tendon-bone healing, which provides a theoretical basis and experimental rationale for the development of new cellular therapeutic strategies.
Collapse
Affiliation(s)
- Youliang Shen
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yuelei Wang
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yidan Xu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jie Wang
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuqiang Yin
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zengshuai Han
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Feng Shen
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ting Wang
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
6
|
Zhang Z, Boggavarapu NR, Muhr LSA, Garcia-Serrango A, Aeppli TRJ, Nava TS, Zhao Y, Gutierrez-Farewik EM, Kulachenko A, Sävendahl L, Zaman F. Genomic Effects of Biomechanical Loading in Adolescent Human Growth Plate Cartilage: A Pilot Study. Cartilage 2024:19476035241302954. [PMID: 39655393 PMCID: PMC11629350 DOI: 10.1177/19476035241302954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE The genomic effects of biomechanical loading on human growth plate cartilage are unknown so far. To address this, we used rare human growth plate biopsies obtained from children undergoing epiphysiodesis and exposed them to precisely controlled mechanical loading using a microloading device. The biopsies were cultured 24 hours after mechanical loading, followed by RNA-sequencing analyses to decipher the genomic regulation. DESIGN We conducted RNA-seq analysis of human growth plate cartilage obtained from three patients cultured ex vivo and subjected to cyclical mechanical loading with peak 0.4 N with frequency 0.77 Hz during a 30-second duration, using a specialized microloading device. RESULTS Gene ontology analysis revealed novel data showing three significantly upregulated signaling pathways, including notch, oxytocin, and tight junction, and three significantly downregulated signaling pathways, including lysosome, sphingolipid metabolism, and peroxisome proliferator-activated receptor (PPAR) in human growth plate cartilage. Moreover, we found 15 significantly regulated genes within these signaling pathways from all three patients. These genes included PSEN2, HEY1, and NCOR2 from the notch signaling; CACNB1 and PPP3R2 from the oxytocin signaling; ACTR3C, WHAMM, and ARHGEF18 from the tight junction signaling; ARSA, SMPD1, and CD68 from the lysosome signaling; ARSA and SMPD1 from the sphingolipid metabolism signaling; and SLC27A4 and AQP7 from the PPAR signaling pathway. In addition, 20 significantly upregulated genes and six significantly downregulated genes shared between two patient samples were identified. CONCLUSION Our study provides the first-ever transcriptomic data of mechanical loading of human growth plate cartilage. These findings can potentially provide genetic targets for future investigations in physiological and pathological bone growth conditions.
Collapse
Affiliation(s)
- Zhengpei Zhang
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Nageswara Rao Boggavarapu
- Division of Obstetrics and Gynaecology, Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Laila Sara Arroyo Muhr
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Ainhoa Garcia-Serrango
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Tim RJ Aeppli
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Tobia Sebastiano Nava
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yunhan Zhao
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Elena M. Gutierrez-Farewik
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Artem Kulachenko
- Material and Structural Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lars Sävendahl
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Farasat Zaman
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
7
|
Bioletto F, Berton AM, Barale M, Aversa LS, Sauro L, Presti M, Mocellini F, Sagone N, Ghigo E, Procopio M, Grottoli S. Skeletal fragility in pituitary disease: how can we predict fracture risk? Pituitary 2024; 27:789-801. [PMID: 39240510 PMCID: PMC11631825 DOI: 10.1007/s11102-024-01447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 09/07/2024]
Abstract
Pituitary hormones play a crucial role in regulating skeletal physiology, and skeletal fragility is a frequent complication of pituitary diseases. The ability to predict the risk of fracture events is crucial for guiding therapeutic decisions; however, in patients with pituitary diseases, fracture risk estimation is particularly challenging. Compared to primary osteoporosis, the evaluation of bone mineral density by dual X-ray absorptiometry is much less informative about fracture risk. Moreover, the reliability of standard fracture risk calculators does not have strong validations in this setting. Morphometric vertebral assessment is currently the cornerstone in the assessment of skeletal fragility in patients with pituitary diseases, as prevalent fractures remain the strongest predictor of future fracture events. In recent years, new tools for evaluating bone quality have shown promising results in assessing bone impairment in patients with pituitary diseases, but most available data are cross-sectional, and evidence regarding the prediction of incident fractures is still scarce. Of note, apart from measures of bone density and bone quality, the estimation of fracture risk in the context of pituitary hyperfunction or hypofunction cannot ignore the evaluation of factors related to the underlying disease, such as its severity and duration, as well as the specific therapies implemented for its treatment. Aim of this review is to provide an up-to-date overview of all major evidence regarding fracture risk prediction in patients with pituitary disease, highlighting the need for a tailored approach that critically integrates all clinical, biochemical, and instrumental data according to the specificities of each disease.
