1
|
Foddai M, Carter CG, Wood AT, Anderson KC, Semmens JM. Response of Atlantic salmon to long-term sustained aerobic training at suboptimum elevated temperature: Cardiac anatomy, aerobic performance, and growth implications. Comp Biochem Physiol A Mol Integr Physiol 2025; 306:111874. [PMID: 40324587 DOI: 10.1016/j.cbpa.2025.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Sustained aerobic training is suggested to enhance cardiac performance and growth in farmed salmonids, but its effects under suboptimum elevated temperatures remain unclear. This study examined whether continuous training at different temperatures could improve growth and whether it influenced cardiac performance at a suboptimum elevated temperature in a context relevant to offshore aquaculture. Atlantic salmon were reared for 90 days at 15 °C (control temperature) and 20 °C (suboptimum elevated temperature), with either continuous aerobic swimming (trained: 0.45 m.s-1) or standard conditions (untrained: 0.18 m.s-1). Growth and feed intake were assessed at both temperatures, while cardiac and metabolic parameters were measured only at 20 °C. At 15 °C, trained fish exhibited increased feed intake, but this did not translate into improved growth. At 20 °C, neither feed intake nor growth improved with training. Swim-tunnel respirometry at 20 °C revealed no significant differences in aerobic performance between trained and untrained fish, although trained fish exhibited lower interindividual variability in metabolic and swimming parameters. While training increased relative ventricular mass (RVM), indicating potential cardiac remodelling, this did not result in improved metabolic performance. These findings underscore the complexity of physiological responses to exercise and temperature in salmon aquaculture. While continuous aerobic training induced minor cardiac adaptations, its impact on growth and performance was limited, particularly at suboptimum elevated temperatures. This research provides valuable insights into how Atlantic salmon may respond to offshore farming environments, with specific relevance to Tasmania's aquaculture industry.
Collapse
Affiliation(s)
- Marco Foddai
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, 15-21 Nubeena Crescent, Taroona, Tasmania 7053, Australia.
| | - Chris G Carter
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, 15-21 Nubeena Crescent, Taroona, Tasmania 7053, Australia
| | - Andrew T Wood
- CSIRO Agriculture and Food, 3-4 Castray Esplanade, Battery Point, Tasmania 7004, Australia
| | - Kelli C Anderson
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, 15-21 Nubeena Crescent, Taroona, Tasmania 7053, Australia
| | - Jayson M Semmens
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, 15-21 Nubeena Crescent, Taroona, Tasmania 7053, Australia
| |
Collapse
|
2
|
Andrew S, Currie S, Morash AJ. The effects of warm thermal variability on metabolism and swimming performance in wild Atlantic salmon (Salmo salar). JOURNAL OF FISH BIOLOGY 2025; 106:893-907. [PMID: 39581221 PMCID: PMC11949746 DOI: 10.1111/jfb.15996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
Warmer and more variable temperatures have been implicated in the recent decline of Atlantic salmon (Salmo salar) in Eastern Canada. To date, we know little on how ecologically relevant thermal fluctuations affect swimming performance in fishes. The goal of this study is to determine the effects of warm versus cool diel thermal variability on swimming efficiency and the speed limit for sustainable aerobically fueled swimming. We acclimated wild S. salar juveniles to a cool and a warm ecologically realistic diel thermal profile (16-21 and 19-24°C), and then tested individuals over a common acute change in temperature (16-24°C). We measured metabolic rate and swimming kinematics at a range of swimming speeds, at five temperatures (16, 18, 20, 22, and 24°C) and calculated swimming efficiency. Our temperature acclimation did not appear to significantly affect energetic and kinematic swimming efficiency, but acute exposure to high temperature did increase overall metabolic rate. It appears that wild S. salar can swim efficiently and sustainably during both acute cool and warm exposures, and after acclimation to diel thermal variation of 16-21 or 19-24°C.
Collapse
Affiliation(s)
- Sean Andrew
- Department of BiologyMount Allison UniversityNew BrunswickCanada
| | - Suzanne Currie
- Department of BiologyUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | | |
Collapse
|
3
|
Espírito-Santo C, Guardiola FA, Ozório ROA, Magnoni LJ. Short-term swimming up-regulates pro-inflammatory mediators and cytokines in gilthead seabream (Sparus aurata). Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111487. [PMID: 37437802 DOI: 10.1016/j.cbpa.2023.111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Aerobic swimming exercise in fish has been shown to improve robustness of some species. However, the optimal conditions to be applied and the mechanisms underlying remain unknown. We investigated the effects of 6 h of induced swimming on the immune response of gilthead seabream (Sparus aurata), by analysing markers related to immune status in plasma, skin mucus, gills, heart and head-kidney. Forty fish were individually exercised in swim tunnels by applying different water currents: steady low (SL, 0.8 body lengths (BL) s-1), steady high (SH, 2.3 BL s-1), oscillating low (OL, 0.2/0.8 BL s-1) and oscillating high (OH, 0.8/2.3 BL s-1) velocities, including a non-exercised group with minimal water flow (MF, <0.1 BL s-1). Swimming conditions did not trigger a stress response or anaerobic metabolism, suggested by similar levels of cortisol, lactate, and glucose in plasma among groups. Blood haemoglobin and innate immune parameters in plasma and skin mucus also remained unaltered. However, decreased blood haematocrit was observed in fish swimming on the OL condition. Interestingly, gene expression analysis revealed that the OL condition led to the up-regulation of pro-inflammatory mediators (nfκb1 and mapk3) and cytokines (tnfα, il1β and il6) in gills. A similar response occurred in heart, with an up-regulation of nfκb1, tnfα, il6 and cox2 in the OL condition. Gene expression of these cytokines was unaltered in the head-kidney. The inflammatory response in gills and heart of gilthead seabream triggered by the OL condition highlights the importance of establishing suitable rearing conditions to improve welfare of cultured fish.
