1
|
Annadurai P, Isaac AE. Unveiling the role of IL7R in metabolism-associated fatty liver disease leading to hepatocellular carcinoma through transcriptomic and machine learning approaches. Discov Oncol 2025; 16:873. [PMID: 40408005 PMCID: PMC12102058 DOI: 10.1007/s12672-025-02638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 05/09/2025] [Indexed: 05/26/2025] Open
Abstract
Dysregulation of hepatic metabolism is a crucial factor in the development of fatty liver disease and significantly increases the risk of hepatocellular carcinoma (HCC). This study aims to identify the genes implicated in the prognosis of HCC among individuals suffering from metabolic fatty liver disease. We analysed protein-protein interaction (PPI) networks and constructed a weighted gene co-expression network analysis (WGCNA) using high-throughput gene expression profiling datasets. Our meta-analysis uncovered 442 differentially expressed genes (DEGs), comprising 30 upregulated and 412 downregulated genes. We constructed a PPI network from the DEGs and identified significant hub genes based on their degree centrality scores. Additionally, WGCNA highlighted impactful genes and tightly correlated modules, leading to the creation of a gene interaction network specific to metabolism-associated fatty liver disease (MAFLD). Pathway analysis revealed the candidate regulatory gene interleukin-7 receptor (IL7R), which is involved in cytokine-mediated signalling across both interaction networks. Pro-inflammatory cytokines interact with IL7R, activating the JAK/STAT pathway that influences gene expression throughout progression to HCC. IL7R activates STAT3, affecting the behaviour of activated hepatic stellate cells following initial liver damage. Furthermore, the expression of the IL7R gene was validated as a predictor of HCC malignancy through a logistic regression model, resulting in an accuracy of 92%. Findings suggest that IL7R could be the target gene associated with metabolism-linked HCC. It could significantly impact the management of metabolic-associated fatty liver disease (MAFLD) and may help enhance HCC diagnostics to improve patient outcomes.
Collapse
Affiliation(s)
- Priyadharshini Annadurai
- Bioinformatics Programming Laboratory, Department of Bioscience, School of Bio Science and Technology, Vellore Institute of Technology, Katpadi, Vellore - 632014, Tamil Nadu, India
| | - Arnold Emerson Isaac
- Bioinformatics Programming Laboratory, Department of Bioscience, School of Bio Science and Technology, Vellore Institute of Technology, Katpadi, Vellore - 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Costa V, Costa M, Rebelo R, Arques F, Ferreira M, Gameiro P, Barros T, Geraldo D, Monteiro LS, Paiva-Martins F. Phytyl Phenolipids: Structurally Modified Antioxidants with Superior Lipid Membrane Interaction. Molecules 2025; 30:2193. [PMID: 40430365 PMCID: PMC12114415 DOI: 10.3390/molecules30102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/07/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
A set of procedures was developed for the simple synthesis of phytyl phenolipids, which resulted in high yields (70-95%) of phytyl esters of caffeic, protocatechuic, homoprotocatechuic, and dihydrocaffeic acids. Initial characterization revealed that these new compounds exhibited similar radical scavenging activity and liposolubility to α-tocopherol, a key antioxidant present in membranes. Cyclic voltammetry analysis indicated that the phytyl derivatives had lower anodic peak potentials compared to the original phenolic acids, with electron transfer following an adsorption-controlled mechanism. In phosphatidylcholine large unilamellar vesicles (LUVs), phytyl esters demonstrated remarkable efficiency in preventing liposome autoxidation when compared to α-tocopherol. Despite their strong radical scavenging capacity and membrane penetration ability, the antioxidant effectiveness of the phytyl esters in liposomes was influenced by the structure of their polyphenolic moiety. These new compounds are considered promising candidates for future pharmacological applications against oxidative stress in lipoproteins and cells, warranting further evaluation of their antioxidant and anti-inflammatory effects in cellular models and in vivo.
