1
|
Junge M, Liaukouskaya N, Schwarz N, Pinto-Espinoza C, Schaffrath AZ, Rissiek B, Krebs CF, Rattay G, Mittrücker HW, Tomas NM, Nicke A, Haag F, Huber TB, Meyer-Schwesinger C, Koch-Nolte F, Wanner N. ATP-Gated P2X7-Ion Channel on Kidney-Resident Natural Killer T Cells and Memory T Cells in Intrarenal Inflammation. J Am Soc Nephrol 2025; 36:602-613. [PMID: 39675762 PMCID: PMC11975244 DOI: 10.1681/asn.0000000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Key Points Parenchymal T cells in the kidney expressed much higher levels of P2X7 than vascular T cells. P2X7-blocking nanobodies uncover a large fraction of kidney-resident natural killer T and tissue-resident memory T cells. These cells were lost during cell preparation because of activation of P2X7 by NAD+ released from damaged cells, unless blocked by nanobodies. Background The P2X7 ion channel, a key sensor of sterile inflammation, has been implicated as a therapeutic target in GN, and P2X7-antagonistic nanobodies can attenuate experimental GN. However, little is known about the expression of P2X7 on renal immune cells. Methods We used conventional immunofluorescence of kidney sections and intraperitoneal injection of nanobodies in mice followed by flow cytometry analysis of parenchymal T cells and RNA sequencing to elucidate the expression and function of P2X7 on parenchymal and vascular immune cells in the mouse kidney. Results Our study showed that parenchymal T cells, including a large subset of natural killer T cells and CD69+ tissue-resident memory T cells, display much higher cell surface levels of P2X7 than vascular T cells. After a single intraperitoneal injection of P2X7-blocking nanobodies, P2X7 on parenchymal T cells was fully occupied by the injected nanobodies within 30 minutes. This resulted in an effective protection of these cells from nicotinamide adenine dinucleotide–induced cell death during cell preparation. Conversely, systemic injection of nicotinamide adenine dinucleotide that mimics sterile inflammation results in the selective depletion of P2X7hiCD69hi T cells from the kidney parenchyma. Conclusions Our study uncovered a novel purinergic regulatory mechanism affecting kidney-resident T-cell populations.
Collapse
Affiliation(s)
- Marten Junge
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nastassia Liaukouskaya
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Schwarz
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carolina Pinto-Espinoza
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessa Z. Schaffrath
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F. Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Rattay
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M. Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Jeong K, Je J, Dusabimana T, Karekezi J, Nugroho TA, Ndahigwa EN, Yun SP, Kim HJ, Kim H, Park SW. Activation of Purinergic P2Y2 Receptor Protects the Kidney Against Renal Ischemia and Reperfusion Injury in Mice. Int J Mol Sci 2024; 25:12563. [PMID: 39684275 DOI: 10.3390/ijms252312563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Extracellular ATP plays an important role in renal physiology as well as the pathogenesis of acute kidney injury induced by renal ischemia and reperfusion (IR). Expression of the purinergic P2Y2 receptor has been shown on inflammatory and structural cells of the kidney, and P2Y2R is preferably activated by ATP (or UTP). Here, we investigated the molecular mechanism of P2Y2R during IR injury by using P2Y2R knockout (KO) mice and a selective P2Y2R agonist, MRS2768. After renal IR, P2Y2R KO mice showed greater increases in plasma creatinine, tubular damage and neutrophil infiltration, and significant induction of proinflammatory cytokines and apoptotic markers than wild-type (WT) mice. In contrast, treatment with MRS2768 reduced plasma creatinine levels, tubular damage and inflammation, and renal apoptosis in mice subjected to renal IR. In cultured human proximal tubular HK-2 cells, MRS2768 upregulated P2Y2R mRNA levels and decreased TNF-α/cycloheximide-induced apoptosis and inflammation. Importantly, P2Y2R activation by MRS2768 increased the phosphorylation of protein kinase C (PKC), Src, and phosphatidylinositol 3-kinase (PI3K)/Akt. In addition, the inhibition of PI3K/Akt abolished the protective effects of MRS2768 against TNF-α/cycloheximide-induced apoptosis and inflammation in HK-2 cells. In conclusion, activation of P2Y2R protects against tubular apoptosis and inflammation during renal IR via the PKC/Src/Akt pathway, suggesting P2Y2R is a promising therapeutic target for acute kidney injury.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jacques Karekezi