Collapse
Affiliation(s)
- Carlos Espírito-Santo
- Faculty of Sciences (FCUP), University of Porto, Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal.
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Rodrigo O A Ozório
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Leonardo J Magnoni
- The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| |
Collapse
|
4
|
Moffatt K, Rossi M, Park E, Svendsen JC, Wilson JM. Inhibition of gastric acid secretion with omeprazole affects fish specific dynamic action and growth rate: Implications for the development of phenotypic stomach loss. Front Physiol 2022; 13:966447. [PMID: 36237533 PMCID: PMC9552000 DOI: 10.3389/fphys.2022.966447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
An acid-secreting stomach provides many selective advantages to fish and other vertebrates; however, phenotypic stomach loss has occurred independently multiple times and is linked to loss of expression of both the gastric proton pump and the protease pepsin. Reasons underpinning stomach loss remain uncertain. Understanding the importance of gastric acid-secretion to the metabolic costs of digestion and growth will provide information about the metabolic expense of acid-production and performance. In this study, omeprazole, a well characterized gastric proton pump inhibitor, was used to simulate the agastric phenotype by significantly inhibiting gastric acidification in Nile tilapia. The effects on post-prandial metabolic rate and growth were assessed using intermittent flow respirometry and growth trials, respectively. Omeprazole reduced the duration (34.4%) and magnitude (34.5%) of the specific dynamic action and specific growth rate (21.3%) suggesting a decrease in digestion and assimilation of the meal. Gastric pH was measured in control and omeprazole treated fish to confirm that gastric acid secretion was inhibited for up to 12 h post-treatment (p < 0.05). Gastric evacuation measurements confirm a more rapid emptying of the stomach in omeprazole treated fish. These findings reinforce the importance of stomach acidification in digestion and growth and present a novel way of determining costs of gastric digestion.
Collapse
Affiliation(s)
| | - Mark Rossi
- Wilfrid Laurier University, Waterloo, Canada
| | - Edward Park
- Wilfrid Laurier University, Waterloo, Canada
| | - Jon Christian Svendsen
- Technical University of Denmark, National Institute of Aquatic Resources, Lyngby, Denmark
| | - Jonathan M. Wilson
- Wilfrid Laurier University, Waterloo, Canada
- CIIMAR University of Porto, Matosinhos, Portugal
- *Correspondence: Jonathan M. Wilson,
| |
Collapse
|
5
|
Mapping the Energetic Costs of Free-Swimming Gilthead Sea Bream ( Sparus aurata), a Key Species in European Marine Aquaculture. BIOLOGY 2021; 10:biology10121357. [PMID: 34943271 PMCID: PMC8698635 DOI: 10.3390/biology10121357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Assessment of the energetic costs of different living activities is of primary interest among fish biologists. However, assessing energy expenditure in free-swimming fish is challenging owing to the difficulty of performing such measurements in the field. Therefore, the use of implant fish with sensors that transmit signals that serve as a proxy for energy expenditure is a promising method to counter these limitations, allowing remote monitoring in tagged fish. The aim of this study was to correlate the acceleration recorded by the tag with the activities of the red and white muscles and the oxygen consumption rate (MO2), which could serve as a proxy for energy expenditure, in gilthead sea bream (Sparus aurata), a key species in European marine aquaculture. The acceleration recorded by the tag was successfully correlated with MO2. Additionally, through electromyographic analyses, we determined the activities of the red and white muscles, which are indicative of the contributions of aerobic and anaerobic metabolisms during swimming. Finally, the tag implantation did not affect the swimming performance, metabolic traits, and swimming efficiency of the sea bream. By obtaining insights into both aerobic and anaerobic metabolisms, sensor mapping with physiological indicators may be useful for the purposes of aquaculture health/welfare remote monitoring of gilthead sea bream. Abstract Measurement of metabolic rates provides a valuable proxy for the energetic costs of different living activities. However, such measurements are not easy to perform in free-swimming fish. Therefore, mapping acceleration from accelerometer tags with oxygen consumption rates (MO2) is a promising method to counter these limitations and could represent a tool for remotely estimating MO2 in aquaculture environments. In this study, we monitored the swimming performance and MO2 of 79 gilthead sea bream (Sparus aurata; weight range, 219–971 g) during a critical swimming test. Among all the fish challenged, 27 were implanted with electromyography (EMG) electrodes, and 27 were implanted with accelerometer tags to monitor the activation pattern of the red/white muscles during swimming. Additionally, we correlated the acceleration recorded by the tag with the MO2. Overall, we found no significant differences in swimming performance, metabolic traits, and swimming efficiency between the tagged and untagged fish. The acceleration recorded by the tag was successfully correlated with MO2. Additionally, through EMG analyses, we determined the activities of the red and white muscles, which are indicative of the contributions of aerobic and anaerobic metabolisms until reaching critical swimming speed. By obtaining insights into both aerobic and anaerobic metabolisms, sensor mapping with physiological data may be useful for the purposes of aquaculture health/welfare remote monitoring of the gilthead sea bream, a key species in European marine aquaculture.