Collapse
Affiliation(s)
- Vânia Costa
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (V.C.); (M.C.); (R.R.); (F.A.); (M.F.); (P.G.)
| | - Marlene Costa
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (V.C.); (M.C.); (R.R.); (F.A.); (M.F.); (P.G.)
| | - Rute Rebelo
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (V.C.); (M.C.); (R.R.); (F.A.); (M.F.); (P.G.)
| | - Francisca Arques
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (V.C.); (M.C.); (R.R.); (F.A.); (M.F.); (P.G.)
| | - Mariana Ferreira
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (V.C.); (M.C.); (R.R.); (F.A.); (M.F.); (P.G.)
| | - Paula Gameiro
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (V.C.); (M.C.); (R.R.); (F.A.); (M.F.); (P.G.)
| | - Tomás Barros
- Chemistry Centre, University of Minho (CQ-UM), Gualtar, 4710-057 Braga, Portugal; (T.B.); (D.G.); (L.S.M.)
| | - Dulce Geraldo
- Chemistry Centre, University of Minho (CQ-UM), Gualtar, 4710-057 Braga, Portugal; (T.B.); (D.G.); (L.S.M.)
| | - Luís S. Monteiro
- Chemistry Centre, University of Minho (CQ-UM), Gualtar, 4710-057 Braga, Portugal; (T.B.); (D.G.); (L.S.M.)
| | - Fátima Paiva-Martins
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (V.C.); (M.C.); (R.R.); (F.A.); (M.F.); (P.G.)
| |
Collapse
|
3
|
Michalopoulou E, Thymis J, Lampsas S, Pavlidis G, Katogiannis K, Vlachomitros D, Katsanaki E, Kostelli G, Pililis S, Pliouta L, Kountouri A, Papanikolaou IS, Lambadiari V, Ikonomidis I. The Triad of Risk: Linking MASLD, Cardiovascular Disease and Type 2 Diabetes; From Pathophysiology to Treatment. J Clin Med 2025; 14:428. [PMID: 39860434 PMCID: PMC11765821 DOI: 10.3390/jcm14020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an emerging global health concern, and it is not only the keystone precursor of eventual liver-related morbidity, but it also places patients at considerably higher cardiovascular risk, which is still a leading cause of death in these patients. The most important common underlying pathophysiological mechanisms in these diseases are primarily related to insulin resistance, chronic inflammation and oxidative stress. The presence of MASLD with cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) elevates the risk for poor outcomes, thus this review highlights a method to the therapeutic approaches. Given the intertwined nature of MASLD, T2DM, and CVD, there is an urgent need for therapeutic strategies that address all three conditions. Although lifestyle changes are important as treatment, medication plays a crucial role in managing hyperglycemia, enhancing liver function and lowering cardiovascular risk. The onset and progression of MASLD should be addressed through a multifaceted therapeutic approach, targeting inflammatory, immune, metabolic, oxidative stress, hormonal and gutaxis pathways, alongside the treatment strategies for T2DM. In this review, we discuss the effects of antidiabetic drugs with an impact on both liver outcomes and cardiovascular risk in patients affected by MASLD, T2DM and CDV.
Collapse
Affiliation(s)
- Eleni Michalopoulou
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - John Thymis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Stamatios Lampsas
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - George Pavlidis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Konstantinos Katogiannis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Dimitrios Vlachomitros
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Eleni Katsanaki
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Gavriella Kostelli
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Sotirios Pililis
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Loukia Pliouta
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Aikaterini Kountouri
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Ioannis S. Papanikolaou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Attikon University Hospital, Rimini 1, Chaidari, 12462 Athens, Greece;
| | - Vaia Lambadiari
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Ignatios Ikonomidis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| |
Collapse
|
4
|
Costa V, Costa M, Arques F, Ferreira M, Gameiro P, Geraldo D, Monteiro LS, Paiva-Martins F. Cholesteryl Phenolipids as Potential Biomembrane Antioxidants. Molecules 2024; 29:4959. [PMID: 39459327 PMCID: PMC11510111 DOI: 10.3390/molecules29204959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The lipophilization of polyphenols (phenolipids) may increase their affinity for membranes, leading to better antioxidant protection. Cholesteryl esters of caffeic, dihydrocaffeic, homoprotocatechuic and protocatechuic acids were synthetized in a one-step procedure with good to excellent yields of ~50-95%. After evaluation of their radical scavenging capacity by the DPPH method and establishing the anodic peak potential by cyclic voltammetry, their antioxidant capacity against AAPH-induced oxidative stress in soybean PC liposomes was determined. Their interaction with the liposomal membrane was studied with the aid of three fluorescence probes located at different depths in the membrane. The cholesteryl esters showed a better or similar radical scavenging capacity to that of α-tocopherol and a lower anodic peak potential than the corresponding parental phenolic acids. Cholesteryl esters were able to protect liposomes to a similar or greater extent than α-tocopherol. However, despite their antiradical capacity and being able to penetrate and orientate in the membrane in a parallel position to phospholipids, the antioxidant efficiency of cholesteryl esters was deeply dependent on the phenolipid polyphenolic moiety structure. When incorporated during liposome preparation, cholesteryl protocatechuate and caffeate showed more than double the activity of α-tocopherol. Thus, cholesteryl phenolipids may protect biomembranes against oxidative stress to a greater extent than α-tocopherol.
