1
|
Zhang P, Li W, Zheng X, Luo H, Liu Q, Long Q, Yan Q, Yuan X. Endoplasmic reticulum stress and death receptor-mediated apoptosis in the neuronal differentiation of adult adipose-derived stromal cells. Heliyon 2024; 10:e28608. [PMID: 38586331 PMCID: PMC10998070 DOI: 10.1016/j.heliyon.2024.e28608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Apoptosis is the primary cause of cell death in the differentiation of Adipose-derived stromal cells (ADSCs) into neurons. However, the relationship between endoplasmic reticulum stress (ERS) and death receptor-mediated apoptosis in ADSC-induced neuronal differentiation is not clear. ADSCs were isolated and induced to differentiate into neurons using β-mercaptoethanol. The expression of neuron-specific enolase (NSE), GRP94, CHOP, Fas/FasL, TNFR1/TNF-α, DR5/TRAIL, Caspase8, and Caspase3 in ADSCs was examined using immunocytochemistry and Western blotting before induction, during pre-induction, and after induction. Transmission electron microscopy (TEM) was used to observe changes in the morphology of the endoplasmic reticulum (ER), and the MTT assay was employed to measure cell viability in the uninduced and induced groups. Additionally, the number of apoptotic cells during the induction process was measured using flow cytometry with Annexin V/PI. With increasing induction time, the positive expression rates of CHOP, Fas/FasL, Caspase8, Caspase-3, and NSE gradually increased, while the positive expression rate of GRP94 decreased. TNFR1/TNF-α and DR5/TRAIL peaked at 5 h post-induction and then decreased at 8 h. TEM revealed swelling and expansion of the ER, vacuolar changes, and degranulation in cells. The MTT assay showed a gradual decrease in the absorbance of surviving cells in all groups. Flow cytometry indicated an increasing rate of apoptosis in cells. Therefore, ERS in the normal culture and growth of ADSCs, manifesting as enhanced unfolded protein response (UPR), maintains the normal survival of ADSCs. However, in the process of ADSC-induced differentiation into neurons, ERS and death receptor-mediated apoptosis are significant causes of cell death.
Collapse
Affiliation(s)
- Pingshu Zhang
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, China
- Hebei Provincial Key Laboratory of Neurobiological Function, China
| | - Wen Li
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, China
- Hebei Provincial Key Laboratory of Neurobiological Function, China
| | - Xinyue Zheng
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, China
- Hebei Provincial Key Laboratory of Neurobiological Function, China
| | - Hongjie Luo
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, China
- Hebei Provincial Key Laboratory of Neurobiological Function, China
| | - Qing Liu
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, China
- Hebei Provincial Key Laboratory of Neurobiological Function, China
| | - Qingxi Long
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, China
- Hebei Provincial Key Laboratory of Neurobiological Function, China
| | - Qi Yan
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, China
- Hebei Provincial Key Laboratory of Neurobiological Function, China
| | - Xiaodong Yuan
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, China
| |
Collapse
|
2
|
Ringleb M, Javelle F, Haunhorst S, Bloch W, Fennen L, Baumgart S, Drube S, Reuken PA, Pletz MW, Wagner H, Gabriel HHW, Puta C. Beyond muscles: Investigating immunoregulatory myokines in acute resistance exercise - A systematic review and meta-analysis. FASEB J 2024; 38:e23596. [PMID: 38597350 DOI: 10.1096/fj.202301619r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Myokines, released from the muscle, enable communication between the working muscles and other tissues. Their release during physical exercise is assumed to depend on immune-hormonal-metabolic interactions concerning mode (endurance or resistance exercise), duration, and intensity. This meta-analysis aims to examine the acute changes of circulating myokines inducing immunoregulatory effects caused by a bout of resistance exercise and to consider potential moderators of the results. Based on this selection strategy, a systematic literature search was conducted for resistance exercise intervention studies measuring interleukin (IL-) 6, IL-10, IL-1ra, tumor necrosis factor (TNF-) α, IL-15, IL-7, transforming growth factor (TGF-) β1, and fractalkines (FKN) before and immediately after resistance exercise in healthy individuals. Random-effects meta-analysis was performed for each myokine. We identified a moderate positive effect of resistance exercise for IL-6 and IL-1ra. Regarding IL-15 and TNF-α, small to moderate effects were found. For IL-10, no significant effect was observed. Due to no data, meta-analyses for IL-7, TGF-β1, and FKN could not be performed. No moderators (training status, type of exercise, risk of bias, age, sex, time of day, exercise volume, exercise intensity, exercise dose) of the results were detected for all tested myokines. Taken together, this systematic review and meta-analysis showed immediate positive effects of an acute resistance exercise session on IL-6, IL-1ra, TNF-α, and IL-15 levels.
