1
|
Ma J, Pang X, Wang T, Ning M, Liang Y, Li X, Tian X, Mo Y, Laher I, Li S. Acute aerobic exercise regulation of myocardial calcium homeostasis involves CASQ1, CASQ2, and TRDN. J Appl Physiol (1985) 2023; 135:707-716. [PMID: 37589058 DOI: 10.1152/japplphysiol.00299.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Exercise maintains cardiac calcium homeostasis and promotes cardiovascular health. This study explored temporal changes of calcium-related myocardial transcriptome changes during the recovery phase following a single bout of moderate-intensity aerobic exercise. Healthy male Sprague-Dawley rats were anesthetized with sodium pentobarbital after moderate-intensity aerobic exercise at four time points (0, 12, 24, and 72 h postexercise). The hearts were removed and RNA-seq and bioinformatics analyses were used to examine temporal transcriptional changes in the myocardium. Casq1, Casq2, and Trdn were identified as key genes in the regulation of calcium homeostasis during myocardial recovery. The highest expression of Casq1, Casq2, and Trdn genes and the proteins they encode occurred 24 h after exercise. An in vitro calcium overload heart model using the Langendorff heart perfusion method was used to examine myocardial calcium buffering capacity. Calcium overload caused the least changes in left ventricular developed pressure, infarct area, Lactate dehydrogenase release, and extent of morphological damage to myocardial cells, with the highest protein expressions of CASQ1, CASQ2, and TRDN at 24 h after acute exercise. This study indicates that maximal myocardial Ca2+ buffering capacity occurs 24 h postexercise in rats. Our study provides insights into exercise-mediated improvements in cardiovascular function and exercise preconditioning.NEW & NOTEWORTHY Acute aerobic exercise upregulates myocardial Casq1, Casq2, and Trdn genes and the proteins they encode in rats. Higher protein levels of CASQ1, CASQ2, and TRDN conferred an improved ability of the myocardium to resist calcium overload. Furthermore, 24 h postexercise is the time point with optimal myocardial calcium buffer capacity.
Collapse
Affiliation(s)
- Jiacheng Ma
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| | - Xiaoli Pang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| | - Tutu Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| | - Miaomiao Ning
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| | - Yu Liang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| | - Xiaole Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| | - Xinyu Tian
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| | - Yurou Mo
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Estrada AC, Yoshida K, Saucerman JJ, Holmes JW. A multiscale model of cardiac concentric hypertrophy incorporating both mechanical and hormonal drivers of growth. Biomech Model Mechanobiol 2021; 20:293-307. [PMID: 32970240 PMCID: PMC7897221 DOI: 10.1007/s10237-020-01385-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/08/2020] [Indexed: 01/19/2023]
Abstract
Growth and remodeling in the heart is driven by a combination of mechanical and hormonal signals that produce different patterns of growth in response to exercise, pregnancy, and various pathologies. In particular, increases in afterload lead to concentric hypertrophy, a thickening of the walls that increases the contractile ability of the heart while reducing wall stress. In the current study, we constructed a multiscale model of cardiac hypertrophy that connects a finite-element model representing the mechanics of the growing left ventricle to a cell-level network model of hypertrophic signaling pathways that accounts for changes in both mechanics and hormones. We first tuned our model to capture published in vivo growth trends for isoproterenol infusion, which stimulates β-adrenergic signaling pathways without altering mechanics, and for transverse aortic constriction (TAC), which involves both elevated mechanics and altered hormone levels. We then predicted the attenuation of TAC-induced hypertrophy by two distinct genetic interventions (transgenic Gq-coupled receptor inhibitor overexpression and norepinephrine knock-out) and by two pharmacologic interventions (angiotensin receptor blocker losartan and β-blocker propranolol) and compared our predictions to published in vivo data for each intervention. Our multiscale model captured the experimental data trends reasonably well for all conditions simulated. We also found that when prescribing realistic changes in mechanics and hormones associated with TAC, the hormonal inputs were responsible for the majority of the growth predicted by the multiscale model and were necessary in order to capture the effect of the interventions for TAC.