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Tatang Aldi Nugroho
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Edvard Ntambara Ndahigwa
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| |
Collapse
|
3
|
Arkhipov SN, Potter DL, Geurts AM, Pavlov TS. Knockout of P2rx7 purinergic receptor attenuates cyst growth in a rat model of ARPKD. Am J Physiol Renal Physiol 2019; 317:F1649-F1655. [PMID: 31630543 DOI: 10.1152/ajprenal.00395.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The severity of polycystic kidney diseases (PKD) depends on the counterbalancing of genetic predisposition and environmental factors exerting permissive or protective influence on cyst development. One poorly characterized phenomenon in the cystic epithelium is abnormal purinergic signaling. Earlier experimental studies revealed the high importance of the ionotropic P2X receptors (particularly, P2X7) in the pathophysiology of the cyst wall. To study mechanisms of P2X7 involvement in cyst growth and aspects of targeting these receptors in PKD treatment we performed a CRISPR/SpCas9-mediated global knockout of the P2rx7 gene in PCK rats, a model of autosomal recessive PKD (ARPKD). A single base insertion in exon 2 of the P2rx7 gene in the renal tissues of homozygous mutant animals leads to lack of P2X7 protein that did not affect their viability or renal excretory function. However, PCK.P2rx7 rats demonstrated slower cyst growth (but not formation of new cysts) compared with heterozygous and PCK.P2rx7+ littermates. P2X7 receptors are known to activate pannexin-1, a plasma channel capable of releasing ATP, and we found here that pannexin-1 expression in the cystic epithelium is significantly higher than in nondilated tubules. P2X7 deficiency reduces renal pannexin-1 protein expression and daily urinary ATP excretion. Patch-clamp analysis revealed that lack of P2X7 increases epithelial sodium channel activity in renal tissues and restores impaired channel activity in cysts. Interpretation of our current data in the context of earlier studies strongly suggests that P2X7 contributes to cyst growth by increasing pannexin-1-dependent pathogenic ATP release into the lumen and reduction of sodium reabsorption across the cyst walls.
Collapse
Affiliation(s)
- Sergey N Arkhipov
- Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, Michigan
| | - D'Anna L Potter
- Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, Michigan
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Tengis S Pavlov
- Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
4
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
5
|
Giuliani AL, Sarti AC, Di Virgilio F. Extracellular nucleotides and nucleosides as signalling molecules. Immunol Lett 2018; 205:16-24. [PMID: 30439478 DOI: 10.1016/j.imlet.2018.11.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/09/2018] [Indexed: 12/26/2022]
Abstract
Extracellular nucleotides, mainly ATP, but also ADP, UTP, UDP and UDP-sugars, adenosine, and adenine base participate in the "purinergic signalling" pathway, an ubiquitous system of cell-to-cell communication. Fundamental pathophysiological processes such as tissue homeostasis, wound healing, neurodegeneration, immunity, inflammation and cancer are modulated by purinergic signalling. Nucleotides can be released from cells via unspecific or specific mechanisms. A non-regulated nucleotide release can occur from damaged or dying cells, whereas exocytotic granules, plasma membrane-derived microvesicles, membrane channels (connexins, pannexins, calcium homeostasis modulator (CALHM) channels and P2X7 receptor) or specific ATP binding cassette (ABC) transporters are involved in the controlled release. Four families of specific receptors, i.e. nucleotide P2X and P2Y receptors, adenosine P1 receptors, and the adenine-selective P0 receptor, and several ecto- nucleotidases are essential components of the "purinergic signalling" pathway. Thanks to the activity of ecto-nucleotidases, ATP (and possibly other nucleotides) are degraded into additional messenger molecules with specific action. The final biological effects depend on the type and amount of released nucleotides, their modification by ecto-nucleotidases, and their possible cellular re-uptake. Overall, these processes confer a remarkable level of selectivity and plasticity to purinergic signalling that makes this network one of the most relevant extracellular messenger systems in higher organisms.