Collapse
Affiliation(s)
- Miriam Ringleb
- Department of Movement Science, University of Münster, Münster, Germany
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
- Center for Interdisciplinary Prevention of Diseases related to Professional Activities, Friedrich-Schiller-University Jena, Jena, Germany
| | - Florian Javelle
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Simon Haunhorst
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Interdisciplinary Prevention of Diseases related to Professional Activities, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Lena Fennen
- Department of Movement Science, University of Münster, Münster, Germany
| | - Sabine Baumgart
- Institute for Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sebastian Drube
- Institute for Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Philipp A Reuken
- Clinic for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Mathias W Pletz
- Institute for Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Heiko Wagner
- Department of Movement Science, University of Münster, Münster, Germany
| | - Holger H W Gabriel
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian Puta
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Interdisciplinary Prevention of Diseases related to Professional Activities, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
3
|
Pérez-Regalado S, León J, Padial P, Benavente C, Puentes-Pardo JD, Almeida F, Feriche B. Effect of a resistance exercise at acute moderate altitude on muscle health biomarkers. Pflugers Arch 2024; 476:49-57. [PMID: 37816992 PMCID: PMC10758362 DOI: 10.1007/s00424-023-02868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
The intensification of the stress response during resistance training (RT) under hypoxia conditions could trigger unwanted effects that compromise muscle health and, therefore, the ability of the muscle to adapt to longer training periods. We examined the effect of acute moderate terrestrial hypoxia on metabolic, inflammation, antioxidant capacity and muscle atrophy biomarkers after a single RT session in a young male population. Twenty healthy volunteers allocated to the normoxia (N < 700 m asl) or moderate altitude (HH = 2320 m asl) group participated in this study. Before and throughout the 30 min following the RT session (3 × 10 reps, 90 s rest, 70% 1RM), venous blood samples were taken and analysed for circulating calcium, inorganic phosphate, cytokines (IL-6, IL-10 and TNF-α), total antioxidant capacity (TAC) and myostatin. Main results displayed a marked metabolic stress response after the RT in both conditions. A large to very large proportional increase in the adjusted to pre-exercise change of inflammatory and anti-inflammatory markers favoured HH (serum TNF-α [ES = 1.10; p = 0.024] and IL-10 [ES = 1.31; p = 0.009]). The exercise produced a similar moderate increment of myostatin in both groups, followed by a moderate non-significant reduction in HH throughout the recovery (ES = - 0.72; p = 0.21). The RT slightly increased the antioxidant response regardless of the environmental condition. These results revealed no clear impact of RT under acute hypoxia on the metabolic, TAC and muscle atrophy biomarkers. However, a coordinated pro/anti-inflammatory response balances the potentiated effect of RT on systemic inflammation.
Collapse
Affiliation(s)
- Sergio Pérez-Regalado
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Josefa León
- Clinical Management Unit of Digestive System, San Cecilio Hospital, Ibs.GRANADA, 18016, Granada, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Cristina Benavente
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Jose D Puentes-Pardo
- Clinical Management Unit of Digestive System, San Cecilio Hospital, Ibs.GRANADA, 18016, Granada, Spain
| | - Filipa Almeida
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain.
| |
Collapse
|
4
|
Martin SJ, Schneider R. Multiple sclerosis and exercise-A disease-modifying intervention of mice or men? Front Neurol 2023; 14:1190208. [PMID: 37885474 PMCID: PMC10598461 DOI: 10.3389/fneur.2023.1190208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
Research suggests that physical exercise can promote an anti-inflammatory and neuroprotective state. If so, increasing or optimizing exercise could be considered a 'disease-modifying intervention' in neuroinflammatory diseases, such as multiple sclerosis (MS). Exercise intervention studies conducted in animal models of MS are promising. Various aerobic and strength training regimes have been shown to delay disease onset and to reduce both the clinical and pathological disease severity in mice. However, fundamental differences between the physiology of animals and humans, the disease states studied, and the timing of exercise intervention are significant. In animal models of MS, most exercise interventions begin before disease initiation and before any clinical sign of disease. In contrast, studies in humans recruit participants on average nearly a decade after diagnosis and often once disability is established. If, as is thought to be the case for disease-modifying treatments, the immunomodulatory effect of exercise decreases with advancing disease duration, current studies may therefore fail to detect the true disease-modifying potential. Clinical studies in early disease cohorts are needed to determine the role of exercise as a disease-modifying intervention for people with MS.
