1
|
Boța M, Vlaia L, Jîjie AR, Marcovici I, Crişan F, Oancea C, Dehelean CA, Mateescu T, Moacă EA. Exploring Synergistic Interactions between Natural Compounds and Conventional Chemotherapeutic Drugs in Preclinical Models of Lung Cancer. Pharmaceuticals (Basel) 2024; 17:598. [PMID: 38794168 PMCID: PMC11123751 DOI: 10.3390/ph17050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
In the current work, the synergy between natural compounds and conventional chemotherapeutic drugs is comprehensively reviewed in light of current preclinical research findings. The prognosis for lung cancer patients is poor, with a 5-year survival rate of 18.1%. The use of natural compounds in combination with conventional chemotherapeutic drugs has gained significant attention as a potential novel approach in the treatment of lung cancer. The present work highlights the importance of finding more effective therapies to increase survival rates. Chemotherapy is a primary treatment option for lung cancer but it has limitations such as reduced effectiveness because cancer cells become resistant. Natural compounds isolated from medicinal plants have shown promising anticancer or chemopreventive properties and their synergistic effect has been observed when combined with conventional therapies. The combined use of an anti-cancer drug and a natural compound exhibits synergistic effects, enhancing overall therapeutic actions against cancer cells. In conclusion, this work provides an overview of the latest preclinical research on medicinal plants and plant-derived compounds as alternative or complementary treatment options for lung cancer chemotherapy and discusses the potential of natural compounds in treating lung cancer with minimal side effects.
Collapse
Affiliation(s)
- Mihaela Boța
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (M.B.); (L.V.)
| | - Lavinia Vlaia
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (M.B.); (L.V.)
- Formulation and Technology of Drugs Research Center, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Iasmina Marcovici
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Flavia Crişan
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Cristian Oancea
- Discipline of Pneumology, Department of Infectious Diseases, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Tudor Mateescu
- Department of Thoracic Surgery, Clinical Hospital for Infectious Diseases and Pneumophthiology Dr. Victor Babes, 13 Gheorghe Adam Street, RO-300310 Timisoara, Romania;
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| |
Collapse
|
2
|
Chu J, Liu W, Hu X, Zhang H, Jiang J. P2RY13 is a prognostic biomarker and associated with immune infiltrates in renal clear cell carcinoma: A comprehensive bioinformatic study. Health Sci Rep 2023; 6:e1646. [PMID: 38045624 PMCID: PMC10691167 DOI: 10.1002/hsr2.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/03/2023] [Accepted: 10/10/2023] [Indexed: 12/05/2023] Open
Abstract
Background and Aims Clear cell renal cell carcinoma (ccRCC) is a common and aggressive form of cancer with a high incidence globally. This study aimed to investigate the role of P2RY13 in the progression of ccRCC and elucidate its mechanism of action. Methods Gene Expression Omnibus and The Cancer Genome Atlas databases were used to extract gene expression profiles of ccRCC. These profiles were annotated and visualized by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses, as well as Gene Set Enrichment Analysis (GSEA). The STRING database was used to establish a protein-protein interaction network and to analyze the functional similarity. The GEPIA2 database was used to predict survival associated with hub genes. Meanwhile, the TIMER2.0 database was used to assess immune cell infiltration and its link with the hub genes. Immunohistochemistry (IHC) was used to determine the difference between ccRCC and adjacent normal tissue. Results We identified 272 differentially expressed genes (DEGs). GO and KEGG analyses suggested that DEGs were primarily involved in lymphocyte activation, inflammatory response, immunological effector mechanism pathways. By cytohubba, the 20 highest-scoring hub genes were screened to identify critical genes in the protein-protein interaction network linked with ccRCC. Resting dendritic cells, CD8 T cells, and activated mast cells all showed a significant positive correlation with these hub genes. Moreover, a higher immune score was associated with increased prognostic risk scores, which in turn correlated with a poorer prognosis. IHC revealed that P2RY13 was expressed at higher levels in ccRCC compared to para-cancer tissues. Conclusion Identifying the DEGs will aid in the understanding of the causes and molecular mechanisms involved in ccRCC. P2RY13 may play a pivotal role in the progression and prognosis of ccRCC, potentially driving carcinogenesis though immune system mechanisms.