Collapse
Affiliation(s)
- Anna Lisa Giuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferarra, Italy
| | - Alba Clara Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferarra, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferarra, Italy.
| |
Collapse
|
6
|
Characterization of purinergic receptor expression in ARPKD cystic epithelia. Purinergic Signal 2018; 14:485-497. [PMID: 30417216 DOI: 10.1007/s11302-018-9632-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Polycystic kidney diseases (PKDs) are a group of inherited nephropathies marked by formation of fluid-filled cysts along the nephron. Growing evidence suggests that in the kidney formation of cysts and alteration of cystic electrolyte transport are associated with purinergic signaling. PCK/CrljCrl-Pkhd1pck/CRL (PCK) rat, an established model of autosomal recessive polycystic kidney disease (ARPKD), was used here to test this hypothesis. Cystic fluid of PCK rats and their cortical tissues exhibited significantly higher levels of ATP compared to Sprague Dawley rat kidney cortical interstitium as assessed by highly sensitive ATP enzymatic biosensors. Confocal calcium imaging of the freshly isolated cystic monolayers revealed a stronger response to ATP in a higher range of concentrations (above 100 μM). The removal of extracellular calcium results in the profound reduction of the ATP evoked transient, which suggests calcium entry into the cyst-lining cells is occurring via the extracellular (ionotropic) P2X channels. Further use of pharmacological agents (α,β-methylene-ATP, 5-BDBD, NF449, isoPPADS, AZ10606120) and immunofluorescent labeling of isolated cystic epithelia allowed us to narrow down potential candidate receptors. In conclusion, our ex vivo study provides direct evidence that the profile of P2 receptors is shifted in ARPKD cystic epithelia in an age-related manner towards prevalence of P2X4 and/or P2X7 receptors, which opens new avenues for the treatment of this disease.
Collapse
|
7
|
Burnstock G, Loesch A. Sympathetic innervation of the kidney in health and disease: Emphasis on the role of purinergic cotransmission. Auton Neurosci 2017; 204:4-16. [DOI: 10.1016/j.autneu.2016.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 11/29/2022]
|
8
|
Gallagher KM, O'neill S, Harrison EM, Ross JA, Wigmore SJ, Hughes J. Recent early clinical drug development for acute kidney injury. Expert Opin Investig Drugs 2016; 26:141-154. [PMID: 27997816 DOI: 10.1080/13543784.2017.1274730] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Despite significant need and historical trials, there are no effective drugs in use for the prevention or treatment of acute kidney injury (AKI). There are several promising agents in early clinical development for AKI and two trials have recently been terminated. There are also exciting new findings in pre-clinical AKI research. There is a need to take stock of current progress in the field to guide future drug development for AKI. Areas covered: The main clinical trial registries, PubMed and pharmaceutical company website searches were used to extract the most recent clinical trials for sterile, transplant and sepsis-associated AKI. We summarise the development of the agents recently in clinical trial, update on their trial progress, consider reasons for failed efficacy of two agents, and discuss new paradigms in pre-clinical targets for AKI. Agents covered include- QPI-1002, THR-184, BB-3, heme arginate, human recombinant alkaline phosphatase (recAP), ciclosporin A, AB103, levosimendan, AC607 and ABT-719. Expert opinion: Due to the heterogenous nature of AKI, agents with the widest pleiotropic effects on multiple pathophysiological pathways are likely to be most effective. Linking preclinical models to clinical indication and improving AKI definition and diagnosis are key areas for improvement in future clinical trials.