Collapse
Affiliation(s)
- Sarah-Jane Martin
- BARLO MS Center, St. Michael's Hospital, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Infection & Immunity, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Raphael Schneider
- BARLO MS Center, St. Michael's Hospital, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Shobeiri P, Seyedmirzaei H, Karimi N, Rashidi F, Teixeira AL, Brand S, Sadeghi-Bahmani D, Rezaei N. IL-6 and TNF-α responses to acute and regular exercise in adult individuals with multiple sclerosis (MS): a systematic review and meta-analysis. Eur J Med Res 2022; 27:185. [PMID: 36156182 PMCID: PMC9511785 DOI: 10.1186/s40001-022-00814-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In both the general population and people with multiple sclerosis (PwMS), physical exercise is associated with improved mental well-being. Moreover, there is evidence of the possible protection of physical activity against disease progression in multiple sclerosis (MS). However, the question arises if acute or regular exercise has any impact on the immune system in PwMS. To answer this question, we performed a systematic review and meta-analysis on both plasma and serum cytokine levels (IL-6 and TNF-α) before and after acute and regular exercise among PwMS and compared to healthy controls. METHOD We performed an online search via PubMed, EMBASE, SCOPUS, Web of Science, and Cochrane Library till September 2021 to identify original studies on IL-6 and TNF-α changes after acute and regular exercise in PwMS and controls. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), 11 original studies were included in the meta-analysis. Sensitivity analyses were used to identify the origins of heterogeneity. R 4.0.4 was used to perform the meta-analysis of IL-6 and TNF-α levels before and after acute and regular exercise in PwMS, compared to controls. This study does not qualify for a clinical trial number. RESULTS IL-6 levels did neither increase nor decrease after acute and regular exercise in PwMS, and compared to controls (pre- vs. post-intervention: Standardized Mean Difference (SMD) -0.09, 95% CI [-0.29; 0.11], p-value = 0.37, PwMS vs. Control: SMD -0.08, 95% CI [-0.33; 0.16], p-value = 0.47). In PwMS, TNF-α levels decreased after regular exercise and when TNF-α levels of both acute and regular exercise were pooled (pre- vs. post-intervention: SMD -0.51, 95% CI [-0.91; 0.11], p-value = 0.01, PwMS vs. Control: SMD -0.23, 95% CI [-0.66; 0.18], p-value = 0.26). TNF-α levels did neither increase nor decrease after acute and regular exercise in PwMS, when compared to controls. CONCLUSION This systematic review and meta-analysis show that exercise does not lead to significant changes in peripheral levels of IL-6 in PwMS in contrast to the observed response in healthy subjects and other medical contexts. However, regular exercise had a specific anti-inflammatory effect on blood TNF-α levels in PwMS. It remains to be investigated why PwMS display this different exercise-induced pattern of cytokines.
Collapse
Affiliation(s)
- Parnian Shobeiri
- School of Medicine, Children's Medical Center Hospital, Tehran University of Medical Sciences (TUMS), Dr. Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Seyedmirzaei
- School of Medicine, Children's Medical Center Hospital, Tehran University of Medical Sciences (TUMS), Dr. Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Karimi
- School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Fatemeh Rashidi
- School of Medicine, Children's Medical Center Hospital, Tehran University of Medical Sciences (TUMS), Dr. Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
| | - Antônio L Teixeira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Neuropsychiatry Program, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Serge Brand
- School of Medicine, Children's Medical Center Hospital, Tehran University of Medical Sciences (TUMS), Dr. Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Psychiatric Clinics, Center for Affective, Stress and Sleep Disorders, University of Basel, Basel, Switzerland
- Division of Sport Science and Psychosocial Health, Department of Sport, Exercise and Health, Faculty of Medicine, University of Basel, Basel, Switzerland
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dena Sadeghi-Bahmani
- Psychiatric Clinics, Center for Affective, Stress and Sleep Disorders, University of Basel, Basel, Switzerland
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Stratos I, Behrendt AK, Anselm C, Gonzalez A, Mittlmeier T, Vollmar B. Inhibition of TNF-α Restores Muscle Force, Inhibits Inflammation, and Reduces Apoptosis of Traumatized Skeletal Muscles. Cells 2022; 11:2397. [PMID: 35954240 PMCID: PMC9367740 DOI: 10.3390/cells11152397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Muscle injuries are common in humans and are often associated with irrecoverable damage and disability. Upon muscle injury, TNF-α signaling pathways modulate the healing process and are predominantly associated with tissue degradation. In this study we assumed that TNF-α inhibition could reduce the TNF-α-associated tissue degradation after muscle injury. MATERIALS AND METHODS Therefore, the left soleus muscle of 42 male Wistar rats was injured using a standardized open muscle injury model. All rats were treated immediately after injury either with infliximab (single i.p. injection; 10 mg/kg b.w.) or saline solution i.p. Final measurements were conducted at day one, four, and 14 post injury. The muscle force, the muscle cell proliferation, the muscle cell coverage as well as the myofiber diameter served as read out parameters of our experiment. RESULTS Systemic application of infliximab could significantly reduce the TNF-α levels in the injured muscle at day four upon trauma compared to saline treated animals. The ratio of muscle weight to body weight was increased and the twitch muscle force showed a significant rise 14 days after trauma and TNF-α inhibition. Quantification of myofiber diameter in the penumbra zone showed a significant difference between both groups at day one and four after injury, indicated by muscle hypertrophy in the infliximab group. Planimetric analysis of the injured muscle at day 14 revealed increased muscle tissue fraction in the infliximab group compared to the control animals. Muscle cell proliferation did not differ between both groups. CONCLUSIONS These data provide evidence that the TNF-α blockade positively regulates the restauration of skeletal muscles upon injury.
Collapse
Affiliation(s)
- Ioannis Stratos
- Department of Orthopaedic Surgery, Julius-Maximilians University Wuerzburg, 97074 Wuerzburg, Germany
- Department of Trauma, Hand and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany; (A.-K.B.); (A.G.); (T.M.)
| | - Ann-Kathrin Behrendt
- Department of Trauma, Hand and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany; (A.-K.B.); (A.G.); (T.M.)