Collapse
|
6
|
Laskowski KL, Seebacher F, Habedank M, Meka J, Bierbach D. Two Locomotor Traits Show Different Patterns of Developmental Plasticity Between Closely Related Clonal and Sexual Fish. Front Physiol 2021; 12:740604. [PMID: 34712149 PMCID: PMC8546259 DOI: 10.3389/fphys.2021.740604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
The capacity to compensate for environmental change determines population persistence and biogeography. In ectothermic organisms, performance at different temperatures can be strongly affected by temperatures experienced during early development. Such developmental plasticity is mediated through epigenetic mechanisms that induce phenotypic changes within the animal's lifetime. However, epigenetic modifiers themselves are encoded by DNA so that developmental plasticity could itself be contingent on genetic diversity. In this study, we test the hypothesis that the capacity for developmental plasticity depends on a species' among-individual genetic diversity. To test this, we exploited a unique species complex that contains both the clonal, genetically identical Amazon molly (Poecilia formosa), and the sexual, genetically diverse Atlantic molly (Poecilia mexicana). We predicted that the greater among-individual genetic diversity in the Atlantic molly may increase their capacity for developmental plasticity. We raised both clonal and sexual mollies at either warm (28°C) or cool (22°C) temperatures and then measured locomotor capacity (critical sustained swimming performance) and unforced movement in an open field across a temperature gradient that simulated environmental conditions often experienced by these species in the wild. In the clonal Amazon molly, differences in the developmental environment led to a shift in the thermal performance curve of unforced movement patterns, but much less so in maximal locomotor capacity. In contrast, the sexual Atlantic mollies exhibited the opposite pattern: developmental plasticity was present in maximal locomotor capacity, but not in unforced movement. Thus our data show that developmental plasticity in clones and their sexual, genetically more diverse sister species is trait dependent. This points toward mechanistic differences in how genetic diversity mediates plastic responses exhibited in different traits.
Collapse
Affiliation(s)
- Kate L Laskowski
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Department of Evolution and Ecology, University of California, Davis, Davis, CA, United States
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, The University of Sydney, Sydney, NSW, Australia
| | - Marie Habedank
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Johannes Meka
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, Berlin, Germany.,Cluster of Excellence "Science of Intelligence," Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Yu X, Ozorio ROA, Magnoni L. Sustained swimming exercise training decreases the individual variation in the metabolic phenotype of gilthead sea bream (Sparus aurata). Comp Biochem Physiol A Mol Integr Physiol 2021; 262:111077. [PMID: 34534677 DOI: 10.1016/j.cbpa.2021.111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Cultured fish can be induced to swim, although the suitability and benefits remain to be tested. Sustained swimming exercise (SSE) training and detraining (DET) were applied in juvenile gilthead sea bream (Sparus aurata) and the metabolic rates were investigated. Fish with a total body mass of 80.5 ± 1.5 g and total length 17.2 ± 0.1 cm were maintained untrained (spontaneously swimming activity, UNT), swim-trained (induced sustained swimming activity, SSE) at 1 BL s-1 for 28 days, or detrained (28 days of swimming followed by 10 days of untraining, DET). Standard metabolic rate (SMR), maximum metabolic rate (MMR), and excess post-exercise oxygen consumption (EPOC) were assessed (n = 10). In addition, the effects of SSE training (51 days) on blood and plasma parameters were investigated before and immediately after applying a high-intensity swimming (HIS) protocol. SMR, MMR, and EPOC values were not different between SSE, UNT, or DET fish (143.2, 465.5 mg O2 kg-1 h-1, and 459.1 mg O2 kg-1, respectively). Spite the lack of differences between treatments, the dispersion in the residuals for SMR, MMR, and absolute aerobic scope (AAS) values followed the order UNT > DET > SSE, indicating that swim training decreases the individual variation of these metabolic parameters. Haematological parameters, plasma glucose, lactate, and cortisol levels were similar between SSE and UNT groups before HIS. Plasma glucose and lactate levels increased in both groups after HIS, being higher in the SSE group. Plasma cortisol levels were similar between both groups after HIS. Results suggest that SSE training improves energy use and reduces individual variation in SMR and MMR, an effect that declines with detraining.
Collapse
Affiliation(s)
- Xiaoming Yu
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; College of Fisheries and Life Science, Dalian Ocean University, China
| | - Rodrigo O A Ozorio
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - LeonardoJ Magnoni
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.
| |
Collapse
|
8
|
Arechavala-Lopez P, Lankheet MJ, Díaz-Gil C, Abbink W, Palstra AP. Swimming Activity of Gilthead Seabream (Sparus aurata) in Swim-Tunnels: Accelerations, Oxygen Consumption and Body Motion. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.679848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acoustic transmitters equipped with accelerometer sensors are considered a useful tool to study swimming activity, including energetics and movement patterns, of fish species in aquaculture and in nature. However, given the novelty of this technique, further laboratory-derived calibrations are needed to assess the characteristics and settings of accelerometer acoustic transmitters for different species and specific environmental conditions. In this study, we compared accelerometer acoustic transmitter outputs with swimming performance and body motion of gilthead seabream (Sparus aurata L.) in swim-tunnels at different flow speeds, which allowed us to characterize the swimming activity of this fish species of high aquaculture interest. Tag implantation in the abdominal cavity had no significant effects on swimming performance and body motion parameters. Accelerations, cost of transport and variations on head orientation (angle with respect to flow direction) were negatively related to flow speed in the tunnel, whereas oxygen consumption and frequencies of tail-beat and head movements increased with flow speed. These results show that accelerometer acoustic transmitters mainly recorded deviations from sustained swimming in the tunnel, due to spontaneous and explorative swimming at the lowest speeds or intermittent burst and coast actions to cope with water flow. In conclusion, accelerometer acoustic transmitters applied in this study provided a proxy for unsustained swimming activity, but did not contemplate the high-energy cost spent by gilthead seabream on sustained swimming, and therefore, it did not provide a proxy for general activity. Despite this limitation, accelerometer acoustic transmitters provide valuable insight in swim patterns and therefore may be a good strategy for advancing our understanding of fish swimming behavior in aquaculture, allowing for rapid detection of changes in species-specific behavioral patterns considered indicators of fish welfare status, and assisting in the refinement of best management practices.