Collapse
Affiliation(s)
- Fabio Bioletto
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Turin, 10126, Italy.
| | - Alessandro Maria Berton
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Turin, 10126, Italy
| | - Marco Barale
- Division of Oncological Endocrinology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luigi Simone Aversa
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Turin, 10126, Italy
| | - Lorenzo Sauro
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Turin, 10126, Italy
| | - Michela Presti
- Division of Oncological Endocrinology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesca Mocellini
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Turin, 10126, Italy
| | - Noemi Sagone
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Turin, 10126, Italy
| | - Ezio Ghigo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Turin, 10126, Italy
| | - Massimo Procopio
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Turin, 10126, Italy
| | - Silvia Grottoli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Turin, 10126, Italy
| |
Collapse
|
8
|
El-Nablaway M, Rashed F, Taher ES, Abdeen A, Taymour N, Soliman MM, Shalaby HK, Fericean L, Ioan BD, El-Sherbiny M, Ebrahim E, Abdelkader A, Abdo M, Alexandru CC, Atia GA. Prospective and challenges of locally applied repurposed pharmaceuticals for periodontal tissue regeneration. Front Bioeng Biotechnol 2024; 12:1400472. [PMID: 39605747 PMCID: PMC11600316 DOI: 10.3389/fbioe.2024.1400472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Periodontitis is a persistent inflammatory condition that causes periodontal ligament degradation, periodontal pocket development, and alveolar bone destruction, all of which lead to the breakdown of the teeth's supporting system. Periodontitis is triggered by the accumulation of various microflora (especially anaerobes) in the pockets, which release toxic substances and digestive enzymes and stimulate the immune system. Periodontitis can be efficiently treated using a variety of techniques, both regional and systemic. Effective therapy is dependent on lowering microbial biofilm, minimizing or eradicating pockets. Nowadays, using local drug delivery systems (LDDSs) as an adjuvant therapy to phase I periodontal therapy is an attractive option since it controls drug release, resulting in improved efficacy and lesser adverse reactions. Choosing the right bioactive agent and mode of delivery is the foundation of an efficient periodontal disease management approach. The objective of this paper is to shed light on the issue of successful periodontal regeneration, the drawbacks of currently implemented interventions, and describe the potential of locally delivered repurposed drugs in periodontal tissue regeneration. Because of the multiple etiology of periodontitis, patients must get customized treatment with the primary goal of infection control. Yet, it is not always successful to replace the lost tissues, and it becomes more challenging as the defect gets worse. Pharmaceutical repurposing offers a viable, economical, and safe alternative for non-invasive, and predictable periodontal regeneration. This article clears the way in front of researchers, decision-makers, and pharmaceutical companies to explore the potential, effectiveness, and efficiency of the repurposed pharmaceuticals to generate more economical, effective, and safe topical pharmaceutical preparations for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Magdalen M. Soliman
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Badr University, Badr City, Egypt
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Bănățean-Dunea Ioan
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Saudi Arabia
| | - Elturabi Ebrahim
- Department of Medical Surgical Nursing, Nursing College, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Cucui-Cozma Alexandru
- Second Department of Surgery Victor Babeș, University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
9
|
Emral Lİ, Taşkın E, Albayrak A, Arslan M, Soylu D. Is Oxytocin Induction at Labor a Risk Factor for Developmental Hip Dysplasia? J Clin Med 2024; 13:5724. [PMID: 39407784 PMCID: PMC11477270 DOI: 10.3390/jcm13195724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Developmental hip dysplasia is a common condition with preventable causes, and its etiology is still not fully elucidated. In our study, we aimed to examine the use of synthetic oxytocin during childbirth as a potential risk factor for developmental hip dysplasia. Methods: This study involved comprehensive hip examinations on postnatal days 0, 14, 30, and 60, as well as hip ultrasonography results at 6-8 weeks. We specifically focused on healthy girls born with vaginal deliveries, comparing those who were applied with a low-dose oxytocin induction protocol (Group 2) and those who had vaginal deliveries without induction (Group 1). Results: When the examination findings were compared with the hip ultrasonography findings (Type 2a was detected in the left hip of one patient (6.3%) in Group 1 and in the right hip of two patients (11.8%) in Group 2), it was seen that oxytocin induction did not cause a risk for developmental hip dysplasia. The oxytocin induction rate was higher in newborns weighing more than 3400 g (p = 0.04). Conclusions: A low-dose oxytocin protocol applied at birth has not been shown to harm the hip joint in the neonatal period and on ultrasonographic α and β angle measurements applied at 6-8 weeks. However, our study also highlights the need for new studies investigating oxytocin peripheral receptors and their effects, underscoring the importance of our findings in guiding future research in this area.