Collapse
Affiliation(s)
- Vânia Costa
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (V.C.); (M.C.); (F.A.); (M.F.); (P.G.)
| | - Marlene Costa
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (V.C.); (M.C.); (F.A.); (M.F.); (P.G.)
| | - Francisca Arques
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (V.C.); (M.C.); (F.A.); (M.F.); (P.G.)
| | - Mariana Ferreira
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (V.C.); (M.C.); (F.A.); (M.F.); (P.G.)
| | - Paula Gameiro
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (V.C.); (M.C.); (F.A.); (M.F.); (P.G.)
| | - Dulce Geraldo
- Chemistry Centre, University of Minho, Gualtar, 4710-057 Braga, Portugal; (D.G.); (L.S.M.)
| | - Luís S. Monteiro
- Chemistry Centre, University of Minho, Gualtar, 4710-057 Braga, Portugal; (D.G.); (L.S.M.)
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (V.C.); (M.C.); (F.A.); (M.F.); (P.G.)
| |
Collapse
|
5
|
Sun L, Cao H, Wang Y, Wang H. Regulating ferroptosis by non-coding RNAs in hepatocellular carcinoma. Biol Direct 2024; 19:80. [PMID: 39267124 PMCID: PMC11391853 DOI: 10.1186/s13062-024-00530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
Ferroptosis, a unique type of regulated cell death plays a vital role in inhibiting tumour malignancy and has presented new opportunities for treatment of therapy in hepatocellular carcinoma. Accumulating studies indicate that epigenetic modifications by non-coding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, can determine cancer cell vulnerability to ferroptosis in HCC. The present review first summarize the updated core molecular mechanisms of ferroptosis. We then provide a concised overview of epigenetic modification of ferroptosis in HCC. Finally, we review the recent progress in understanding of the ncRNA-mediated regulated mechanisms on ferroptosis in HCC. The review will promote our understanding of the ncRNA-mediated epigenetic regulatory mechanisms modulating ferroptosis in malignancy of HCC, highlighting a novel strategies for treatment of HCC through targeting ncRNA-ferroptosis axis.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Gastroenterology, The Affiliated Hospital of Chifeng University, Chifeng, 024005, China.
| | - Hongfei Cao
- Department of Gastroenterology, The Affiliated Hospital of Chifeng University, Chifeng, 024005, China.