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany; (C.A.); (B.V.)
| | - Christian Anselm
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany; (C.A.); (B.V.)
| | - Aldebarani Gonzalez
- Department of Trauma, Hand and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany; (A.-K.B.); (A.G.); (T.M.)
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany; (C.A.); (B.V.)
| | - Thomas Mittlmeier
- Department of Trauma, Hand and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany; (A.-K.B.); (A.G.); (T.M.)
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany; (C.A.); (B.V.)
| |
Collapse
|
7
|
Xing H, Lu J, Yoong SQ, Tan YQ, Kusuyama J, Wu XV. Effect of Aerobic and Resistant Exercise Intervention on Inflammaging of Type 2 Diabetes Mellitus in Middle-aged and Older Adults: A Systematic Review and Meta-analysis. J Am Med Dir Assoc 2022; 23:823-830.e13. [PMID: 35183493 DOI: 10.1016/j.jamda.2022.01.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
|
8
|
Exercise Cuts Both Ways with ROS in Remodifying Innate and Adaptive Responses: Rewiring the Redox Mechanism of the Immune System during Exercise. Antioxidants (Basel) 2021; 10:antiox10111846. [PMID: 34829717 PMCID: PMC8615250 DOI: 10.3390/antiox10111846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Nearly all cellular functions depend on redox reactions, including those of immune cells. However, how redox reactions are rearranged to induce an immune response to the entry of pathogens into the host is a complex process. Understanding this scenario will facilitate identification of the roles of specific types of reactive oxygen species (ROS) in the immune system. Although the detrimental effect of ROS could support the innate immune system, the adaptive immune system also requires a low level of ROS in order to stimulate various molecular functions. The requirements and functions of ROS vary in different cells, including immune cells. Thus, it is difficult to understand the specific ROS types and their targeting functions. Incomplete transfer of electrons to a specific target, along with failure of the antioxidant response, could result in oxidative-damage-related diseases, and oxidative damage is a common phenomenon in most immune disorders. Exercise is a noninvasive means of regulating ROS levels and antioxidant responses. Several studies have shown that exercise alone boosts immune functions independent of redox reactions. Here, we summarize how ROS target various signaling pathways of the immune system and its functions, along with the possible role of exercise in interfering with immune system signaling.
Collapse
|
9
|
Arroyo E, Laudato JA, Gibson BM, Dulaney CS, Vaughan JA, Followay BN, Glickman EL, Jajtner AR. Tumor necrosis factor-α, TNF receptor, and soluble TNF receptor responses to aerobic exercise in the heat. Cytokine X 2021; 2:100033. [PMID: 33604558 PMCID: PMC7885885 DOI: 10.1016/j.cytox.2020.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 11/26/2022] Open
Abstract
Aerobic exercise in the heat promotes modest increases in plasma TNF-α and STNFR1. Increases in TNF-α and STNFR1 are likely driven by changes in core temperature. TNFR1 and 2 expression on non-classical monocytes is blunted one hour post-exercise. TNFR1 expression on non-classical monocytes is elevated during exercise in the heat.
The purpose of this study was to evaluate the effects of aerobic exercise in the heat on circulating concentrations of tumor necrosis factor (TNF)-α, soluble TNF receptors (STNFR1&2), and surface expression of TNFR1&2 on monocyte subpopulations. Twelve recreationally active Caucasian men (24.4 ± 3.4 yrs.; 180.0 ± 6.8 cm; 81.5 ± 8.0 kg; 47.2 ± 4.8 mL·kg−1·min−1) completed an exercise protocol in three environmental conditions: high temperature/low humidity [HTLH; 35 °C, 20% relative humidity (RH)]; high temperature/moderate humidity (HTMH; 35 °C, 45%RH); and moderate temperature/moderate humidity (MTMH; 22 °C, 45%RH). Each protocol consisted of a 60-minute cycling trial at 60% VO2max, a 15-minute rest, and a time-to-exhaustion trial at 90% VO2max (TTE). Blood was sampled before (PRE), immediately after (POST) the 60-minute trial, immediately post-TTE (PTTE), and one-hour post-TTE (REC). Circulating TNF-α and STNFR1&2 were assayed. TNFR1&2 expression on monocyte subsets was measured by flow cytometry on a subset of participants (n = 8). TNF-α area under the curve with respect to increase (AUCi) was greater during HTMH compared to MTMH and HTLH. STNFR1 concentration was greater during HTMH compared to MTMH. With all trials combined, STNFR1 concentration increased from PRE to POST, PTTE, and REC. TNFR1 expression on non-classical monocytes was greater during HTMH compared to HTLH while TNFR2 expression was lower during HTLH compared to both MTMH and HTMH. Data suggest that exercise in the heat increases circulating TNF-α and STNFR1 concentration concomitantly. Furthermore, non-classical monocyte expression of TNFRs are impacted by temperature and humidity during exercise.