Collapse
Affiliation(s)
- Jie Chu
- Department of OncologyThe First People's Hospital of ZiyangZiyangChina
| | - Wei Liu
- Department of General Family MedicineThe First People's Hospital of NeiJiangNeiJiangChina
| | - Xinyue Hu
- Department of Clinical Laboratory, Kunming First People's HospitalKunming Medical UniversityKunmingChina
| | - Huiling Zhang
- Department of OncologyThe First People's Hospital of ZiyangZiyangChina
| | - Jiudong Jiang
- Department of SurgeryThe First People's Hospital of ZiYangZiyangChina
| |
Collapse
|
3
|
Zhang Y, Zhang XJ, Yuan N, Wang YM, Ip P, Chen LJ, Tham CC, Pang CP, Yam JC. Secondhand smoke exposure and ocular health: A systematic review. Surv Ophthalmol 2023; 68:1166-1207. [PMID: 37479063 DOI: 10.1016/j.survophthal.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
The toxicology of secondhand smoke (SHS), along with the harm of its exposure to human health, has been generally acknowledged; however, specific evidence is lacking on the association between SHS exposure and ocular health. In this systematic review (PROSPERO registration number: CRD42022247992), we included 55 original articles published by 12 May 2023, which dealt with SHS exposure and ocular disorders, such as eye irritation, conjunctivitis, dry eye diseases, uveitis, myopia, astigmatism, contact lens discomfort, age-related macular degeneration, glaucoma, and thyroid eye disease that addressed the ocular neurovascular structures of the macular, retinal nerve fiber layer, choroid, and corneal biomechanical parameters. We found compelling correlational evidence for eye irritation, conjunctivitis, and dry eye symptoms-supporting that SHS exposure was positively associated with inflammatory and allergic changes in the eyes. Yet, evidence about the associations between SHS exposure and other ocular disorders, structures, and parameters is still limited or controversial. Given the limitations of existing literature, more investigations with high quality and rigorous design are warranted to elucidate the potentially harmful effects of SHS exposure on ocular health.
Collapse
Affiliation(s)
- Youjuan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Shantou International Eye Center, Shantou University, Shantou, China
| | - Nan Yuan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Kunming Bright Eye Hospital, Kunming, China
| | - Yu Meng Wang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Shantou International Eye Center, Shantou University, Shantou, China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong SAR, China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Shantou International Eye Center, Shantou University, Shantou, China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong SAR, China; Hong Kong Eye Hospital, Hong Kong SAR, China; Department of Ophthalmology, Hong Kong Children's Hospital, Hong Kong SAR, China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Shantou International Eye Center, Shantou University, Shantou, China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Shantou International Eye Center, Shantou University, Shantou, China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong SAR, China; Hong Kong Eye Hospital, Hong Kong SAR, China; Department of Ophthalmology, Hong Kong Children's Hospital, Hong Kong SAR, China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Birru RL, Bein K, Bondarchuk N, Wells H, Lin Q, Di YP, Leikauf GD. Antimicrobial and Anti-Inflammatory Activity of Apple Polyphenol Phloretin on Respiratory Pathogens Associated With Chronic Obstructive Pulmonary Disease. Front Cell Infect Microbiol 2021; 11:652944. [PMID: 34881190 PMCID: PMC8645934 DOI: 10.3389/fcimb.2021.652944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial infections contribute to accelerated progression and severity of chronic obstructive pulmonary disease (COPD). Apples have been associated with reduced symptoms of COPD and disease development due to their polyphenolic content. We examined if phloretin, an apple polyphenol, could inhibit bacterial growth and inflammation induced by the main pathogens associated with COPD. Phloretin displayed bacteriostatic and anti-biofilm activity against nontypeable Haemophilus influenzae (NTHi), Moraxella catarrhalis, Streptococcus pneumoniae, and to a lesser extent, Pseudomonas aeruginosa. In vitro, phloretin inhibited NTHi adherence to NCI-H292 cells, a respiratory epithelial cell line. Phloretin also exhibited anti-inflammatory activity in COPD pathogen-induced RAW 264.7 macrophages and human bronchial epithelial cells derived from normal and COPD diseased lungs. In mice, NTHi bacterial load and chemokine (C-X-C motif) ligand 1 (CXCL1), a neutrophil chemoattractant, was attenuated by a diet supplemented with phloretin. Our data suggests that phloretin is a promising antimicrobial and anti-inflammatory nutraceutical for reducing bacterial-induced injury in COPD.