Collapse
Affiliation(s)
- Kevin M Gallagher
- a MRC Centre for Inflammation Research, Royal Infirmary of Edinburgh , University of Edinburgh , Edinburgh , UK
| | - Stephen O'neill
- a MRC Centre for Inflammation Research, Royal Infirmary of Edinburgh , University of Edinburgh , Edinburgh , UK
| | - Ewen M Harrison
- a MRC Centre for Inflammation Research, Royal Infirmary of Edinburgh , University of Edinburgh , Edinburgh , UK
| | - James A Ross
- b MRC Centre for Regenerative Medicine, Royal Infirmary of Edinburgh , University of Edinburgh , Edinburgh , UK
| | - Stephen J Wigmore
- a MRC Centre for Inflammation Research, Royal Infirmary of Edinburgh , University of Edinburgh , Edinburgh , UK
| | - Jeremy Hughes
- a MRC Centre for Inflammation Research, Royal Infirmary of Edinburgh , University of Edinburgh , Edinburgh , UK
| |
Collapse
|
9
|
Zhou Y, Greka A. Calcium-permeable ion channels in the kidney. Am J Physiol Renal Physiol 2016; 310:F1157-67. [PMID: 27029425 DOI: 10.1152/ajprenal.00117.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023] Open
Abstract
Calcium ions (Ca(2+)) are crucial for a variety of cellular functions. The extracellular and intracellular Ca(2+) concentrations are thus tightly regulated to maintain Ca(2+) homeostasis. The kidney, one of the major organs of the excretory system, regulates Ca(2+) homeostasis by filtration and reabsorption. Approximately 60% of the Ca(2+) in plasma is filtered, and 99% of that is reabsorbed by the kidney tubules. Ca(2+) is also a critical signaling molecule in kidney development, in all kidney cellular functions, and in the emergence of kidney diseases. Recently, studies using genetic and molecular biological approaches have identified several Ca(2+)-permeable ion channel families as important regulators of Ca(2+) homeostasis in kidney. These ion channel families include transient receptor potential channels (TRP), voltage-gated calcium channels, and others. In this review, we provide a brief and systematic summary of the expression, function, and pathological contribution for each of these Ca(2+)-permeable ion channels. Moreover, we discuss their potential as future therapeutic targets.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of Medicine and Glom-NExT Center for Glomerular Kidney Disease and Novel Experimental Therapeutics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Anna Greka
- Department of Medicine and Glom-NExT Center for Glomerular Kidney Disease and Novel Experimental Therapeutics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
10
|
Zimmermann H. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal 2015; 12:25-57. [PMID: 26545760 DOI: 10.1007/s11302-015-9483-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe University, Max-von-Laue-Str. 13, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Lajdova I, Spustova V, Oksa A, Kaderjakova Z, Chorvat D, Morvova M, Sikurova L, Marcek Chorvatova A. The Impact of Vitamin D3 Supplementation on Mechanisms of Cell Calcium Signaling in Chronic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:807673. [PMID: 26064953 PMCID: PMC4434177 DOI: 10.1155/2015/807673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/19/2014] [Indexed: 01/24/2023]
Abstract
Intracellular calcium concentration in peripheral blood mononuclear cells (PBMCs) of patients with chronic kidney disease (CKD) is significantly increased, and the regulatory mechanisms maintaining cellular calcium homeostasis are impaired. The purpose of this study was to examine the effect of vitamin D3 on predominant regulatory mechanisms of cell calcium homeostasis. The study involved 16 CKD stages 2-3 patients with vitamin D deficiency treated with cholecalciferol 7000-14000 IU/week for 6 months. The regulatory mechanisms of calcium signaling were studied in PBMCs and red blood cells. After vitamin D3 supplementation, serum concentration of 25(OH)D3 increased (P < 0.001) and [Ca(2+)]i decreased (P < 0.001). The differences in [Ca(2+)]i were inversely related to differences in 25(OH)D3 concentration (P < 0.01). Vitamin D3 supplementation decreased the calcium entry through calcium release activated calcium (CRAC) channels and purinergic P2X7 channels. The function of P2X7 receptors was changed in comparison with their baseline status, and the expression of these receptors was reduced. There was no effect of vitamin D3 on P2X7 pores and activity of plasma membrane Ca(2+)-ATPases. Vitamin D3 supplementation had a beneficial effect on [Ca(2+)]i decreasing calcium entry via CRAC and P2X7 channels and reducing P2X7 receptors expression.