Collapse
|
9
|
Pang X, Pu DY, Xia DY, Liu XH, Ding SH, Li Y, Fu SJ. Individual variation in metabolic rate, locomotion capacity and hypoxia tolerance and their relationships in juveniles of three freshwater fish species. J Comp Physiol B 2021; 191:755-764. [PMID: 34091751 DOI: 10.1007/s00360-021-01382-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/09/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
Individual variations in metabolic rate, locomotion capacity and hypoxia tolerance and their relationships were investigated in three cyprinid species [crucian carp (Carassius auratus), common carp (Cyprinus carpio) and qingbo (Spinibarbus sinensis), in 60 individuals of each species]. Either the active metabolic rate (AMR) and critical swimming speed (Ucrit) (30 individuals) or critical oxygen tension (Pcrit) and loss of equilibrium (LOE) (30 individuals) were measured in each species after measuring the resting metabolic rate (RMR). Both the AMR and Ucrit were found to be significantly and positively correlated with the RMR in all three cyprinid species, indicating that high-RMR individuals have high aerobic capacity and thus good swimming performance. Pcrit was positively correlated with the RMR in all three species, whereas the LOE was highly positively correlated, weakly positively correlated and not correlated with the RMR in qingbo, common carp and crucian carp, respectively, possibly due to specialized morphological and biochemical adaptations involved in hypoxia tolerance in crucian and common carp. Crucian carp showed relatively poor swimming performance, i.e., a low Ucrit (relatively high variation), strong hypoxia tolerance, and low LOE (relatively low variation); qingbo showed relatively good swimming performance (relatively low variation) and weak hypoxia tolerance (relatively high variation); and common carp showed moderate swimming performance and relatively strong hypoxia tolerance (moderate variation). These interspecific differences may be due to the different lifestyles of these cyprinid fishes based on their associated fast-slow-flow regime and are outcomes of long-term selection.
Collapse
Affiliation(s)
- Xu Pang
- College of Fisheries, Institute of Three Gorges Ecological Fisheries of Chongqing, Southwest University, Chongqing, 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development, Education of Ministry, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - De-Yong Pu
- Key Laboratory of Freshwater Fish Reproduction and Development, Education of Ministry, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Dan-Yang Xia
- Key Laboratory of Freshwater Fish Reproduction and Development, Education of Ministry, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Xiao-Hong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Education of Ministry, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Shi-Hua Ding
- College of Fisheries, Institute of Three Gorges Ecological Fisheries of Chongqing, Southwest University, Chongqing, 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development, Education of Ministry, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yun Li
- College of Fisheries, Institute of Three Gorges Ecological Fisheries of Chongqing, Southwest University, Chongqing, 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development, Education of Ministry, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behaviour, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
10
|
Chabot D, Zhang Y, Farrell AP. Valid oxygen uptake measurements: using high r 2 values with good intentions can bias upward the determination of standard metabolic rate. JOURNAL OF FISH BIOLOGY 2021; 98:1206-1216. [PMID: 33332581 PMCID: PMC9291193 DOI: 10.1111/jfb.14650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 05/08/2023]
Abstract
This analysis shows good intentions in the selection of valid and precise oxygen uptake ( M ˙ O2 ) measurements by retaining only slopes of declining dissolved oxygen level in a respirometer that have very high values of the coefficient of determination, r2 , are not always successful at excluding nonlinear slopes. Much worse, by potentially removing linear slopes that have low r2 only because of a low signal-to-noise ratio, this procedure can overestimate the calculation of standard metabolic rate (SMR) of the fish. To remedy this possibility, a few simple diagnostic tools are demonstrated to assess the appropriateness of a given minimum acceptable r2 , such as calculating the proportion of rejected M ˙ O2 determinations, producing a histogram of the r2 values and a plot of r2 as a function of M ˙ O2 . The authors offer solutions for cases when many linear slopes have low r2 . The least satisfactory but easiest to implement is lowering the minimum acceptable r2 . More satisfactory solutions involve processing (smoothing) the raw signal of dissolved oxygen as a function of time to improve the signal-to-noise ratio and the r2 s.
Collapse
Affiliation(s)
- Denis Chabot
- Fisheries & Oceans CanadaInstitut Maurice‐LamontagneMont‐JoliQuebecCanada
| | - Yangfan Zhang
- Faculty of Land and Food Systems, & Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Anthony P. Farrell
- Faculty of Land and Food Systems, & Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
11
|
Hachim M, Rouyer T, Dutto G, Kerzerho V, Bernard S, Bourjea J, McKenzie DJ. Oxygen uptake, heart rate and activities of locomotor muscles during a critical swimming speed protocol in the gilthead sea bream Sparus aurata. JOURNAL OF FISH BIOLOGY 2021; 98:886-890. [PMID: 33215710 DOI: 10.1111/jfb.14621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Oxygen uptake, heart rate and contraction frequencies of slow oxidative (SO) and fast glycolytic (FG) muscle were measured simultaneously in gilthead seabream Sparus aurata submitted to stepwise increases in current speed in a swimming respirometer. Variation in oxygen uptake was closely related to variation in heart rate, over initial steps these rose in concert with an increase in contraction frequency of SO muscle. There was an asymptote in oxygen uptake and heart rate at high speeds that reflected a transition from exclusive use of aerobic SO muscle to a combination of SO and anaerobic FG muscle, and which preceded fatigue.