Collapse
Affiliation(s)
- Rahel L Birru
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Natalya Bondarchuk
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Heather Wells
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qiao Lin
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Y Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Ip BC, Li N, Jackson-Browne M, Eliot M, Xu Y, Chen A, Lanphear BP, Spanier AJ, Braun JM. Does fetal leptin and adiponectin influence children's lung function and risk of wheeze? J Dev Orig Health Dis 2021; 12:570-577. [PMID: 33106208 PMCID: PMC8076337 DOI: 10.1017/s2040174420000951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adipocytokines, which are secreted during fetal development by both mothers and fetuses, may influence fetal lung development, but little human data are available. We used data from the HOME Study to investigate the associations of cord blood adipocytokine concentrations with children's lung forced expiratory volume (FEV1; N = 160) and their risk of wheeze (N = 281). We measured umbilical cord serum adipocytokine concentrations using enzyme-linked immunosorbent assays and FEV1 using a portable spirometer at ages 4 and 5 to calculate the percent predicted FEV1 (%FEV1). Parents completed standardized questionnaires of their child's wheeze symptoms every 6 months from birth to age 5, then again at ages 6 and 8. We used multivariable linear mixed models and modified Poisson regression with generalized estimating equations to estimate associations of adipocytokine concentrations (log2-transformed) with children's %FEV1 and the risk of wheeze, respectively, adjusting for sociodemographic, perinatal, and child factors. Cord serum leptin was not associated with children's %FEV1. Higher cord serum adiponectin concentrations were associated with higher %FEV1 in girls (β = 3.1, 95% confidence interval [CI]: 0.6, 5.6), but not in boys (β = -1.3, 95% CI: -5.9, 3.3) (sex × adiponectin p-value = 0.05). Higher leptin was associated with lower risk of wheeze in girls (RR = 0.74, 95% CI: 0.66, 0.84), but not boys (RR = 0.87, 95% CI: 0.69, 1.11) (sex × leptin p-value = 0.01). In contrast, higher adiponectin concentrations were associated with lower risk of wheeze (RR = 0.84, 95% CI: 0.73, 0.96) in both boys and girls. These data suggest that fetal adipocytokines may impact lung development and function in early childhood. Future studies are needed to confirm these findings and explore the mechanisms underlying these associations.