Collapse
Affiliation(s)
- Ingrid Lajdova
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Viera Spustova
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Adrian Oksa
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Zuzana Kaderjakova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 833 03 Bratislava, Slovakia
| | - Dusan Chorvat
- Department of Biophotonics, International Laser Centre, 833 03 Bratislava, Slovakia
| | - Marcela Morvova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 833 03 Bratislava, Slovakia
| | - Libusa Sikurova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 833 03 Bratislava, Slovakia
| | | |
Collapse
|
12
|
Franco M, Bautista-Pérez R, Pérez-Méndez O. Purinergic receptors in tubulointerstitial inflammatory cells: a pathophysiological mechanism of salt-sensitive hypertension. Acta Physiol (Oxf) 2015; 214:75-87. [PMID: 25683649 DOI: 10.1111/apha.12471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/28/2014] [Accepted: 02/09/2015] [Indexed: 12/24/2022]
Abstract
Recent studies have suggested that both the tubulointerstitial inflammatory cells and the activation of purinergic receptors integrate common mechanisms that result in salt-sensitive hypertension. The basis of this hypothesis is that renal endothelial cells release ATP in response to shear stress in the setting of hypertension. It has been demonstrated that the over-expression and activation of the P2X7, P2Y12 and P2X1 receptors favour the elevation of blood pressure induced by high-salt intake. In addition, the release of interleukins and inflammatory mediators in the tubulointerstitial area appears to be related to the activation of these receptors. Renal vasoconstriction and tubulointerstitial injury develop as a result, which increase sodium reabsorption by epithelial cells. Consistent with these effects, the reduction of tubulointerstitial inflammation caused by immunosuppressants, such as mycophenolate mofetil, prevents the development of salt-sensitive hypertension. Also, P2X7-receptor knockout mice develop minor renal injury when hypertension is induced via the administration of deoxycorticosterone acetate and a high-salt diet. In the setting of angiotensin II-induced hypertension, which is an early stage in the development of salt-sensitive hypertension, an acute blockade with the specific, non-selective P2 antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid prevented the renal vasoconstriction induced by angiotensin II. In addition, it normalized glomerular haemodynamics and restored sodium excretion to control values. These findings suggest that chronic administration of P2 purinergic antagonists may prevent the deleterious effects of purinergic receptors during the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- M. Franco
- Renal Physiopathology Laboratory; Department of Nephrology; Instituto Nacional de Cardiología Ignacio Chávez; México City Mexico
| | - R. Bautista-Pérez
- Renal Physiopathology Laboratory; Department of Nephrology; Instituto Nacional de Cardiología Ignacio Chávez; México City Mexico
- Molecular Biology Department; Instituto Nacional de Cardiología Ignacio Chávez; México City Mexico
| | - O. Pérez-Méndez
- Molecular Biology Department; Instituto Nacional de Cardiología Ignacio Chávez; México City Mexico
| |
Collapse
|
13
|
Van Beusecum J, Inscho EW. Regulation of renal function and blood pressure control by P2 purinoceptors in the kidney. Curr Opin Pharmacol 2015; 21:82-8. [PMID: 25616035 PMCID: PMC5515225 DOI: 10.1016/j.coph.2015.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/24/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022]
Abstract
Kidneys are important regulators of extracellular fluid volume (ECFV) homeostasis. ECFV is a key regulatory component of long-term blood pressure control influenced by controlling tubular sodium transport. In recent decades, renal P2 purinoceptors (P2 receptors) have come to the forefront as a mechanism for regulating ECFV. P2 receptors are broadly distributed in renal tubular and vascular elements where they confer segmental control of renal vascular resistance, autoregulation, and tubular reabsorption. Activation or impairment of renal P2 purinoceptors is implicated in the regulating blood pressure or causing renal pathologies including hypertension. In this brief review, we discuss the role of renal vascular and tubular P2 purinoceptors in the regulation of renal hemodynamics, maintenance of ECFV, regulation of sodium reabsorption and the control of blood pressure.