Collapse
Affiliation(s)
- Lütfiye İdil Emral
- Department of Pediatrics, Düziçi State Hospital, 80600 Osmaniye, Turkey;
| | - Ersin Taşkın
- Department of Orthopaedics and Traumatology, Düziçi State Hospital, 80600 Osmaniye, Turkey;
| | - Aysun Albayrak
- Department of Pediatrics, Düziçi State Hospital, 80600 Osmaniye, Turkey;
| | - Memnune Arslan
- Department of Pediatrics, Osmaniye State Hospital, 80000 Osmaniye, Turkey;
| | - Demet Soylu
- Department of Pediatrics, Lokman Hekim University Hospital, 06510 Ankara, Turkey;
| |
Collapse
|
10
|
Wang T, Ye J, Zhang Y, Li J, Yang T, Wang Y, Jiang X, Yao Q. Role of oxytocin in bone. Front Endocrinol (Lausanne) 2024; 15:1450007. [PMID: 39290327 PMCID: PMC11405241 DOI: 10.3389/fendo.2024.1450007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Oxytocin (OT) is a posterior pituitary hormone that, in addition to its role in regulating childbirth and lactation, also exerts direct regulatory effects on the skeleton through peripheral OT and oxytocin receptor (OTR). Bone marrow mesenchymal stem cells (BMSCs), osteoblasts (OB), osteoclasts (OC), chondrocytes, and adipocytes all express OT and OTR. OT upregulates RUNX2, BMP2, ALP, and OCN, thereby enhancing the activity of BMSCs and promoting their differentiation towards OB rather than adipocytes. OT also directly regulates OPG/RANKL to inhibit adipocyte generation, increase the expression of SOX9 and COMP, and enhance chondrocyte differentiation. OB can secrete OT, exerting influence on the surrounding environment through autocrine and paracrine mechanisms. OT directly increases OC formation through the NκB/MAP kinase signaling pathway, inhibits osteoclast proliferation by triggering cytoplasmic Ca2+ release and nitric oxide synthesis, and has a dual regulatory effect on OCs. Under the stimulation of estrogen, OB synthesizes OT, amplifying the biological effects of estrogen and OT. Mediated by estrogen, the OT/OTR forms a feedforward loop with OB. Apart from estrogen, OT also interacts with arginine vasopressin (AVP), prostaglandins (PGE2), leptin, and adiponectin to regulate bone metabolism. This review summarizes recent research on the regulation of bone metabolism by OT and OTR, aiming to provide insights into their clinical applications and further research.
Collapse
Affiliation(s)
- Tianming Wang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianya Ye
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Orthopedic Surgery, Huaian Hospital of Huaian City, Huaian, China
| | - Yongqiang Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiayi Li
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tianxiao Yang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yufeng Wang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Jiang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Liu D, Wang K, Wang J, Cao F, Tao L. Identification of the molecular link: STAT3 is a shared key gene linking postmenopausal osteoporosis and sarcopenia. Bone Joint Res 2024; 13:411-426. [PMID: 39195444 PMCID: PMC11352718 DOI: 10.1302/2046-3758.138.bjr-2023-0351.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Aims This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. Methods We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes. Results Signal transducer and activator of transcription 3 (STAT3) was notably expressed in both conditions. Single-cell analysis pinpointed specific cells with high STAT3 expression, and microRNA (miRNA)-125a-5p emerged as a potential regulator. Experiments confirmed the crucial role of STAT3 in osteoclast differentiation and muscle proliferation. Conclusion STAT3 has emerged as a key gene in both POMP and sarcopenia. This insight positions STAT3 as a potential common therapeutic target, possibly improving management strategies for these age-related diseases.