Collapse
Affiliation(s)
| | - Tristan Rouyer
- Marbec, Université Montpellier, Ifremer, CNRS, IRD, Sète, France
| | | | | | - Serge Bernard
- LIRMM, Université Montpellier, CNRS, Montpellier, France
| | - Jérôme Bourjea
- Marbec, Université Montpellier, Ifremer, CNRS, IRD, Sète, France
| | - David J McKenzie
- Marbec, Université Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| |
Collapse
|
12
|
Cordero GA, Methling C, Tirsgaard B, Steffensen JF, Domenici P, Svendsen JC. Excess postexercise oxygen consumption decreases with swimming duration in a labriform fish: Integrating aerobic and anaerobic metabolism across time. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:577-586. [PMID: 31692282 DOI: 10.1002/jez.2322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 11/07/2022]
Abstract
Many vertebrate animals employ anaerobic pathways during high-speed exercise, even if it imposes an energetic cost during postexercise recovery, expressed as excess postexercise oxygen consumption (EPOC). In ectotherms such a fish, the initial anaerobic contribution to exercise is often substantial. Even so, fish may recover from anaerobic pathways as swimming exercise ensues and aerobic metabolism stabilizes, thus total energetic costs of exercise could depend on swimming duration and subsequent physiological recovery. To test this hypothesis, we examined EPOC in striped surfperch (Embiotoca lateralis) that swam at high speeds (3.25 L s-1 ) during randomly ordered 2-, 5-, 10-, and 20-min exercise periods. We found that EPOC was highest after the 2-min period (20.9 mg O2 kg-1 ) and lowest after the 20-min period (13.6 mg O2 kg-1 ), indicating that recovery from anaerobic pathways improved with exercise duration. Remarkably, EPOC for the 2-min period accounted for 72% of the total O2 consumption, whereas EPOC for the 20-min period only accounted for 14%. Thus, the data revealed a striking decline in the total cost of transport from 0.772 to 0.226 mg O2 ·kg-1 ·m-1 during 2- and 20-min periods, respectively. Our study is the first to combine anaerobic and aerobic swimming costs to demonstrate an effect of swimming duration on EPOC in fish. Clarifying the dynamic nature of exercise-related costs is relevant to extrapolating laboratory findings to animals in the wild.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Department of Geosciences, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Caroline Methling
- National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Lyngby, Denmark
| | - Bjørn Tirsgaard
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - John F Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Paolo Domenici
- CNR-IAMC, Instituto per l'Ambiente Marino Costiero, Torregrande, Oristano, Italy
| | - Jon C Svendsen
- National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
13
|
Martos-Sitcha JA, Sosa J, Ramos-Valido D, Bravo FJ, Carmona-Duarte C, Gomes HL, Calduch-Giner JÀ, Cabruja E, Vega A, Ferrer MÁ, Lozano M, Montiel-Nelson JA, Afonso JM, Pérez-Sánchez J. Ultra-Low Power Sensor Devices for Monitoring Physical Activity and Respiratory Frequency in Farmed Fish. Front Physiol 2019; 10:667. [PMID: 31191358 PMCID: PMC6548888 DOI: 10.3389/fphys.2019.00667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/09/2019] [Indexed: 01/31/2023] Open
Abstract
Integration of technological solutions aims to improve accuracy, precision and repeatability in farming operations, and biosensor devices are increasingly used for understanding basic biology during livestock production. The aim of this study was to design and validate a miniaturized tri-axial accelerometer for non-invasive monitoring of farmed fish with re-programmable schedule protocols. The current device (AE-FishBIT v.1s) is a small (14 mm × 7 mm × 7 mm), stand-alone system with a total mass of 600 mg, which allows monitoring animals from 30 to 35 g onwards. The device was attached to the operculum of gilthead sea bream (Sparus aurata) and European sea bass (Dicentrarchus labrax) juveniles for monitoring their physical activity by measurements of movement accelerations in x- and y-axes, while records of operculum beats (z-axis) served as a measurement of respiratory frequency. Data post-processing of exercised fish in swimming test chambers revealed an exponential increase of fish accelerations with the increase of fish speed from 1 body-length to 4 body-lengths per second, while a close relationship between oxygen consumption (MO2) and opercular frequency was consistently found. Preliminary tests in free-swimming fish kept in rearing tanks also showed that device data recording was able to detect changes in daily fish activity. The usefulness of low computational load for data pre-processing with on-board algorithms was verified from low to submaximal exercise, increasing this procedure the autonomy of the system up to 6 h of data recording with different programmable schedules. Visual observations regarding tissue damage, feeding behavior and circulating levels of stress markers (cortisol, glucose, and lactate) did not reveal at short term a negative impact of device tagging. Reduced plasma levels of triglycerides revealed a transient inhibition of feed intake in small fish (sea bream 50-90 g, sea bass 100-200 g), but this disturbance was not detected in larger fish. All this considered together is the proof of concept that miniaturized devices are suitable for non-invasive and reliable metabolic phenotyping of farmed fish to improve their overall performance and welfare. Further work is underway for improving the attachment procedure and the full device packaging.
Collapse
Affiliation(s)
- Juan Antonio Martos-Sitcha
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain.,Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Cádiz, Spain
| | - Javier Sosa
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Dailos Ramos-Valido
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Francisco Javier Bravo
- Institute of Microelectronics of Barcelona (IMB-CNM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Cristina Carmona-Duarte
- Technological Centre for Innovation in Communications (iDeTIC), University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | | | - Josep Àlvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - Enric Cabruja
- Institute of Microelectronics of Barcelona (IMB-CNM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Aurelio Vega
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Miguel Ángel Ferrer
- Technological Centre for Innovation in Communications (iDeTIC), University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Manuel Lozano
- Institute of Microelectronics of Barcelona (IMB-CNM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | | | - Juan Manuel Afonso
- Aquaculture Research Group, Institute of Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| |
Collapse
|
14
|
Frenette BD, Bruckerhoff LA, Tobler M, Gido KB. Temperature effects on performance and physiology of two prairie stream minnows. CONSERVATION PHYSIOLOGY 2019; 7:coz063. [PMID: 31687142 PMCID: PMC6822539 DOI: 10.1093/conphys/coz063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 04/10/2019] [Accepted: 07/28/2019] [Indexed: 05/10/2023]
Abstract
Earth's atmosphere has warmed by ~1°C over the past century and continues to warm at an increasing rate. Effects of atmospheric warming are already visible in most major ecosystems and are evident across all levels of biological organization. Linking functional responses of individuals to temperature is critical for predicting responses of populations and communities to global climate change. The southern redbelly dace Chrosomus erythrogaster and the central stoneroller Campostoma anomalum are two minnows (Cyprinidae) that commonly occur in the Flint Hills region of the USA but show different patterns of occurrence, with dace largely occupying headwater reaches and stonerollers persisting in both headwater and intermediate-sized streams. We tested for differences between species in critical thermal maximum, energy metabolism, sustained swimming and activity over an ecologically relevant temperature gradient of acclimation temperatures. Typically, metrics increased with acclimation temperature for both species, although stoneroller activity decreased with temperature. We observed a significant interaction between species and temperature for critical thermal maxima, where stonerollers only had higher critical thermal maxima at the coldest temperature and at warm temperatures compared to the dace. We did not find evidence suggesting differences in the energy metabolism of dace and stonerollers. We detected interspecific differences in sustained swimming performance, with dace having higher swimming speed than stonerollers regardless of acclimation temperature. Finally, there was a significant interaction between temperature and species for activity; dace activity was higher at intermediate and warm temperatures compared to stonerollers. We observed subtle interspecific differences in how performance metrics responded to temperature that did not always align with observed patterns of distribution for these species. Thus, other ecological factors likely are important drivers of distributional patterns in these species.