Collapse
Affiliation(s)
- Eliott Arroyo
- Exercise Science Program, Kent State University, Kent, OH, USA
| | | | | | - Cody S Dulaney
- Exercise Science Program, Kent State University, Kent, OH, USA
| | | | | | | | - Adam R Jajtner
- Exercise Science Program, Kent State University, Kent, OH, USA
| |
Collapse
|
10
|
Ma L, Nidadavolu LS, Yang H, Langdon J, Westbrook R, Tsui BMW, Lee TS, Hinson J, Ling S, Marx-Rattner R, Wu Y, Nguyen T, Tan J, Khadeer M, Moaddel R, Le A, Walston JD, Abadir PM. Targeted Deletion of Interleukin-6 in a Mouse Model of Chronic Inflammation Demonstrates Opposing Roles in Aging: Benefit and Harm. J Gerontol A Biol Sci Med Sci 2021; 76:211-215. [PMID: 32585682 PMCID: PMC7812426 DOI: 10.1093/gerona/glaa156] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 01/17/2023] Open
Abstract
Chronic inflammation (CI) in older adults is associated with reduced health span and life span. Interleukin-6 (IL-6) is one CI marker that is strongly associated with adverse health outcomes and mortality in aging. We have previously characterized a mouse model of frailty and chronic inflammatory pathway activation (IL-10tm/tm, IL-10 KO) that demonstrates the upregulation of numerous proinflammatory cytokines, including IL-6. We sought to identify a more specific role for IL-6 within the context of CI and aging and developed a mouse with targeted deletion of both IL-10 and IL-6 (IL-10tm/tm/IL-6tm/tm, DKO). Phenotypic characteristics, cytokine measurements, cardiac myocardial oxygen consumption, physical function, and survival were measured in DKO mice and compared to age- and gender-matched IL-10 KO and wild-type mice. Our findings demonstrate that selective knockdown of IL-6 in a frail mouse with CI resulted in the reversal of some of the CI-associated changes. We observed increased protective mitochondrial-associated lipid metabolites, decreased cardiac oxaloacetic acid, improved myocardial oxidative metabolism, and better short-term functional performance in DKO mice. However, the DKO mice also demonstrated higher mortality. This work shows the pleiotropic effects of IL-6 on aging and frailty.
Collapse
Affiliation(s)
- Lina Ma
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, China National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Lolita S Nidadavolu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Huanle Yang
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jackie Langdon
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Reyhan Westbrook
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Benjamin M W Tsui
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Taek-Soo Lee
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jared Hinson
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shizhang Ling
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ruth Marx-Rattner
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuqiong Wu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tu Nguyen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica Tan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mohammed Khadeer
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter M Abadir
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Saeidi A, Haghighi MM, Kolahdouzi S, Daraei A, Abderrahmane AB, Essop MF, Laher I, Hackney AC, Zouhal H. The effects of physical activity on adipokines in individuals with overweight/obesity across the lifespan: A narrative review. Obes Rev 2021; 22:e13090. [PMID: 32662238 DOI: 10.1111/obr.13090] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
This narrative review summarizes current knowledge on the effects of physical activity (PA) on adipokine levels in individuals with overweight and obesity. Approximately 90 investigations including randomized control, cross-sectional and longitudinal studies that reported on the effects of a single session of PA (acute) or long-term PA (chronic) on adipokine levels in individuals with overweight/obesity were reviewed. The findings support the notion that there is consensus on the benefits of chronic exercise training-regardless of the mode (resistance vs. aerobic), intensity and cohort (healthy vs. diabetes)-on adipokine levels (such as tumour necrosis factor-alpha, interleukin-6, adiponectin, visfatin, omentin-1 and leptin). However, several confounding factors (frequency, intensity, time and type of exercise) can alter the magnitude of the effects of an acute exercise session. Available evidence suggests that PA, as a part of routine lifestyle behaviour, improves obesity complications by modulating adipokine levels. However, additional research is needed to help identify the most effective interventions to elicit the most beneficial changes in adipokine levels in individuals with overweight/obesity.