| | - Yanzhe Wang
- Department of Gastroenterology, The Affiliated Hospital of Chifeng University, Chifeng, 024005, China
| | - Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| |
Collapse
|
6
|
Stalin A, Hesham AEL, Mishra A, Zou Q, Ignacimuthu S. Editorial: Herbal medical products for metabolic diseases - new integrated pharmacological approaches. Front Pharmacol 2024; 15:1464176. [PMID: 39185309 PMCID: PMC11341434 DOI: 10.3389/fphar.2024.1464176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Affiliation(s)
- Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | - Avdesh Mishra
- Department of Electrical Engineering and Computer Science, Texas A&M University Kingsville, Kingsville, TX, United States
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | | |
Collapse
|
7
|
Reis-Costa A, Belew GD, Viegas I, Tavares LC, Meneses MJ, Patrício B, Gastaldelli A, Macedo MP, Jones JG. The Effects of Long-Term High Fat and/or High Sugar Feeding on Sources of Postprandial Hepatic Glycogen and Triglyceride Synthesis in Mice. Nutrients 2024; 16:2186. [PMID: 39064628 PMCID: PMC11279633 DOI: 10.3390/nu16142186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND In MASLD (formerly called NAFLD) mouse models, oversupply of dietary fat and sugar is more lipogenic than either nutrient alone. Fatty acids suppress de novo lipogenesis (DNL) from sugars, while DNL inhibits fatty acid oxidation. How such factors interact to impact hepatic triglyceride levels are incompletely understood. METHODS Using deuterated water, we measured DNL in mice fed 18-weeks with standard chow (SC), SC supplemented with 55/45-fructose/glucose in the drinking water at 30% (w/v) (HS), high-fat chow (HF), and HF with HS supplementation (HFHS). Liver glycogen levels and its sources were also measured. For HS and HFHS mice, pentose phosphate (PP) fluxes and fructose contributions to DNL and glycogen were measured using [U-13C]fructose. RESULTS The lipogenic diets caused significantly higher liver triglyceride levels compared to SC. DNL rates were suppressed in HF compared to SC and were partially restored in HFHS but supplied a minority of the additional triglyceride in HFHS compared to HF. Fructose contributed a significantly greater fraction of newly synthesized saturated fatty acids compared to oleic acid in both HS and HFHS. Glycogen levels were not different between diets, but significant differences in Direct and Indirect pathway contributions to glycogen synthesis were found. PP fluxes were similar in HS and HFHS mice and were insufficient to account for DNL reducing equivalents. CONCLUSIONS Despite amplifying the lipogenic effects of fat, the fact that sugar-activated DNL per se barely contributes suggests that its role is likely more relevant in the inhibition of fatty acid oxidation. Fructose promotes lipogenesis of saturated over unsaturated fatty acids and contributes to maintenance of glycogen levels. PP fluxes associated with sugar conversion to fat account for a minor fraction of DNL reducing equivalents.
Collapse
Affiliation(s)
- Ana Reis-Costa
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; (A.R.-C.); (G.D.B.)
- Center for Neuroscience and Cell Biology (CNC-UC), Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Grupo de Estudos de Investigação Fundamental e Translacional (GIFT) da Sociedade Portuguesa de Diabetologia, 1250-198 Lisboa, Portugal
| | - Getachew D. Belew
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; (A.R.-C.); (G.D.B.)
- Center for Neuroscience and Cell Biology (CNC-UC), Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Ivan Viegas
- Centre for Functional Ecology (CFE), TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3030-790 Coimbra, Portugal;
| | - Ludgero C. Tavares
- Vasco da Gama Research Center (CIVG), University School Vasco da Gama, 3020-210 Coimbra, Portugal;
| | - Maria João Meneses
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (M.J.M.); (B.P.); (M.P.M.)
| | - Bárbara Patrício
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (M.J.M.); (B.P.); (M.P.M.)
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 56124 Pisa, Italy;
- Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Amalia Gastaldelli
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 56124 Pisa, Italy;
- Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Maria Paula Macedo
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (M.J.M.); (B.P.); (M.P.M.)
- APDP-Diabetes Portugal Education and Research Center (APDP-ERC), 1250-203 Lisboa, Portugal
| | - John G. Jones
- Center for Neuroscience and Cell Biology (CNC-UC), Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Grupo de Estudos de Investigação Fundamental e Translacional (GIFT) da Sociedade Portuguesa de Diabetologia, 1250-198 Lisboa, Portugal
| |
Collapse
|
8
|