Collapse
Affiliation(s)
- Blanche C Ip
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Nan Li
- Department of Epidemiology, Brown University, Providence, RI, USA
| | | | - Melissa Eliot
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Yingying Xu
- Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Department of Pediatrics, Cincinnati, OH, USA
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Adam J Spanier
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| |
Collapse
|
6
|
Kurniasari MD, Karwur FF, Rayanti RE, Dharmana E, Rias YA, Chou KR, Tsai HT. Second-Hand Smoke and Its Synergistic Effect with a Body-Mass Index of >24.9 kg/m 2 Increase the Risk of Gout Arthritis in Indonesia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4324. [PMID: 33921811 PMCID: PMC8073587 DOI: 10.3390/ijerph18084324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022]
Abstract
To analyze the association between smoking status (active smoking and exposure to Second-Hand Smoking (SHS)) and the synergistic effect of smoking status and BMI with gout risk, a community-based case-control design was undertaken among 385 participants, including 304 healthy controls and 81 gout patients from seven community health services. Adjusted Odd Ratios (AORs) and 95% Confidence Interval (CIs) of gout for active smoking and SHS were 3.26 (95% CI = 1.07~9.90) and 4.67 (95% CI = 2.18~10.00) compared to non-smokers. Time-dependent manner of active smoking and SHS significantly increased gout risk with AORs and 95% CIs of 5.95 (1.41~25.03) and 10.12 (3.51~29.14). Dose-dependency of active smokers and SHS showed AORs and 95% CIs of 5.15 (1.28~20.63) and 4.37 (1.33~14.28). Smoking 20 cigarettes (one pack) per day for one year is equivalent to one pack-year. Active smoking >20 pack-year and SHS > 26.5 pack-year increased gout risk with AORs and 95% CIs of 7.18 (1.53~33.67) and 9.95 (3.64~27.22). Participants who smoked (active smoking and SHS) and with Body Mass Index (BMI) of > 24.9 kg/m2 synergistically increased gout risk, with an AOR of 9.65 and 95% CI of 3.25~28.65, compared to BMI ≤ 24.9 kg/m2 and non-smoker. Smoking status (active smoking and SHS) and the synergistic effect of smoking status and BMI increased gout risk in Indonesia.
Collapse
Affiliation(s)
- Maria Dyah Kurniasari
- School of Nursing, College of Nursing, Taipei Medical University, Wu-Xing Street, No 250, Taipei City 11031, Taiwan; (M.D.K.); (K.R.C.)
- Department of Nursing, Faculty of Medicine and Health Sciences, Universitas Kristen Satya Wacana, Diponegoro Street, No 52-60, Salatiga City 50711, Indonesia;
| | - Ferry Fredy Karwur
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universitas Kristen Satya Wacana, Diponegoro Street, No 52-60, Salatiga City 50711, Indonesia;
| | - Rosiana Eva Rayanti
- Department of Nursing, Faculty of Medicine and Health Sciences, Universitas Kristen Satya Wacana, Diponegoro Street, No 52-60, Salatiga City 50711, Indonesia;
| | - Edi Dharmana
- Faculty of Medicine, Universitas Diponegoro, Prof. Sudarto Street, No.13, Semarang City 50275, Indonesia;
| | - Yohanes Andy Rias
- Faculty of Health and Medicine, Institut Ilmu Kesehatan Bhakti Wiyata Kediri, College of Nursing, KH Wachid Hasyim Street, No.65, Kediri City 64114, Indonesia;
| | - Kuei Ru Chou
- School of Nursing, College of Nursing, Taipei Medical University, Wu-Xing Street, No 250, Taipei City 11031, Taiwan; (M.D.K.); (K.R.C.)
- Center for Nursing and Healthcare Research in Clinical Practice Application, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Nursing, Taipei Medical University-Shuang Ho Hospital, Taipei 23561, Taiwan
- Psychiatric Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Hsiu-Ting Tsai
- School of Nursing, College of Nursing, Taipei Medical University, Wu-Xing Street, No 250, Taipei City 11031, Taiwan; (M.D.K.); (K.R.C.)
- Post-Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Wu-Xing Street, No 250, Taipei 11031, Taiwan
| |
Collapse
|
7
|
Abstract
Cigarette smoking is the major culprit of chronic lung diseases and the most dominant risk factor for the development of both lung cancer and chronic obstructive pulmonary disease (COPD). In addition, chronic inflammation has been shown to increase the risk of lung cancer and COPD in clinical and epidemiological studies. For pulmonary disease-related research, mice are the most commonly used model system. Multiple lung cancer mouse models driven by targeted genetic alterations are used to evaluate the critical roles of oncogenes and tumor suppressor genes. These models are useful in addressing lung tumorigenesis associated with specific genetic changes, but they are not able to provide a global insight into cigarette smoke-induced carcinogenesis. To fill this knowledge gap, we developed a lung cancer model by treating mice with cigarette smoke carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) with/without repeated lipopolysaccharides (LPS) exposure in order to determine the role of chronic inflammation in lung tumorigenesis. Notably, combined LPS/NNK treatment increased tumor number, tumor incidence, and tumor area compared to NNK treatment alone. Therefore, this model offers a feasible approach to investigate lung cancer development on a more global level, determine the role of inflammation in carcinogenesis, and provide a tool for evaluating chemoprevention and immunotherapy.