Collapse
Affiliation(s)
- Ayoub Saeidi
- Department of Physical Education, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Marjan Mosalman Haghighi
- Faculty of Medicine and Health, Cardiology Centre, The University of Sydney, The Children's Hospital at Westmead, Sydney, Australia
| | - Sarkawt Kolahdouzi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran
| | - Ali Daraei
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | | | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| | - Anthony C Hackney
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Hassane Zouhal
- Movement, Sport and Health Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Rennes, Rennes, France
| |
Collapse
|
12
|
MS SAB, Waldman, PhD HS, Krings, PhD BM, Lamberth, PhD J, Smith, PhD JW, McAllister, PhD MJ. Effect of Curcumin Supplementation on Exercise-Induced Oxidative Stress, Inflammation, Muscle Damage, and Muscle Soreness. J Diet Suppl 2019; 17:401-414. [DOI: 10.1080/19390211.2019.1604604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Steven A. Basham, MS
- Applied Physiology Lab, Department of Kinesiology, Mississippi State University, Starkville, MS, USA
| | - Hunter S. Waldman, PhD
- Applied Physiology Lab, Department of Kinesiology, Mississippi State University, Starkville, MS, USA
| | - Ben M. Krings, PhD
- Department of Health and Human Performance, University of Wisconsin-Platteville, Platteville, WI, USA
| | - John Lamberth, PhD
- Applied Physiology Lab, Department of Kinesiology, Mississippi State University, Starkville, MS, USA
| | - JohnEric W. Smith, PhD
- Applied Physiology Lab, Department of Kinesiology, Mississippi State University, Starkville, MS, USA
| | | |
Collapse
|
13
|
Roberts J, Zinchenko A, Suckling C, Smith L, Johnstone J, Henselmans M. The short-term effect of high versus moderate protein intake on recovery after strength training in resistance-trained individuals. J Int Soc Sports Nutr 2017; 14:44. [PMID: 29200983 PMCID: PMC5697135 DOI: 10.1186/s12970-017-0201-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/14/2017] [Indexed: 01/28/2023] Open
Abstract
Background Dietary protein intakes up to 2.9 g.kg−1.d−1 and protein consumption before and after resistance training may enhance recovery, resulting in hypertrophy and strength gains. However, it remains unclear whether protein quantity or nutrient timing is central to positive adaptations. This study investigated the effect of total dietary protein content, whilst controlling for protein timing, on recovery in resistance trainees. Methods Fourteen resistance-trained individuals underwent two 10-day isocaloric dietary regimes with a protein content of 1.8 g.kg−1.d−1 (PROMOD) or 2.9 g.kg−1.d−1 (PROHIGH) in a randomised, counterbalanced, crossover design. On days 8–10 (T1-T3), participants undertook resistance exercise under controlled conditions, performing 3 sets of squat, bench press and bent-over rows at 80% 1 repetition maximum until volitional exhaustion. Additionally, participants consumed a 0.4 g.kg−1 whey protein concentrate/isolate mix 30 min before and after exercise sessions to standardise protein timing specific to training. Recovery was assessed via daily repetition performance, muscle soreness, bioelectrical impedance phase angle, plasma creatine kinase (CK) and tumor necrosis factor-α (TNF-α). Results No significant differences were reported between conditions for any of the performance repetition count variables (p > 0.05). However, within PROMOD only, squat performance total repetition count was significantly lower at T3 (19.7 ± 6.8) compared to T1 (23.0 ± 7.5; p = 0.006). Pre and post-exercise CK concentrations significantly increased across test days (p ≤ 0.003), although no differences were reported between conditions. No differences for TNF-α or muscle soreness were reported between dietary conditions. Phase angle was significantly greater at T3 for PROHIGH (8.26 ± 0.82°) compared with PROMOD (8.08 ± 0.80°; p = 0.012). Conclusions When energy intake and peri-exercise protein intake was controlled for, a short term PROHIGH diet did not improve markers of muscle damage or soreness in comparison to a PROMOD approach following repeated days of intensive training. Whilst it is therefore likely that moderate protein intakes (1.8 g.kg−1.d−1) may be sufficient for resistance-trained individuals, it is noteworthy that both lower body exercise performance and bioelectrical phase angle were maintained with PROHIGH. Longer term interventions are warranted to determine whether PROMOD intakes are sufficient during prolonged training periods or when extensive exercise (e.g. training twice daily) is undertaken.
Collapse
Affiliation(s)
- Justin Roberts
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, East Road, Cambridge, UK
| | - Anastasia Zinchenko
- Kings College, University of Cambridge, Cambridge, UK.,Bayesian Bodybuilding R&D Department, Gorinchem, The Netherlands
| | - Craig Suckling
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, East Road, Cambridge, UK
| | - Lee Smith
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, East Road, Cambridge, UK
| | - James Johnstone
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, East Road, Cambridge, UK
| | - Menno Henselmans
- Bayesian Bodybuilding R&D Department, Gorinchem, The Netherlands
| |
Collapse
|
14
|
Wells AJ, Hoffman JR, Jajtner AR, Varanoske AN, Church DD, Gonzalez AM, Townsend JR, Boone CH, Baker KM, Beyer KS, Mangine GT, Oliveira LP, Fukuda DH, Stout JR. Monocyte Recruitment after High-Intensity and High-Volume Resistance Exercise. Med Sci Sports Exerc 2017; 48:1169-78. [PMID: 26784277 DOI: 10.1249/mss.0000000000000878] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED The innate immune response is generally considered to have an important role in tissue remodeling after resistance exercise. PURPOSE The purpose of this study was to compare changes in markers of monocyte recruitment after an acute bout of high-intensity (HVY) versus high-volume (VOL) lower-body resistance exercise. METHODS Ten resistance-trained men (24.7 ± 3.4 yr, 90.1 ± 11.3 kg, 176.0 ± 4.9 cm) performed each protocol in a randomized, counterbalanced order. Blood samples were collected at baseline, immediately (IP), 30 min (30P), 1 h (1H), 2 h (2H), and 5 h (5H) postexercise. Plasma concentrations of monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor alpha (TNF-α), myoglobin, and cortisol were measured via assay. Tumor necrosis factor receptor 1 (TNFr1), macrophage-1 antigen (cluster of differentiation 11b [CD11b]), and C-C chemokine receptor 2 (CCR2) expression levels were measured using flow cytometry. TNFr1 and CD11b were assessed on CD14CD16 monocytes, whereas CCR2 was assessed on CD14 monocytes. RESULTS Plasma myoglobin concentrations were significantly greater after HVY compared with VOL (P < 0.001). Changes in plasma TNF-α, MCP-1, and expression levels of CCR2 and CD11b were similar between HVY and VOL. When collapsed across groups, TNF-α was significantly increased at IP, 30P, 1H, and 2H (P values < 0.05), whereas MCP-1 was significantly elevated at all postexercise time points (P values < 0.05). CCR2 expression on CD14 monocytes was significantly lower at IP, 1H, 2H, and 5H (P values < 0.05). CD11b expression on CD14 CD16 was significantly greater at IP (P < 0.014) and 1H (P = 0.009). TNFr1 expression did not differ from baseline at any time point. Plasma cortisol concentrations did not seem to be related to receptor expression. CONCLUSIONS Results indicate that both HVY and VOL protocols stimulate a robust proinflammatory response. However, no differences were noted between resistance exercise training paradigms.