Collapse
|
3
|
Medert R, Pironet A, Bacmeister L, Segin S, Londoño JEC, Vennekens R, Freichel M. Genetic background influences expression and function of the cation channel TRPM4 in the mouse heart. Basic Res Cardiol 2020; 115:70. [PMID: 33205255 PMCID: PMC7671982 DOI: 10.1007/s00395-020-00831-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/02/2020] [Indexed: 01/21/2023]
Abstract
Transient receptor potential melastatin 4 (TRPM4) cation channels act in cardiomyocytes as a negative modulator of the L-type Ca2+ current. Ubiquitous Trpm4 deletion in mice leads to an increased β-adrenergic inotropy in healthy mice as well as after myocardial infarction. In this study, we set out to investigate cardiac inotropy in mice with cardiomyocyte-specific Trpm4 deletion. The results guided us to investigate the relevance of TRPM4 for catecholamine-evoked Ca2+ signaling in cardiomyocytes and inotropy in vivo in TRPM4-deficient mouse models of different genetic background. Cardiac hemodynamics were investigated using pressure-volume analysis. Surprisingly, an increased β-adrenergic inotropy was observed in global TRPM4-deficient mice on a 129SvJ genetic background, but the inotropic response was unaltered in mice with global and cardiomyocyte-specific TRPM4 deletion on the C57Bl/6N background. We found that the expression of TRPM4 proteins is about 78 ± 10% higher in wild-type mice on the 129SvJ versus C57Bl/6N background. In accordance with contractility measurements, our analysis of the intracellular Ca2+ transients revealed an increase in ISO-evoked Ca2+ rise in Trpm4-deficient cardiomyocytes of the 129SvJ strain, but not of the C57Bl/6N strain. No significant differences were observed between the two mouse strains in the expression of other regulators of cardiomyocyte Ca2+ homeostasis. We conclude that the relevance of TRPM4 for cardiac contractility depends on homeostatic TRPM4 expression levels or the genetic endowment in different mouse strains as well as on the health/disease status. Therefore, the concept of inhibiting TRPM4 channels to improve cardiac contractility needs to be carefully explored in specific strains and species and prospectively in different genetically diverse populations of patients.
Collapse
Affiliation(s)
- Rebekka Medert
- Institute of Pharmacology, Heidelberg University, im Neuenheimer Feld 366, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Andy Pironet
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, VIB Center for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lucas Bacmeister
- Institute of Pharmacology, Heidelberg University, im Neuenheimer Feld 366, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Sebastian Segin
- Institute of Pharmacology, Heidelberg University, im Neuenheimer Feld 366, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Juan E Camacho Londoño
- Institute of Pharmacology, Heidelberg University, im Neuenheimer Feld 366, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, VIB Center for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany.
| |
Collapse
|
4
|
Camacho Londoño JE, Kuryshev V, Zorn M, Saar K, Tian Q, Hübner N, Nawroth P, Dietrich A, Birnbaumer L, Lipp P, Dieterich C, Freichel M. Transcriptional signatures regulated by TRPC1/C4-mediated Background Ca 2+ entry after pressure-overload induced cardiac remodelling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:86-104. [PMID: 32738354 DOI: 10.1016/j.pbiomolbio.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/03/2020] [Accepted: 07/21/2020] [Indexed: 01/17/2023]
Abstract
AIMS After summarizing current concepts for the role of TRPC cation channels in cardiac cells and in processes triggered by mechanical stimuli arising e.g. during pressure overload, we analysed the role of TRPC1 and TRPC4 for background Ca2+ entry (BGCE) and for cardiac pressure overload induced transcriptional remodelling. METHODS AND RESULTS Mn2+-quench analysis in cardiomyocytes from several Trpc-deficient mice revealed that both TRPC1 and TRPC4 are required for BGCE. Electrically-evoked cell shortening of cardiomyocytes from TRPC1/C4-DKO mice was reduced, whereas parameters of cardiac contractility and relaxation assessed in vivo were unaltered. As pathological cardiac remodelling in mice depends on their genetic background, and the development of cardiac remodelling was found to be reduced in TRPC1/C4-DKO mice on a mixed genetic background, we studied TRPC1/C4-DKO mice on a C57BL6/N genetic background. Cardiac hypertrophy was reduced in those mice after chronic isoproterenol infusion (-51.4%) or after one week of transverse aortic constriction (TAC; -73.0%). This last manoeuvre was preceded by changes in the pressure overload induced transcriptional program as analysed by RNA sequencing. Genes encoding specific collagens, the Mef2 target myomaxin and the gene encoding the mechanosensitive channel Piezo2 were up-regulated after TAC in wild type but not in TRPC1/C4-DKO hearts. CONCLUSIONS Deletion of the TRPC1 and TRPC4 channel proteins protects against development of pathological cardiac hypertrophy independently of the genetic background. To determine if the TRPC1/C4-dependent changes in the pressure overload induced alterations in the transcriptional program causally contribute to cardio-protection needs to be elaborated in future studies.