Collapse
Affiliation(s)
- Justin Van Beusecum
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Edward W Inscho
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
14
|
Seeland S, Kettiger H, Murphy M, Treiber A, Giller J, Kiss A, Sube R, Krähenbühl S, Hafner M, Huwyler J. ATP-induced cellular stress and mitochondrial toxicity in cells expressing purinergic P2X7 receptor. Pharmacol Res Perspect 2015; 3:e00123. [PMID: 26038699 PMCID: PMC4448979 DOI: 10.1002/prp2.123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/10/2014] [Accepted: 12/19/2014] [Indexed: 12/15/2022] Open
Abstract
Under pathological conditions, the purinergic P2X7 receptor is activated by elevated concentrations of extracellular ATP. Thereby, the receptor forms a slowly dilating pore, allowing cations and, upon prolonged stimulation, large molecules to enter the cell. This process has a strong impact on cell signaling, metabolism, and viability. This study aimed to establish a link between gradual P2X7 activation and pharmacological endpoints including oxidative stress, hydrogen peroxide generation, and cytotoxicity. Mechanisms of cellular stress and cytotoxicity were studied in P2X7-transfected HEK293 cells. We performed real-time monitoring of metabolic and respiratory activity of cells expressing the P2X7-receptor protein using a cytosensor system. Agonistic effects were monitored using exogenously applied ATP or the stable analogue BzATP. Oxidative stress induced by ATP or BzATP in target cells was monitored by hydrogen peroxide release in human mononuclear blood cells. P2X7-receptor activation was studied by patch-clamp experiments using a primary mouse microglia cell line. Stimulation of the P2X7 receptor leads to ion influx, metabolic activation of target cells, and ultimately cytotoxicity. Conversion of the P2X7 receptor from a small cation channel to a large pore occurring under prolonged stimulation can be monitored in real time covering a time frame of milliseconds to hours. Selectivity of the effects can be demonstrated using the selective P2X7-receptor antagonist AZD9056. Our findings established a direct link between P2X7-receptor activation by extracellular ATP or BzATP and cellular events culminating in cytotoxicity. Mechanisms of toxicity include metabolic and oxidative stress, increase in intracellular calcium concentration and disturbance of mitochondrial membrane potential. Mitochondrial toxicity is suggested to be a key event leading to cell death.
Collapse
Affiliation(s)
- Swen Seeland
- Actelion Pharmaceuticals Ltd Gewerbestrasse 16, 4123, Allschwil, Switzerland ; Institute for Molecular and Cell Biology, University of Applied Science Paul-Wittsack-Strasse 10, 68163, Mannheim, Germany
| | - Hélène Kettiger
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Mark Murphy
- Actelion Pharmaceuticals Ltd Gewerbestrasse 16, 4123, Allschwil, Switzerland
| | - Alexander Treiber
- Actelion Pharmaceuticals Ltd Gewerbestrasse 16, 4123, Allschwil, Switzerland
| | - Jasmin Giller
- Actelion Pharmaceuticals Ltd Gewerbestrasse 16, 4123, Allschwil, Switzerland
| | - Andrea Kiss
- Actelion Pharmaceuticals Ltd Gewerbestrasse 16, 4123, Allschwil, Switzerland
| | - Romain Sube
- Actelion Pharmaceuticals Ltd Gewerbestrasse 16, 4123, Allschwil, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology and Toxicology, University Hospital of Basel 4056, Basel, Switzerland
| | - Mathias Hafner
- Institute for Molecular and Cell Biology, University of Applied Science Paul-Wittsack-Strasse 10, 68163, Mannheim, Germany
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
15
|
Abstract
The amiloride-sensitive epithelial Na(+) channel (ENaC) is a key player in the regulation of Na(+) homeostasis. Its functional activity is under continuous control by a variety of signaling molecules, including bioactive peptides of endothelin family. Since ENaC dysfunction is causative for disturbances in total body Na(+) levels associated with the abnormal regulation of blood volume, blood pressure, and lung fluid balance, uncovering the molecular mechanisms of inhibitory modulation or inappropriate activation of ENaC is crucial for the successful treatment of a variety of human diseases including hypertension. The precise regulation of ENaC is particularly important for normal Na(+) and fluid homeostasis in organs where endothelins are known to act: the kidneys, lung, and colon. Inhibition of ENaC by endothelin-1 (ET-1) has been established in renal cells, and several molecular mechanisms of inhibition of ENaC by ET-1 are proposed and will be reviewed in this chapter.