Collapse
Affiliation(s)
- Bryan D Frenette
- Division of Biology, Kansas State University, 166 Ackert Hall, Manhattan, KS 66506, USA
- Corresponding author: Division of Biology, Kansas State University, 166 Ackert Hall, Manhattan, KS 66506, USA.
| | - Lindsey A Bruckerhoff
- Division of Biology, Kansas State University, 166 Ackert Hall, Manhattan, KS 66506, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, 166 Ackert Hall, Manhattan, KS 66506, USA
| | - Keith B Gido
- Division of Biology, Kansas State University, 166 Ackert Hall, Manhattan, KS 66506, USA
| |
Collapse
|
15
|
Hollins JPW, Thambithurai D, Van Leeuwen TE, Allan B, Koeck B, Bailey D, Killen SS. Shoal familiarity modulates effects of individual metabolism on vulnerability to capture by trawling. CONSERVATION PHYSIOLOGY 2019; 7:coz043. [PMID: 31380110 PMCID: PMC6661965 DOI: 10.1093/conphys/coz043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/14/2019] [Accepted: 06/03/2019] [Indexed: 05/13/2023]
Abstract
Impacts of fisheries-induced evolution may extend beyond life history traits to more cryptic aspects of biology, such as behaviour and physiology. Understanding roles of physiological traits in determining individual susceptibility to capture in fishing gears and how these mechanisms change across contexts is essential to evaluate the capacity of commercial fisheries to elicit phenotypic change in exploited populations. Previous work has shown that metabolic traits related to anaerobic swimming may determine individual susceptibility to capture in trawls, with fish exhibiting higher anaerobic performance more likely to evade capture. However, high densities of fish aggregated ahead of a trawl net may exacerbate the role of social interactions in determining an individual fish's behaviour and likelihood of capture, yet the role of social environment in modulating relationships between individual physiological traits and vulnerability to capture in trawls remains unknown. By replicating the final moments of capture in a trawl using shoals of wild minnow (Phoxinus phoxinus), we investigated the role of individual metabolic traits in determining susceptibility to capture among shoals of both familiar and unfamiliar conspecifics. We expected that increased shoal cohesion and conformity of behaviour in shoals of familiar fish would lessen the role of individual metabolic traits in determining susceptibility to capture. However, the opposite pattern was observed, with individual fish exhibiting high anaerobic capacity less vulnerable to capture in the trawl net, but only when tested alongside familiar conspecifics. This pattern is likely due to stronger cohesion within familiar shoals, where maintaining a minimal distance from conspecifics, and thus staying ahead of the net, becomes limited by individual anaerobic swim performance. In contrast, lower shoal cohesion and synchronicity of behaviours within unfamiliar shoals may exacerbate the role of stochastic processes in determining susceptibility to capture, disrupting relationships between individual metabolic traits and vulnerability to capture.
Collapse
Affiliation(s)
- J P W Hollins
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Corresponding author: Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - D Thambithurai
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - T E Van Leeuwen
- Fisheries and Oceans Canada, Salmonid Section, 80 East White Hills Road, PO Box 5667, St. John’s, Newfoundland A1C 5X1, Canada
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland A1C 5S7, Canada
| | - B Allan
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - B Koeck
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - D Bailey
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - S S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
16
|
Whitlow KR, Santini F, Oufiero CE. Convergent evolution of locomotor morphology but not performance in gymnotiform swimmers. J Evol Biol 2018; 32:76-88. [DOI: 10.1111/jeb.13399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 11/29/2022]
|
17
|
Barreto A, Luis LG, Paíga P, Santos LHMLM, Delerue-Matos C, Soares AMVM, Hylland K, Loureiro S, Oliveira M. A multibiomarker approach highlights effects induced by the human pharmaceutical gemfibrozil to gilthead seabream Sparus aurata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:266-274. [PMID: 29807214 DOI: 10.1016/j.aquatox.2018.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Lipid regulators are among the most prescribed human pharmaceuticals worldwide. Gemfibrozil, which belongs to this class of pharmaceuticals, is one of the most frequently encountered in the aquatic environment. However, there is limited information concerning the mechanisms involved in gemfibrozil effects to aquatic organisms, particularly to marine organisms. Based on this knowledge gap, the current study aimed to assess biochemical and behavioral effects following a sublethal exposure to gemfibrozil (1.5, 15, 150, 1500 and 15,000 μg L-1) in the estuarine/marine fish Sparus aurata. After the exposure to 1.5 μg L-1 of gemfibrozil, fish had reduced ability to swim against a water flow and increased lipid peroxidation in the liver. At concentrations between 15-15,000 μg L-1, the activities of some enzymes involved in antioxidant defense were induced, appearing to be sufficient to prevent oxidative damage. Depending on the organ, different responses to gemfibrozil were displayed, with enzymes like catalase being more stimulated in gills, whereas glutathione peroxidase was more activated in liver. Although there were no obvious concentration-response relationships, the integrated biomarker response version 2 (IBRv2) analysis revealed that the highest concentrations of gemfibrozil (between 150-15,000 μg L-1) caused more alterations. All the tested concentrations of gemfibrozil induced effects in S. aurata, in terms of behavior and/or oxidative stress responses. Oxidative damage was found at a concentration that is considered environmentally relevant, suggesting a potential of this pharmaceutical to impact fish populations.