Collapse
Affiliation(s)
- Juan E Camacho Londoño
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, 69120, Germany.
| | - Vladimir Kuryshev
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany; Innere Medizin III, Bioinformatik und Systemkardiologie, Klaus Tschira Institute for Computational Cardiology, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Markus Zorn
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Kathrin Saar
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
| | - Qinghai Tian
- Medical Faculty, Centre for Molecular Signalling (PZMS), Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany
| | - Norbert Hübner
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany; Berlin Institute of Health (BIH), 10178, Berlin, Germany; Charité -Universitätsmedizin, 10117, Berlin, Germany
| | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120, Heidelberg, Germany; German Center for Diabetes Research (DZD), Germany; Institute for Diabetes and Cancer IDC Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Dept. of Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität, 80336, München, Germany
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, NIEHS, North Carolina, USA and Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF Buenos Aires, Argentina
| | - Peter Lipp
- Medical Faculty, Centre for Molecular Signalling (PZMS), Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany
| | - Christoph Dieterich
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, 69120, Germany; Innere Medizin III, Bioinformatik und Systemkardiologie, Klaus Tschira Institute for Computational Cardiology, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, 69120, Germany.
| |
Collapse
|
5
|
Kobayashi S, Hida Y, Ishizaki H, Inoue E, Tanaka-Okamoto M, Yamasaki M, Miyazaki T, Fukaya M, Kitajima I, Takai Y, Watanabe M, Ohtsuka T, Manabe T. The active zone protein CAST regulates synaptic vesicle recycling and quantal size in the mouse hippocampus. Eur J Neurosci 2016; 44:2272-84. [PMID: 27422015 DOI: 10.1111/ejn.13331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 01/13/2023]
Abstract
Synaptic efficacy is determined by various factors, including the quantal size, which is dependent on the amount of neurotransmitters in synaptic vesicles at the presynaptic terminal. It is essential for stable synaptic transmission that the quantal size is kept within a constant range and that synaptic efficacy during and after repetitive synaptic activation is maintained by replenishing release sites with synaptic vesicles. However, the mechanisms for these fundamental properties have still been undetermined. We found that the active zone protein CAST (cytomatrix at the active zone structural protein) played pivotal roles in both presynaptic regulation of quantal size and recycling of endocytosed synaptic vesicles. In the CA1 region of hippocampal slices of the CAST knockout mice, miniature excitatory synaptic responses were increased in size, and synaptic depression after prolonged synaptic activation was larger, which was attributable to selective impairment of synaptic vesicle trafficking via the endosome in the presynaptic terminal likely mediated by Rab6. Therefore, CAST serves as a key molecule that regulates dynamics and neurotransmitter contents of synaptic vesicles in the excitatory presynaptic terminal in the central nervous system.
Collapse
Affiliation(s)
- Shizuka Kobayashi
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Yamato Hida
- Department of Biochemistry, University of Yamanashi, Chuo, 409-3898, Japan
| | | | | | - Miki Tanaka-Okamoto
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Miwako Yamasaki
- Department of Anatomy and Embryology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Taisuke Miyazaki
- Department of Anatomy and Embryology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiro Fukaya
- Department of Anatomy and Embryology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Isao Kitajima
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Yoshimi Takai
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiko Watanabe
- Department of Anatomy and Embryology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, University of Yamanashi, Chuo, 409-3898, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| |
Collapse
|
6
|
Karbassi E, Monte E, Chapski DJ, Lopez R, Rosa Garrido M, Kim J, Wisniewski N, Rau CD, Wang JJ, Weiss JN, Wang Y, Lusis AJ, Vondriska TM. Relationship of disease-associated gene expression to cardiac phenotype is buffered by genetic diversity and chromatin regulation. Physiol Genomics 2016; 48:601-15. [PMID: 27287924 DOI: 10.1152/physiolgenomics.00035.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/04/2016] [Indexed: 12/11/2022] Open
Abstract
Expression of a cohort of disease-associated genes, some of which are active in fetal myocardium, is considered a hallmark of transcriptional change in cardiac hypertrophy models. How this transcriptome remodeling is affected by the common genetic variation present in populations is unknown. We examined the role of genetics, as well as contributions of chromatin proteins, to regulate cardiac gene expression and heart failure susceptibility. We examined gene expression in 84 genetically distinct inbred strains of control and isoproterenol-treated mice, which exhibited varying degrees of disease. Unexpectedly, fetal gene expression was not correlated with hypertrophic phenotypes. Unbiased modeling identified 74 predictors of heart mass after isoproterenol-induced stress, but these predictors did not enrich for any cardiac pathways. However, expanded analysis of fetal genes and chromatin remodelers as groups correlated significantly with individual systemic phenotypes. Yet, cardiac transcription factors and genes shown by gain-/loss-of-function studies to contribute to hypertrophic signaling did not correlate with cardiac mass or function in disease. Because the relationship between gene expression and phenotype was strain specific, we examined genetic contribution to expression. Strikingly, strains with similar transcriptomes in the basal heart did not cluster together in the isoproterenol state, providing comprehensive evidence that there are different genetic contributors to physiological and pathological gene expression. Furthermore, the divergence in transcriptome similarity versus genetic similarity between strains is organ specific and genome-wide, suggesting chromatin is a critical buffer between genetics and gene expression.