Wang Y, Fleishman JS, Wang J, Chen J, Zhao L, Ding M. Pharmacologically inducing anoikis offers novel therapeutic opportunities in hepatocellular carcinoma. Biomed Pharmacother 2024; 176:116878. [PMID: 38843588 DOI: 10.1016/j.biopha.2024.116878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Tumor metastasis occurs in hepatocellular carcinoma (HCC), leading to tumor progression and therapeutic failure. Anoikis is a matrix detachment-induced apoptosis, also known as detachment-induced cell death, and mechanistically prevents tumor cells from escaping their native extracellular matrix to metastasize to new organs. Deciphering the regulators and mechanisms of anoikis in cancer metastasis is urgently needed to treat HCC. Several natural and synthetic products induce anoikis in HCC cells and in vivo models. Here, we first briefly summarize the current understanding of the molecular mechanisms of anoikis regulation and relevant regulators involved in HCC metastasis. Then we discuss the therapeutic potential of pharmacological induction of anoikis as a potential treatment against HCC. Finally, we discuss the key limitations of this therapeutic paradigm and propose possible strategies to overcome them. Cumulatively this review suggests that the pharmacological induction of anoikis can be used a promising therapeutic modality against HCC.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Mingchao Ding
- Department of Peripheral Vascular Intervention, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| |
Collapse
|
9
|
Gil-Rojas S, Suárez M, Martínez-Blanco P, Torres AM, Martínez-García N, Blasco P, Torralba M, Mateo J. Prognostic Impact of Metabolic Syndrome and Steatotic Liver Disease in Hepatocellular Carcinoma Using Machine Learning Techniques. Metabolites 2024; 14:305. [PMID: 38921441 PMCID: PMC11205954 DOI: 10.3390/metabo14060305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) currently represents the predominant cause of chronic liver disease and is closely linked to a significant increase in the risk of hepatocellular carcinoma (HCC), even in the absence of liver cirrhosis. In this retrospective multicenter study, machine learning (ML) methods were employed to investigate the relationship between metabolic profile and prognosis at diagnosis in a total of 219 HCC patients. The eXtreme Gradient Boosting (XGB) method demonstrated superiority in identifying mortality predictors in our patients. Etiology was the most determining prognostic factor followed by Barcelona Clinic Liver Cancer (BCLC) and Eastern Cooperative Oncology Group (ECOG) classifications. Variables related to the development of hepatic steatosis and metabolic syndrome, such as elevated levels of alkaline phosphatase (ALP), uric acid, obesity, alcohol consumption, and high blood pressure (HBP), had a significant impact on mortality prediction. This study underscores the importance of metabolic syndrome as a determining factor in the progression of HCC secondary to MASLD. The use of ML techniques provides an effective tool to improve risk stratification and individualized therapeutic management in these patients.
Collapse
Affiliation(s)
- Sergio Gil-Rojas
- Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
| | - Miguel Suárez
- Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
| | - Pablo Martínez-Blanco
- Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
| | - Ana M. Torres
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
| | | | - Pilar Blasco
- Department of Pharmacy, General University Hospital, 46014 Valencia, Spain
| | - Miguel Torralba
- Internal Medicine Unit, University Hospital of Guadalajara, 19002 Guadalajara, Spain
- Faculty of Medicine, Universidad de Alcalá de Henares, 28801 Alcalá de Henares, Spain
- Translational Research Group in Cellular Immunology (GITIC), Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Jorge Mateo
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
| |
Collapse
|
10
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
11
|
Toma L, Deleanu M, Sanda GM, Barbălată T, Niculescu LŞ, Sima AV, Stancu CS. Bioactive Compounds Formulated in Phytosomes Administered as Complementary Therapy for Metabolic Disorders. Int J Mol Sci 2024; 25:4162. [PMID: 38673748 PMCID: PMC11049841 DOI: 10.3390/ijms25084162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic disorders (MDs), including dyslipidemia, non-alcoholic fatty liver disease, diabetes mellitus, obesity and cardiovascular diseases are a significant threat to human health, despite the many therapies developed for their treatment. Different classes of bioactive compounds, such as polyphenols, flavonoids, alkaloids, and triterpenes have shown therapeutic potential in ameliorating various disorders. Most of these compounds present low bioavailability when administered orally, being rapidly metabolized in the digestive tract and liver which makes their metabolites less effective. Moreover, some of the bioactive compounds cannot fully exert their beneficial properties due to the low solubility and complex chemical structure which impede the passive diffusion through the intestinal cell membranes. To overcome these limitations, an innovative delivery system of phytosomes was developed. This review aims to highlight the scientific evidence proving the enhanced therapeutic benefits of the bioactive compounds formulated in phytosomes compared to the free compounds. The existing knowledge concerning the phytosomes' preparation, their characterization and bioavailability as well as the commercially available phytosomes with therapeutic potential to alleviate MDs are concisely depicted. This review brings arguments to encourage the use of phytosome formulation to diminish risk factors inducing MDs, or to treat the already installed diseases as complementary therapy to allopathic medication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Camelia Sorina Stancu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8 B.P. Haşdeu Street, 050568 Bucharest, Romania; (L.T.); (M.D.); (G.M.S.); (T.B.); (L.Ş.N.); (A.V.S.)
| |
Collapse
|