Collapse
Affiliation(s)
- Adam J Wells
- 1School of Health and Kinesiology, Georgia Southern University, Statesboro, GA; 2Institute of Exercise Physiology and Wellness; University of Central Florida, Orlando, FL; 3Department of Health Professions, Hofstra University, Hempstead, NY; and 4Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wells AJ, Jajtner AR, Varanoske AN, Church DD, Gonzalez AM, Townsend JR, Boone CH, Baker KM, Beyer KS, Mangine GT, Oliveira LP, Fukuda DH, Stout JR, Hoffman JR. Post-resistance exercise ingestion of milk protein attenuates plasma TNFα and TNFr1 expression on monocyte subpopulations. Amino Acids 2017; 49:1415-1426. [PMID: 28555251 DOI: 10.1007/s00726-017-2443-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Attenuating TNFα/TNFr1 signaling in monocytes has been proposed as a means of mitigating inflammation. The purpose of this study was to examine the effects of a milk protein supplement on TNFα and monocyte TNFr1 expression. Ten resistance-trained men (24.7 ± 3.4 years; 90.1 ± 11.3 kg; 176.0 ± 4.9 cm) ingested supplement (SUPP) or placebo (PL) immediately post-exercise in a randomized, cross-over design. Blood samples were obtained at baseline (BL), immediately (IP), 30-min (30P), 1-h (1H), 2-h (2H), and 5-h (5H) post-exercise to assess plasma concentrations of myoglobin; tumor necrosis factor-alpha (TNFα); and expression of tumor necrosis factor receptor 1 (TNFr1) on classical, intermediate, and non-classical monocytes. Magnitude-based inferences were used to provide inferences on the true effects of SUPP compared to PL. Plasma TNFα concentrations were "likely attenuated" (91.6% likelihood effect) from BL to 30P in the SUPP group compared with PL (d = 0.87; mean effect: 2.3 ± 2.4 pg mL-1). TNFr1 expressions on classical (75.9% likelihood effect) and intermediate (93.0% likelihood effect) monocytes were "likely attenuated" from BL to 2H in the SUPP group compared with PL (d = 0.67; mean effect: 510 ± 670 RFU, and d = 1.05; mean effect: 2500 ± 2300 RFU, respectively). TNFr1 expression on non-classical monocytes was "likely attenuated" (77.6% likelihood effect) from BL to 1H in the SUPP group compared with PL (d = 0.69; mean effect: 330 ± 430 RFU). Ingestion of a milk protein supplement immediately post-exercise appears to attenuate both plasma TNFα concentrations and TNFr1 expression on monocyte subpopulations in resistance-trained men.
Collapse
Affiliation(s)
- Adam J Wells
- Educational and Human Sciences, Institute of Exercise Physiology and Wellness, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816, USA.