Collapse
Affiliation(s)
- Elaheh Karbassi
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Emma Monte
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Douglas J Chapski
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Rachel Lopez
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Manuel Rosa Garrido
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Joseph Kim
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Nicholas Wisniewski
- Department of Integrative Biology and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Christoph D Rau
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jessica J Wang
- Department of Medicine/Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - James N Weiss
- Department of Medicine/Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Yibin Wang
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medicine/Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medicine/Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Microbiology Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Thomas M Vondriska
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medicine/Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
7
|
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1659-701. [PMID: 27012580 DOI: 10.1161/res.0000000000000097] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.
Collapse
|
8
|
Andrews M, Giger ML, Roman BB. Manganese-enhanced MRI detection of impaired calcium regulation in a mouse model of cardiac hypertrophy. NMR IN BIOMEDICINE 2015; 28:255-263. [PMID: 25523065 PMCID: PMC4451202 DOI: 10.1002/nbm.3249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study was to use manganese (Mn)-enhanced MRI (MEMRI) to detect changes in calcium handling associated with cardiac hypertrophy in a mouse model, and to determine whether the impact of creatine kinase ablation is detectable using this method. Male C57BL/6 (C57, n = 11) and male creatine kinase double-knockout (CK-M/Mito(-/-) , DBKO, n = 12) mice were imaged using the saturation recovery Look-Locker T1 mapping sequence before and after the development of cardiac hypertrophy. Hypertrophy was induced via subcutaneous continuous 3-day infusion of isoproterenol, and sham mice not subjected to cardiac hypertrophy were also imaged. During each scan, the contrast agent Mn was administered and the resulting change in R1 (=1/T1) was calculated. Two anatomical regions of interest (ROIs) were considered, the left-ventricular free wall (LVFW) and the septum, and one ROI in an Mn-containing standard placed next to the mouse. We found statistically significant (p < 0.05) decreases in the uptake of Mn in both the LVFW and septum following the induction of cardiac hypertrophy. No statistically significant decreases were detected in the standard, and no statistically significant differences were found among the sham mice. Using a murine model, we successfully demonstrated that changes in Mn uptake as a result of cardiac hypertrophy are detectable using the functional contrast agent and calcium mimetic Mn. Our measurements showed a decrease in the relaxivity (R1) of the myocardium following cardiac hypertrophy compared with normal control mice.
Collapse
|
9
|
Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations. PLoS One 2014; 9:e115256. [PMID: 25531103 PMCID: PMC4274076 DOI: 10.1371/journal.pone.0115256] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/20/2014] [Indexed: 12/14/2022] Open
Abstract
RATIONALE TRPM4 is a non-selective Ca2+-activated cation channel expressed in the heart, particularly in the atria or conduction tissue. Mutations in the Trpm4 gene were recently associated with several human conduction disorders such as Brugada syndrome. TRPM4 channel has also been implicated at the ventricular level, in inotropism or in arrhythmia genesis due to stresses such as ß-adrenergic stimulation, ischemia-reperfusion, and hypoxia re-oxygenation. However, the physiological role of the TRPM4 channel in the healthy heart remains unclear. OBJECTIVES We aimed to investigate the role of the TRPM4 channel on whole cardiac function with a Trpm4 gene knock-out mouse (Trpm4-/-) model. METHODS AND RESULTS Morpho-functional analysis revealed left ventricular (LV) eccentric hypertrophy in Trpm4-/- mice, with an increase in both wall thickness and chamber size in the adult mouse (aged 32 weeks) when compared to Trpm4+/+ littermate controls. Immunofluorescence on frozen heart cryosections and qPCR analysis showed no fibrosis or cellular hypertrophy. Instead, cardiomyocytes in Trpm4-/- mice were smaller than Trpm4+/+with a higher density. Immunofluorescent labeling for phospho-histone H3, a mitosis marker, showed that the number of mitotic myocytes was increased 3-fold in the Trpm4-/-neonatal stage, suggesting hyperplasia. Adult Trpm4-/- mice presented multilevel conduction blocks, as attested by PR and QRS lengthening in surface ECGs and confirmed by intracardiac exploration. Trpm4-/-mice also exhibited Luciani-Wenckebach atrioventricular blocks, which were reduced following atropine infusion, suggesting paroxysmal parasympathetic overdrive. In addition, Trpm4-/- mice exhibited shorter action potentials in atrial cells. This shortening was unrelated to modifications of the voltage-gated Ca2+ or K+ currents involved in the repolarizing phase. CONCLUSIONS TRPM4 has pleiotropic roles in the heart, including the regulation of conduction and cellular electrical activity which impact heart development.