Collapse
Affiliation(s)
- Andrey Sorokin
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | |
Collapse
|
16
|
Yan Y, Bai J, Zhou X, Tang J, Jiang C, Tolbert E, Bayliss G, Gong R, Zhao TC, Zhuang S. P2X7 receptor inhibition protects against ischemic acute kidney injury in mice. Am J Physiol Cell Physiol 2015; 308:C463-72. [PMID: 25588875 DOI: 10.1152/ajpcell.00245.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activation of the purinergic P2X7 receptor (P2X7R) has been associated with the development of experimental nephritis and diabetic and hypertensive nephropathy. However, its role in acute kidney injury (AKI) remains unknown. In this study, we examined the effects of P2X7R inhibition in a murine model of ischemia-reperfusion (I/R)-induced AKI using A438079, a selective inhibitor of P2X7R. At 24 h after I/R, mice developed renal dysfunction and renal tubular damage, which was accompanied by elevated expression of P2X7R. Early administration of A438079 immediately or 6 h after the onset of reperfusion protected against renal dysfunction and attenuated kidney damage whereas delayed administration of A438079 at 24 h after restoration of perfusion had no protective effects. The protective actions of A438079 were associated with inhibition of renal tubule injury and cell death and suppression of renal expression of monocyte chemotactic protein-1 and regulated upon expression normal T cell expressed and secreted (RANTES). Moreover, I/R injury led to an increase in phosphorylation (activation) of extracellular signal-regulated kinases 1/2 in the kidney; treatment with A438079 diminished this response. Collectively, these results indicate that early P2X7R inhibition is effective against renal tubule injury and proinflammatory response after I/R injury and suggest that targeting P2X7R may be a promising therapeutic strategy for treatment of AKI.
Collapse
Affiliation(s)
- Yanli Yan
- Department of Emergency Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Jianwen Bai
- Department of Emergency Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoxu Zhou
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Jinhua Tang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Chunming Jiang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Evelyn Tolbert
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Rujun Gong
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| |
Collapse
|
17
|
Gordienko D, Povstyan O, Sukhanova K, Raphaël M, Harhun M, Dyskina Y, Lehen'kyi V, Jama A, Lu ZL, Skryma R, Prevarskaya N. Impaired P2X signalling pathways in renal microvascular myocytes in genetic hypertension. Cardiovasc Res 2014; 105:131-42. [PMID: 25514930 DOI: 10.1093/cvr/cvu249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIMS P2X receptors (P2XRs) mediate sympathetic control and autoregulation of renal circulation triggering preglomerular vasoconstriction, which protects glomeruli from elevated pressures. Although previous studies established a casual link between glomerular susceptibility to hypertensive injury and decreased preglomerular vascular reactivity to P2XR activation, the mechanisms of attenuation of the P2XR signalling in hypertension remained unknown. We aimed to analyse molecular mechanisms of the impairment of P2XR signalling in renal vascular smooth muscle cells (RVSMCs) in genetic hypertension. METHODS AND RESULTS We compared the expression of pertinent genes and P2XR-linked Ca(2+) entry and Ca(2+) release mechanisms in RVSMCs of spontaneously hypertensive rats (SHRs) and their normotensive controls, Wistar Kyoto (WKY) rats. We found that, in SHR RVSMCs, P2XR-linked Ca(2+) entry and Ca(2+) release from the sarcoplasmic reticulum (SR) are both significantly reduced. The former is due to down-regulation of the P2X1 subunit. The latter is caused by a decrease of the SR Ca(2+) load. The SR Ca(2+) load reduction is caused by attenuated Ca(2+) uptake via down-regulated sarco-/endoplasmic reticulum Ca(2+)-ATPase 2b and elevated Ca(2+) leak from the SR via ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors. Spontaneous activity of these Ca(2+)-release channels is augmented due to up-regulation of RyR type 2 and elevated IP3 production by up-regulated phospholipase C-β1. CONCLUSIONS Our study unravels the cellular and molecular mechanisms of attenuation of P2XR-mediated preglomerular vasoconstriction that elevates glomerular susceptibility to harmful hypertensive pressures. This provides an important impetus towards understanding of the pathology of hypertensive renal injury.