Collapse
Affiliation(s)
- A Barreto
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - L G Luis
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - P Paíga
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - L H M L M Santos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal; Present affiliation: Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003, Girona, Spain
| | - C Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - K Hylland
- Department of Biosciences, University of Oslo, PO Box 1066, N-0316, Oslo, Norway
| | - S Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
18
|
Deslauriers D, Svendsen JC, Genz J, Wall AJ, Baktoft H, Enders EC, Anderson WG. Environmental calcium and variation in yolk sac size influence swimming performance in larval lake sturgeon ( Acipenser fulvescens). ACTA ACUST UNITED AC 2018; 221:jeb.164533. [PMID: 29440358 DOI: 10.1242/jeb.164533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/03/2018] [Indexed: 12/31/2022]
Abstract
In many animal species, performance in the early life stages strongly affects recruitment to the adult population; however, factors that influence early life history stages are often the least understood. This is particularly relevant for lake sturgeon, Acipenser fulvescens, living in areas where environmental calcium concentrations are declining, partly due to anthropogenic activity. As calcium is important for muscle contraction and fatigue resistance, declining calcium levels could constrain swimming performance. Similarly, swimming performance could be influenced by variation in yolk sac volume, because the yolk sac is likely to affect drag forces during swimming. Testing swimming performance of larval A. fulvescens reared in four different calcium treatments spanning the range of 4-132 mg l-1 [Ca2+], this study found no treatment effects on the sprint swimming speed. A novel test of volitional swimming performance, however, revealed reduced swimming performance in the low calcium environment. Specifically, volitionally swimming larvae covered a shorter distance before swimming cessation in the low calcium environment compared with the other treatments. Moreover, sprint swimming speed in larvae with a large yolk sac was significantly slower than in larvae with a small yolk sac, regardless of body length variation. Thus, elevated maternal allocation (i.e. more yolk) was associated with reduced swimming performance. Data suggest that larvae in low calcium environments or with a large yolk sac exhibit reduced swimming performance and could be more susceptible to predation or premature downstream drift. Our study reveals how environmental factors and phenotypic variation influence locomotor performance in a larval fish.
Collapse
Affiliation(s)
- David Deslauriers
- University of Manitoba, Department of Biological Sciences, 369 Duff Roblin, 190 Dysart Road, Winnipeg, MB R3T 2N2, Canada.,Fisheries and Oceans Canada, Central & Arctic Region, Freshwater Institute, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| | - Jon C Svendsen
- Fisheries and Oceans Canada, Central & Arctic Region, Freshwater Institute, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada .,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.,Technical University of Denmark, National Institute of Aquatic Resources (DTU-Aqua), Section for Ecosystem based Marine Management, Kemitorvet, Building 201, DK-2800 Kgs. Lyngby, Denmark
| | - Janet Genz
- University of Manitoba, Department of Biological Sciences, 369 Duff Roblin, 190 Dysart Road, Winnipeg, MB R3T 2N2, Canada.,University of West Georgia, Biology Department, 1601 Maple Street, Carrollton, GA 30118, USA
| | - Alex J Wall
- Fisheries and Oceans Canada, Central & Arctic Region, Freshwater Institute, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| | - Henrik Baktoft
- Technical University of Denmark, National Institute of Aquatic Resources, Section for Freshwater Fisheries and Ecology, Vejlsøvej 39, DK-8600 Silkeborg, Denmark
| | - Eva C Enders
- Fisheries and Oceans Canada, Central & Arctic Region, Freshwater Institute, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| | - W Gary Anderson
- University of Manitoba, Department of Biological Sciences, 369 Duff Roblin, 190 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
19
|
Cathcart K, Shin SY, Milton J, Ellerby D. Field swimming performance of bluegill sunfish, Lepomis macrochirus: implications for field activity cost estimates and laboratory measures of swimming performance. Ecol Evol 2017; 7:8657-8666. [PMID: 29075479 PMCID: PMC5648661 DOI: 10.1002/ece3.3454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022] Open
Abstract
Mobility is essential to the fitness of many animals, and the costs of locomotion can dominate daily energy budgets. Locomotor costs are determined by the physiological demands of sustaining mechanical performance, yet performance is poorly understood for most animals in the field, particularly aquatic organisms. We have used 3‐D underwater videography to quantify the swimming trajectories and propulsive modes of bluegills sunfish (Lepomis macrochirus, Rafinesque) in the field with high spatial (1–3 mm per pixel) and temporal (60 Hz frame rate) resolution. Although field swimming trajectories were variable and nonlinear in comparison to quasi steady‐state swimming in recirculating flumes, they were much less unsteady than the volitional swimming behaviors that underlie existing predictive models of field swimming cost. Performance analyses suggested that speed and path curvature data could be used to derive reasonable estimates of locomotor cost that fit within measured capacities for sustainable activity. The distinct differences between field swimming behavior and performance measures obtained under steady‐state laboratory conditions suggest that field observations are essential for informing approaches to quantifying locomotor performance in the laboratory.