Collapse
Affiliation(s)
- Dian Liu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Ke Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Jinpeng Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Fangming Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Dmytrenko G, Fernández-Solari J, Correa F, De Laurentiis A. Oxytocin alleviates periodontitis in adult rats. J Periodontal Res 2024; 59:280-288. [PMID: 38226427 DOI: 10.1111/jre.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVE The objective of the study was to evaluate the expression of oxytocin receptors in normal and inflamed gingiva, as well as the effects of systemic administration of oxytocin in bone loss and gum inflammatory mediators in a rat model of experimental periodontitis. BACKGROUND DATA Current evidence supports the hypothesis of a disbalance between the oral microbiota and the host's immune response in the pathogenesis of periodontitis. Increased complexity of the microbial biofilm present in the periodontal pocket leads to local production of nitrogen and oxygen-reactive species, cytokines, chemokines, and other proinflammatory mediators which contribute to periodontal tissue destruction and bone loss. Oxytocin has been suggested to participate in the modulation of immune and inflammatory processes. We have previously shown that oxytocin, nitric oxide, and endocannabinoid system interact providing a mechanism of regulation for systemic inflammation. Here, we aimed at investigating not only the presence and levels of expression of oxytocin receptors on healthy and inflamed gingiva, but also the effects of oxytocin treatment on alveolar bone loss, and systemic and gum expression of inflammatory mediators involved in periodontal tissue damage using ligature-induced periodontitis. Therefore, anti-inflammatory strategies oriented at modulating the host's immune response could be valuable adjuvants to the main treatment of periodontal disease. METHODS We used an animal model of ligature-induced periodontitis involving the placement of a linen thread (Barbour flax 100% linen suture, No. 50; size 2/0) ligature around the neck of first lower molars of adult male rats. The ligature was left in place during the entire experiment (7 days) until euthanasia. Animals with periodontitis received daily treatment with oxytocin (OXT, 1000 μg/kg, sc.) or vehicle and/or atosiban (3 mg/kg, sc.), an antagonist of oxytocin receptors. The distance between the cement-enamel junction and the alveolar bone crest was measured in stained hemimandibles in the long axis of both buccal and lingual surfaces of both inferior first molars using a caliper. TNF-α levels in plasma were determined using specific rat enzyme-linked immunosorbent assays (ELISA). OXT receptors, IL-6, IL-1β, and TNF-α expression were determined in gingival tissues by semiquantitative or real-time PCR. RESULTS We show that oxytocin receptors are expressed in normal and inflamed gingival tissues in male rats. We also show that the systemic administration of oxytocin prevents the experimental periodontitis-induced increased gum expression of oxytocin receptors, TNF-α, IL-6, and IL-1β (p < .05). Furthermore, we observed a reduction in bone loss in rats treated with oxytocin in our model. CONCLUSIONS Our results demonstrate that oxytocin is a novel and potent modulator of the gingival inflammatory process together with bone loss preventing effects in an experimental model of ligature-induced periodontitis.
Collapse
Affiliation(s)
- Ganna Dmytrenko
- Facultad de Odontología, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Fernández-Solari
- Facultad de Odontología, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fernando Correa
- Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos, CEFYBO-UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Odontología, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea De Laurentiis
- Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos, CEFYBO-UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Odontología, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Perisic M, Woolcock K, Hering A, Mendel H, Muttenthaler M. Oxytocin and vasopressin signaling in health and disease. Trends Biochem Sci 2024; 49:361-377. [PMID: 38418338 DOI: 10.1016/j.tibs.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Neurohypophysial peptides are ancient and evolutionarily highly conserved neuropeptides that regulate many crucial physiological functions in vertebrates and invertebrates. The human neurohypophysial oxytocin/vasopressin (OT/VP) signaling system with its four receptors has become an attractive drug target for a variety of diseases, including cancer, pain, cardiovascular indications, and neurological disorders. Despite its promise, drug development faces hurdles, including signaling complexity, selectivity and off-target concerns, translational interspecies differences, and inefficient drug delivery. In this review we dive into the complexity of the OT/VP signaling system in health and disease, provide an overview of relevant pharmacological probes, and discuss the latest trends in therapeutic lead discovery and drug development.
Collapse
Affiliation(s)
- Monika Perisic
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Katrina Woolcock
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Anke Hering
- Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia
| | - Helen Mendel
- Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia.
| |
Collapse
|