Collapse
Affiliation(s)
- Marissa E Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Beth Kahkonen
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chia-Hsin Liu
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
8
|
Milanzi EB, Nkoka O, Kanje V, Ntenda PAM. Air pollution and non-communicable diseases in Sub-Saharan Africa. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Lee E, Kim KY. The Association between Secondhand Smoke and Stress, Depression, and Suicidal Ideation in Adolescents. Healthcare (Basel) 2021; 9:healthcare9010039. [PMID: 33406772 PMCID: PMC7824241 DOI: 10.3390/healthcare9010039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022] Open
Abstract
Background: Secondhand smoke (SHS) is an important risk factor for adolescents’ health. Several studies have reported that SHS is as dangerous as active smoking. Therefore, this study aimed to investigate the association between exposure to SHS and mental health, including stress, depression, and suicidal ideation, in adolescents. Methods: Using raw data from the 2018 14th Korea Youth Risk Behavior Web-Based Survey, we analyzed the effects of sociodemographic characteristics on stress, depression, suicidal ideation in 51,500 students, including 85.8% of all sampled students (n = 60,040), after excluding students with a history of smoking, and then we performed logistic regression analysis to determine the level of exposure to SHS and its impact on stress, depression, and suicidal ideation. Results: The increased level of exposure to SHS was positively associated with stress, depression, and suicidal ideation. Furthermore, stress, depression, and suicidal ideation increased as the level of SHS increased, after adjusting for variables such as age, gender, education level of the father and mother, school achievement, economic status, inhabitation, and drinking. Conclusions: This study demonstrates that SHS is positively associated with risk of mental health problems, including stress, depression, and suicidal ideation, in adolescents. Further research and policy strategies and systems to prevent and manage exposure to SHS in adolescents are required.
Collapse
Affiliation(s)
- Eunmi Lee
- Department of Nursing, Research Institute for Basic Science, Hoseo University, Asan 31499, Chungcheongnam-do, Korea;
| | - Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Korea
- Correspondence:
| |
Collapse
|
10
|
Bitzer ZT, Goel R, Trushin N, Muscat J, Richie JP. Free Radical Production and Characterization of Heat-Not-Burn Cigarettes in Comparison to Conventional and Electronic Cigarettes. Chem Res Toxicol 2020; 33:1882-1887. [PMID: 32432464 DOI: 10.1021/acs.chemrestox.0c00088] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
With conventional cigarettes, the burning cone reaches temperatures of >900 °C, resulting in the production of numerous toxicants and significant levels of highly reactive free radicals. In attempts to eliminate combustion while still delivering nicotine and flavorings, a newer alternative tobacco product has emerged known as "heat-not-burn" (HnB). These products heat tobacco to temperatures of 250-350 °C depending on the device allowing for the volatilization of nicotine and flavorants while potentially limiting the production of combustion-related toxicants. To better understand how the designs of these new products compare to conventional cigarettes and different styles of electronic cigarettes (e-cigs), we measured and partially characterized their production of free radicals. Smoke or aerosols were trapped by a spin trap phenyl-N-tert-butylnitrone (PBN) and analyzed for free radicals using electron paramagnetic resonance (EPR). Free radical polarity was assessed by passing the aerosol or smoke through either a polar or nonpolar trap prior to being spin trapped with PBN. Particulate-phase radicals were detected only for conventional cigarettes. Gas-phase free radicals were detected in smoke/aerosol from all products with levels for HnB (IQOS, Glo) (12 pmol/puff) being similar to e-cigs (Juul, SREC, box mod e-cig) and hybrid devices (Ploom) (5-40 pmol/puff) but 50-fold lower than conventional cigarettes (1R6F). Gas phase radicals differed in polarity with HnB products and conventional cigarettes producing more polar radicals compared to those produced from e-cigs. Free radical production should be considered in evaluating the toxicological profile of nicotine delivery products and identification of the radicals is of paramount importance.