| | - Adam R Jajtner
- School of Health Sciences, Kent State University, Kent, OH, 44242, USA
| | - Alyssa N Varanoske
- Educational and Human Sciences, Institute of Exercise Physiology and Wellness, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816, USA
| | - David D Church
- Educational and Human Sciences, Institute of Exercise Physiology and Wellness, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816, USA
| | - Adam M Gonzalez
- Department of Health Professions, Hofstra University, Hempstead, NY, 11549, USA
| | - Jeremy R Townsend
- Department of Kinesiology, Lipscomb University, Nashville, TN, 37204, USA
| | - Carleigh H Boone
- Educational and Human Sciences, Institute of Exercise Physiology and Wellness, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816, USA
| | - Kayla M Baker
- Educational and Human Sciences, Institute of Exercise Physiology and Wellness, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816, USA
| | - Kyle S Beyer
- Educational and Human Sciences, Institute of Exercise Physiology and Wellness, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816, USA
| | - Gerald T Mangine
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Leonardo P Oliveira
- Department of Orthopaedic Surgery, University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - David H Fukuda
- Educational and Human Sciences, Institute of Exercise Physiology and Wellness, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816, USA
| | - Jeffrey R Stout
- Educational and Human Sciences, Institute of Exercise Physiology and Wellness, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816, USA
| | - Jay R Hoffman
- Educational and Human Sciences, Institute of Exercise Physiology and Wellness, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816, USA
| |
Collapse
|
16
|
The Effect of Post-Resistance Exercise Amino Acids on Plasma MCP-1 and CCR2 Expression. Nutrients 2016; 8:nu8070409. [PMID: 27384580 PMCID: PMC4963885 DOI: 10.3390/nu8070409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 12/22/2022] Open
Abstract
The recruitment and infiltration of classical monocytes into damaged muscle is critical for optimal tissue remodeling. This study examined the effects of an amino acid supplement on classical monocyte recruitment following an acute bout of lower body resistance exercise. Ten resistance-trained men (24.7 ± 3.4 years; 90.1 ± 11.3 kg; 176.0 ± 4.9 cm) ingested supplement (SUPP) or placebo (PL) immediately post-exercise in a randomized, cross-over design. Blood samples were obtained at baseline (BL), immediately (IP), 30-min (30P), 1-h (1H), 2-h (2H), and 5-h (5H) post-exercise to assess plasma concentrations of monocyte chemoattractant protein 1 (MCP-1), myoglobin, cortisol and insulin concentrations; and expressions of C-C chemokine receptor-2 (CCR2), and macrophage-1 antigen (CD11b) on classical monocytes. Magnitude-based inferences were used to provide inferences on the true effects of SUPP compared to PL. Changes in myoglobin, cortisol, and insulin concentrations were similar between treatments. Compared to PL, plasma MCP-1 was “very likely greater” (98.1% likelihood effect) in SUPP at 2H. CCR2 expression was “likely greater” at IP (84.9% likelihood effect), “likely greater” at 1H (87.7% likelihood effect), “very likely greater” at 2H (97.0% likelihood effect), and “likely greater” at 5H (90.1% likelihood effect) in SUPP, compared to PL. Ingestion of SUPP did not influence CD11b expression. Ingestion of an amino acid supplement immediately post-exercise appears to help maintain plasma MCP-1 concentrations and augment CCR2 expression in resistance trained men.
Collapse
|
17
|
Gaida JE, Alfredson H, Forsgren S, Cook JL. A pilot study on biomarkers for tendinopathy: lower levels of serum TNF-α and other cytokines in females but not males with Achilles tendinopathy. BMC Sports Sci Med Rehabil 2016; 8:5. [PMID: 26925234 PMCID: PMC4768326 DOI: 10.1186/s13102-016-0026-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/21/2016] [Indexed: 12/16/2022]
Abstract
Background Achilles tendinopathy is a painful musculoskeletal condition that is common among athletes, and which limits training capacity and competitive performance. The lack of biomarkers for tendinopathy limits research into risk factors and also the evaluation of new treatments. Cytokines and growth factors involved in regulating the response of tendon cells to mechanical load have potential as biomarkers for tendinopathy. Methods This case–control study compared serum concentration of cytokines and growth factors (TNF-α, IL-1β, bFGF, PDFG-BB, IFN-γ, VEGF) between individuals with chronic Achilles tendinopathy and controls. These were measured in fasting serum from 22 individuals with chronic Achilles tendinopathy and 10 healthy controls. Results were analysed in relation to gender and physical activity pattern. Results TNF-α concentration was lower in the entire tendinopathy group compared with the entire control group; none of the other cytokines were significantly different. TNF-α levels were nevertheless highly correlated with the other cytokines measured, in most of the subgroups. Analysed by gender, TNF-α and PDGF-BB concentrations were lower in the female tendinopathy group but not the male tendinopathy group. A trend was seen for lower IL-1β in the female tendinopathy group. Physical activity was correlated with TNF-α, PDGF-BB and IL-1β to varying extents for control subgroups, but not for the female tendinopathy group. No correlations were seen with BMI or duration of symptoms. Conclusions This pilot study indicates a lower level of TNF-α and PDGF-BB, and to some extent IL-1β among females, but not males, in the chronic phase of Achilles tendinopathy. It is suggested that future studies on tendinopathy biomarkers analyse male and female data separately. The lack of correlation between cytokine level and physical activity in the female tendinopathy group warrants further study.
Collapse
Affiliation(s)
- James E Gaida
- University of Canberra Research Institute for Sport and Exercise (UCRISE), Canberra, Australia ; Discipline of Physiotherapy, University of Canberra, ACT 2601 Canberra, Australia ; Department of Surgical and Perioperative Sciences, Sports Medicine, Umeå University, Umeå, Sweden ; Department of Integrative Medical Biology, Anatomy Section, Umeå University, Umeå, Sweden
| | - Håkan Alfredson
- Department of Community Medicine and Rehabilitation, Umeå University, S-901 87 Umeå, Sweden ; Institute of Sport Exercise and Health, University College Hospital London, London, UK
| | - Sture Forsgren
- Department of Integrative Medical Biology, Anatomy Section, Umeå University, Umeå, Sweden
| | - Jill L Cook
- La Trobe University Sport and Exercise Medicine Research Centre, Melbourne, Australia
| |
Collapse
|