Collapse
Affiliation(s)
- Kelsey Cathcart
- Department of Biological Sciences Wellesley College Wellesley MA USA
| | - Seo Yim Shin
- Department of Biological Sciences Wellesley College Wellesley MA USA
| | - Joanna Milton
- Department of Biological Sciences Wellesley College Wellesley MA USA
| | - David Ellerby
- Department of Biological Sciences Wellesley College Wellesley MA USA
| |
Collapse
|
20
|
Baktoft H, Jacobsen L, Skov C, Koed A, Jepsen N, Berg S, Boel M, Aarestrup K, Svendsen JC. Phenotypic variation in metabolism and morphology correlating with animal swimming activity in the wild: relevance for the OCLTT (oxygen- and capacity-limitation of thermal tolerance), allocation and performance models. CONSERVATION PHYSIOLOGY 2016; 4:cov055. [PMID: 27382465 PMCID: PMC4922247 DOI: 10.1093/conphys/cov055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 05/26/2023]
Abstract
Ongoing climate change is affecting animal physiology in many parts of the world. Using metabolism, the oxygen- and capacity-limitation of thermal tolerance (OCLTT) hypothesis provides a tool to predict the responses of ectothermic animals to variation in temperature, oxygen availability and pH in the aquatic environment. The hypothesis remains controversial, however, and has been questioned in several studies. A positive relationship between aerobic metabolic scope and animal activity would be consistent with the OCLTT but has rarely been tested. Moreover, the performance model and the allocation model predict positive and negative relationships, respectively, between standard metabolic rate and activity. Finally, animal activity could be affected by individual morphology because of covariation with cost of transport. Therefore, we hypothesized that individual variation in activity is correlated with variation in metabolism and morphology. To test this prediction, we captured 23 wild European perch (Perca fluviatilis) in a lake, tagged them with telemetry transmitters, measured standard and maximal metabolic rates, aerobic metabolic scope and fineness ratio and returned the fish to the lake to quantify individual in situ activity levels. Metabolic rates were measured using intermittent flow respirometry, whereas the activity assay involved high-resolution telemetry providing positions every 30 s over 12 days. We found no correlation between individual metabolic traits and activity, whereas individual fineness ratio correlated with activity. Independent of body length, and consistent with physics theory, slender fish maintained faster mean and maximal swimming speeds, but this variation did not result in a larger area (in square metres) explored per 24 h. Testing assumptions and predictions of recent conceptual models, our study indicates that individual metabolism is not a strong determinant of animal activity, in contrast to individual morphology, which is correlated with in situ activity patterns.
Collapse
Affiliation(s)
- Henrik Baktoft
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Lene Jacobsen
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Christian Skov
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Anders Koed
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Niels Jepsen
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Søren Berg
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Mikkel Boel
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Kim Aarestrup
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jon C. Svendsen
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark
| |
Collapse
|
21
|
Ejbye-Ernst R, Michaelsen TY, Tirsgaard B, Wilson JM, Jensen LF, Steffensen JF, Pertoldi C, Aarestrup K, Svendsen JC. Partitioning the metabolic scope: the importance of anaerobic metabolism and implications for the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis. CONSERVATION PHYSIOLOGY 2016; 4:cow019. [PMID: 27293766 PMCID: PMC4896295 DOI: 10.1093/conphys/cow019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/11/2016] [Accepted: 05/02/2016] [Indexed: 05/19/2023]
Abstract
Ongoing climate change is predicted to affect the distribution and abundance of aquatic ectotherms owing to increasing constraints on organismal physiology, in particular involving the metabolic scope (MS) available for performance and fitness. The oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis prescribes MS as an overarching benchmark for fitness-related performance and assumes that any anaerobic contribution within the MS is insignificant. The MS is typically derived from respirometry by subtracting standard metabolic rate from the maximal metabolic rate; however, the methodology rarely accounts for anaerobic metabolism within the MS. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), this study tested for trade-offs (i) between aerobic and anaerobic components of locomotor performance; and (ii) between the corresponding components of the MS. Data collection involved measuring oxygen consumption rate at increasing swimming speeds, using the gait transition from steady to unsteady (burst-assisted) swimming to detect the onset of anaerobic metabolism. Results provided evidence of the locomotor performance trade-off, but only in S. aurata. In contrast, both species revealed significant negative correlations between aerobic and anaerobic components of the MS, indicating a trade-off where both components of the MS cannot be optimized simultaneously. Importantly, the fraction of the MS influenced by anaerobic metabolism was on average 24.3 and 26.1% in S. aurata and P. reticulata, respectively. These data highlight the importance of taking anaerobic metabolism into account when assessing effects of environmental variation on the MS, because the fraction where anaerobic metabolism occurs is a poor indicator of sustainable aerobic performance. Our results suggest that without accounting for anaerobic metabolism within the MS, studies involving the OCLTT hypothesis could overestimate the metabolic scope available for sustainable activities and the ability of individuals and species to cope with climate change.
Collapse
Affiliation(s)
- Rasmus Ejbye-Ernst
- Department of Chemistry and Bioscience, Faculty of Engineering and Sciences, Aalborg University, Aalborg, Denmark
| | - Thomas Y. Michaelsen
- Department of Chemistry and Bioscience, Faculty of Engineering and Sciences, Aalborg University, Aalborg, Denmark
- Corresponding author: Department of Chemistry and Bioscience, Faculty of Engineering and Sciences, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark. Tel: +45 42 40 08 32.
| | - Bjørn Tirsgaard
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Jonathan M. Wilson
- Molecular Eco-physiology, Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | | | - John F. Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Cino Pertoldi
- Department of Chemistry and Bioscience, Faculty of Engineering and Sciences, Aalborg University, Aalborg, Denmark
- Aalborg Zoo, Aalborg, Denmark
| | - Kim Aarestrup
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), Silkeborg, Denmark
| | - Jon C. Svendsen
- Molecular Eco-physiology, Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), Charlottenlund, Denmark
| |
Collapse
|
22
|
Rosewarne PJ, Wilson JM, Svendsen JC. Measuring maximum and standard metabolic rates using intermittent-flow respirometry: a student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers. JOURNAL OF FISH BIOLOGY 2016; 88:265-283. [PMID: 26768978 DOI: 10.1111/jfb.12795] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology.
Collapse
Affiliation(s)
- P J Rosewarne
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - J M Wilson
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - J C Svendsen
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| |
Collapse
|