Collapse
Affiliation(s)
- Zachary T Bitzer
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Reema Goel
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Neil Trushin
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Joshua Muscat
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - John P Richie
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
11
|
Wang G, Mohammadtursun N, Sun J, Lv Y, Jin H, Lin J, Kong L, Zhao Z, Zhang H, Dong J. Establishment and Evaluation of a Rat Model of Sidestream Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease. Front Physiol 2018; 9:58. [PMID: 29467669 PMCID: PMC5808212 DOI: 10.3389/fphys.2018.00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 01/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common cause of mortality worldwide. The current lack of an animal model that can be established within a certain time frame and imitate the unique features of the disease is a major limiting factor in its study. The present study established and evaluated an animal model of COPD that represents the early and advanced stage features using short-, middle-, and long-term sidestream cigarette smoke (CS) exposure. One hundred and nine Sprague-Dawley rats were randomly divided into 10 groups for different periods of sidestream CS exposure or no exposure (i.e., normal groups). The rats were exposed to CS from 3R4F cigarettes in an exposure chamber. Histological analysis was performed to determine pathological changes. We also conducted open-field tests, lung function evaluations, and cytokine analysis of the blood serum, bronchoalveolar lavage fluid, and lung tissue. The lung tissue protein levels, blood gases, and were also analyzed. As the CS exposure time increased, the indicators associated with oxidative stress, inflammatory responses, and airway remodeling were greater in the CS exposure groups than in the normal group. At 24 and 36 weeks, the COPD model rats displayed the middle- and advanced-stage features of COPD, respectively. In the 8-week CS exposure group, after the CS exposure was stopped for 4 weeks, inflammatory responses and oxidative responses were ameliorated and lung function exacerbation was reduced compared with the 12-week CS exposure group. Therefore, we established a more adequate rat model of sidestream CS induced COPD, which will have great significance for a better understanding of the pathogenesis of COPD and drug effectiveness evaluation.
Collapse
Affiliation(s)
- Genfa Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China.,Department of TCM, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nabijan Mohammadtursun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China.,College of Xinjiang Uyghur Medicine, Hotan, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yubao Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hualiang Jin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jinpei Lin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lingwen Kong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhengxiao Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Florence JM, Krupa A, Booshehri LM, Gajewski AL, Kurdowska AK. Disrupting the Btk Pathway Suppresses COPD-Like Lung Alterations in Atherosclerosis Prone ApoE -/- Mice Following Regular Exposure to Cigarette Smoke. Int J Mol Sci 2018; 19:ijms19020343. [PMID: 29364178 PMCID: PMC5855565 DOI: 10.3390/ijms19020343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 01/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with severe chronic inflammation that promotes irreversible tissue destruction. Moreover, the most broadly accepted cause of COPD is exposure to cigarette smoke. There is no effective cure and significantly, the mechanism behind the development and progression of this disease remains unknown. Our laboratory has demonstrated that Bruton’s tyrosine kinase (Btk) is a critical regulator of pro-inflammatory processes in the lungs and that Btk controls expression of matrix metalloproteinase-9 (MMP-9) in the alveolar compartment. For this study apolipoprotein E null (ApoE−/−) mice were exposed to SHS to facilitate study in a COPD/atherosclerosis comorbidity model. We applied two types of treatments, animals received either a pharmacological inhibitor of Btk or MMP-9 specific siRNA to minimize MMP-9 expression in endothelial cells or neutrophils. We have shown that these treatments had a protective effect in the lung. We have noted a decrease in alveolar changes related to SHS induced inflammation in treated animals. In summary, we are presenting a novel concept in the field of COPD, i.e., that Btk may be a new drug target for this disease. Moreover, cell specific targeting of MMP-9 may also benefit patients affected by this disease.
Collapse
Affiliation(s)
- Jon M Florence
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX 75708, USA.
| | - Agnieszka Krupa
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX 75708, USA.