Collapse
|
10
|
Abstract
UNLABELLED Creation of lethal and synthetic lethal mutations in an experimental organism is a cornerstone of genetic dissection of gene function, and is related to the concept of an essential gene. Common inbred mouse strains carry background mutations, which can act as genetic modifiers, interfering with the assignment of gene essentiality. The inbred strain C57BL/6J, commonly known as "Black Six", stands out, as it carries a spontaneous homozygous deletion in the nicotinamide nucleotide transhydrogenase (Nnt) gene [GenBank: AH009385.2], resulting in impairment of steroidogenic mitochondria of the adrenal gland, and a multitude of indirect modifier effects, coming from alteration of glucocorticoid-regulated processes. Over time, the popular strain has been used, by means of gene targeting technology, to assign "essential" and "redundant" qualifiers to numerous genes, thus creating an internally consistent "parallel universe" of knowledge. It is unrealistic to suggest phasing-out of this strain, given the scope of shared resources built around it, however, continuing on the road of "strain-unawareness" will result in profound waste of effort, particularly where translational research is concerned. The review analyzes the historical roots of this phenomenon and proposes that building of "parallel universes" should be urgently made visible to a critical reader by obligatory use of unambiguous and persistent tags in publications and databases, such as hypertext links, pointing to a vendor's strain description web page, or to a digital object identifier (d.o.i.) of the original publication, so that any research done exclusively in C57BL/6J, could be easily identified. REVIEWERS This article was reviewed by Dr. Neil Smalheiser and Dr. Miguel Andrade-Navarro.
Collapse
Affiliation(s)
- Alexander Kraev
- Charles H, Best Institute, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada.
| |
Collapse
|
11
|
Vaillant F, Lauzier B, Poirier I, Gélinas R, Rivard ME, Robillard Frayne I, Thorin E, Des Rosiers C. Mouse strain differences in metabolic fluxes and function of ex vivo working hearts. Am J Physiol Heart Circ Physiol 2013; 306:H78-87. [PMID: 24186097 DOI: 10.1152/ajpheart.00465.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mice, genetic background is known to influence various parameters, including cardiac function. Its impact on cardiac energy substrate metabolism-a factor known to be closely related to function and contributes to disease development-is, however, unclear. This was examined in this study. In commonly used control mouse substrains SJL/JCrNTac, 129S6/SvEvTac, C57Bl/6J, and C57Bl/6NCrl, we assessed the functional and metabolic phenotypes of 3-mo-old working mouse hearts perfused ex vivo with physiological concentrations of (13)C-labeled carbohydrates (CHO) and a fatty acid (FA). Marked variations in various functional and metabolic flux parameters were observed among all mouse substrains, although the pattern observed differed for these parameters. For example, among all strains, C57Bl/6NCrl hearts had a greater cardiac output (+1.7-fold vs. SJL/JCrNTac and C57Bl/6J; P < 0.05), whereas at the metabolic level, 129S6/SvEvTac hearts stood out by displaying (vs. all 3 strains) a striking shift from exogenous FA (~-3.5-fold) to CHO oxidation as well as increased glycolysis (+1.7-fold) and FA incorporation into triglycerides (+2-fold). Correlation analyses revealed, however, specific linkages between 1) glycolysis, FA oxidation, and pyruvate metabolism and 2) cardiac work, oxygen consumption with heart rate, respectively. This implies that any genetically determined factors affecting a given metabolic flux parameter may impact on the associated functional parameters. Our results emphasize the importance of selecting the appropriate control strain for cardiac metabolic studies using transgenic mice, a factor that has often been neglected. Understanding the molecular mechanisms underlying the diversity of strain-specific cardiac metabolic and functional profiles, particularly the 129S6/SvEvTac, may ultimately disclose new specific metabolic targets for interventions in heart disease.
Collapse
Affiliation(s)
- Fanny Vaillant
- Departments of Nutrition, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; and
| | | | | | | | | | | | | | | |
Collapse
|