Collapse
Affiliation(s)
- Dmitri Gordienko
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Oleksandr Povstyan
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine Division of Basic Medical Sciences, St. George's, University of London, London, UK
| | - Khrystyna Sukhanova
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Maylis Raphaël
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France
| | - Maksym Harhun
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine Division of Basic Medical Sciences, St. George's, University of London, London, UK
| | - Yulia Dyskina
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - V'yacheslav Lehen'kyi
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France
| | - Abdirahman Jama
- MRC, Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Zhi-Liang Lu
- MRC, Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Roman Skryma
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France
| | - Natalia Prevarskaya
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France
| |
Collapse
|
18
|
Solini A, Usuelli V, Fiorina P. The dark side of extracellular ATP in kidney diseases. J Am Soc Nephrol 2014; 26:1007-16. [PMID: 25452669 DOI: 10.1681/asn.2014070721] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Intracellular ATP is the most vital source of cellular energy for biologic systems, whereas extracellular ATP is a multifaceted mediator of several cell functions via its interaction, in an autocrine or paracrine manner, with P2 purinergic receptors expressed on the cell surface. These ionotropic and metabotropic P2 purinergic receptors modulate a variety of physiologic events upon the maintenance of a highly sensitive "set point," the derangement of which may lead to the development of key pathogenic mechanisms during acute and chronic diseases. Growing evidence suggests that extracellular ATP signaling via P2 purinergic receptors may be involved in different renal pathologic conditions. For these reasons, investigators and pharmaceutical companies are actively exploring novel strategies to antagonize or block these receptors with the goal of reducing extracellular ATP production or accelerating extracellular ATP clearance. Targeting extracellular ATP signaling, particularly through the P2X7 receptor, has considerable translational potential, given that novel P2X7-receptor inhibitors are already available for clinical use (e.g., CE224,535, AZD9056, and GSK1482160). This review summarizes the current evidence regarding the involvement of extracellular ATP and its P2 purinergic receptor-mediated signaling in physiologic and pathologic processes in the kidney; potential therapeutic options targeting extracellular ATP purinergic receptors are analyzed as well.
Collapse
Affiliation(s)
- Anna Solini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vera Usuelli
- Division of Transplant Medicine, San Raffaele Hospital, Milan, Italy; and
| | - Paolo Fiorina
- Division of Transplant Medicine, San Raffaele Hospital, Milan, Italy; and Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Cowley AW, Abe M, Mori T, O'Connor PM, Ohsaki Y, Zheleznova NN. Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension. Am J Physiol Renal Physiol 2014; 308:F179-97. [PMID: 25354941 DOI: 10.1152/ajprenal.00455.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The physiological evidence linking the production of superoxide, hydrogen peroxide, and nitric oxide in the renal medullary thick ascending limb of Henle (mTAL) to regulation of medullary blood flow, sodium homeostasis, and long-term control of blood pressure is summarized in this review. Data obtained largely from rats indicate that experimentally induced elevations of either superoxide or hydrogen peroxide in the renal medulla result in reduction of medullary blood flow, enhanced Na(+) reabsorption, and hypertension. A shift in the redox balance between nitric oxide and reactive oxygen species (ROS) is found to occur naturally in the Dahl salt-sensitive (SS) rat model, where selective reduction of ROS production in the renal medulla reduces salt-induced hypertension. Excess medullary production of ROS in SS rats emanates from the medullary thick ascending limbs of Henle [from both the mitochondria and membrane NAD(P)H oxidases] in response to increased delivery and reabsorption of excess sodium and water. There is evidence that ROS and perhaps other mediators such as ATP diffuse from the mTAL to surrounding vasa recta capillaries, resulting in medullary ischemia, which thereby contributes to hypertension.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michiaki Abe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Takefumi Mori
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul M O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yusuke Ohsaki
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|