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
| | - Laela M Booshehri
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX 75708, USA.
| | - Adrian L Gajewski
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX 75708, USA.
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
| | - Anna K Kurdowska
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX 75708, USA.
| |
Collapse
|
13
|
McCormick-Ricket I, Canterberry M, Ghaffar A, Parada NA, Carton TW. Measuring the Effect of Environmental Tobacco Smoke on Lung Function: Results From a Small Observational Investigation of Acute Exposure. J Occup Environ Med 2016; 58:1028-1033. [PMID: 27753747 DOI: 10.1097/jom.0000000000000859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Exposure to environmental tobacco smoke (ETS) in smoky venues puts patrons and employees at risk for immediate respiratory symptoms. Although much literature focuses on outcomes associated with chronic ETS exposure, the current study assesses changes in lung function after acute exposure. METHODS Ninety-six nonsmoking, healthy adults were exposed to ETS at a bar. Lung function [eg, forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1)] was assessed at baseline, immediately after 3 hours of ETS exposure, and 2 hours after exiting the bar. PM2.5 recordings were also measured. RESULTS Repeated-measures analysis of variance found significant decreases in FEV1, FVC and FEF25-75%, and peak expiratory flow after ETS exposure compared with baseline that remained significantly decreased after a 2-hour recovery period. CONCLUSIONS Acute exposure to ETS in a natural environment significantly attenuates lung function. A subgroup experienced heightened reductions in lung function.
Collapse
|
14
|
Tommasi S, Zheng A, Besaratinia A. Exposure of mice to secondhand smoke elicits both transient and long-lasting transcriptional changes in cancer-related functional networks. Int J Cancer 2014; 136:2253-63. [PMID: 25346222 DOI: 10.1002/ijc.29284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022]
Abstract
Secondhand smoke (SHS) has long been linked to lung cancer and other diseases in nonsmokers. Yet, the underlying mechanisms of SHS carcinogenicity in nonsmokers remain to be elucidated. We investigated the immediate and long-lasting effects of SHS exposure on gene expression in mice in vivo. We exposed mice whole body to SHS for 5 h/day, 5 days/week for 4 months in exposure chambers of a microprocessor-controlled smoking machine. Subsequently, we performed microarray gene expression profiling, genome-wide, to construct the pulmonary transcriptome of SHS-exposed mice, immediately after discontinuation of exposure (T0) and following 1-month (T1) and 7-month (T2) recoveries in clean air. Sub-chronic exposure of mice to SHS elicited a robust transcriptomic response, including both reversible and irreversible changes in gene expression. There were 674 differentially expressed transcripts immediately after treatment (T0), of which the majority were involved in xenobiotic metabolism, signaling, and innate immune response. Reduced, yet, substantial numbers of differentially expressed transcripts were detectable in mice after cessation of SHS-exposure (254 transcripts at T1 and 30 transcripts at T2). Top biofunctional networks disrupted in SHS-exposed mice, even after termination of exposure, were implicated in cancer, respiratory disease, and inflammatory disease. Our data show that exposure of mice to SHS induces both transient and long-lasting changes in gene expression, which impact cancer-related functional networks. The pattern of transcriptional changes in SHS-exposed mice may provide clues on the underlying mechanisms of lung tumorigenesis in nonsmokers. Our findings underscore the importance of eliminating SHS from environments where nonsmokers are unavoidably exposed to this carcinogen.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | | |
Collapse
|
15
|
Borchers MT, Kratzer A, Taraseviciene-Stewart L. Second hand smoke and COPD: lessons from animal studies. Front Physiol 2014; 5:144. [PMID: 24782787 PMCID: PMC3989710 DOI: 10.3389/fphys.2014.00144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/25/2014] [Indexed: 11/20/2022] Open
Affiliation(s)
- Michael T Borchers
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Adelheid Kratzer
- Center for Molecular Cardiology, University of Zurich Schlieren, Switzerland
| | - Laimute Taraseviciene-Stewart
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, University of Colorado Denver, CO, USA
| |
Collapse
|