1
|
N'Guetta PEY, McLarnon SR, Tassou A, Geron M, Shirvan S, Hill RZ, Scherrer G, O'Brien LL. Comprehensive mapping of sensory and sympathetic innervation of the developing kidney. Cell Rep 2024; 43:114860. [PMID: 39412983 PMCID: PMC11616766 DOI: 10.1016/j.celrep.2024.114860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
The kidneys act as finely tuned sensors to maintain physiological homeostasis. Both sympathetic and sensory nerves modulate kidney function through precise neural control. However, how the kidneys are innervated during development to support function remains elusive. Using light-sheet and confocal microscopy, we generated anatomical maps of kidney innervation across development. Kidney innervation commences on embryonic day 13.5 (E13.5) as network growth aligns with arterial differentiation. Fibers are synapsin I+, highlighting ongoing axonogenesis and potential signaling crosstalk. By E17.5, axons associate with nephrons, and the network continues to expand postnatally. CGRP+, substance P+, TRPV1+, and PIEZO2+ sensory fibers and TH+ sympathetic fibers innervate the developing kidney. TH+ and PIEZO2+ axons similarly innervate the human kidney, following the arterial tree to reach targets. Retrograde tracing revealed the primary dorsal root ganglia, T10-L2, from which sensory neurons project to the kidneys. Together, our findings elucidate the temporality and neuronal diversity of kidney innervation.
Collapse
Affiliation(s)
- Pierre-Emmanuel Y N'Guetta
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah R McLarnon
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sepenta Shirvan
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rose Z Hill
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lori L O'Brien
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Kidney Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
N’Guetta PEY, McLarnon SR, Tassou A, Geron M, Shirvan S, Hill RZ, Scherrer G, O’Brien LL. Comprehensive mapping of sensory and sympathetic innervation of the developing kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.15.567276. [PMID: 38496522 PMCID: PMC10942422 DOI: 10.1101/2023.11.15.567276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The kidney functions as a finely tuned sensor to balance body fluid composition and filter out waste through complex coordinated mechanisms. This versatility requires tight neural control, with innervating efferent nerves playing a crucial role in regulating blood flow, glomerular filtration rate, water and sodium reabsorption, and renin release. In turn sensory afferents provide feedback to the central nervous system for the modulation of cardiovascular function. However, the cells targeted by sensory afferents and the physiological sensing mechanisms remain poorly characterized. Moreover, how the kidney is innervated during development to establish these functions remains elusive. Here, we utilized a combination of light-sheet and confocal microscopy to generate anatomical maps of kidney sensory and sympathetic nerves throughout development and resolve the establishment of functional crosstalk. Our analyses revealed that kidney innervation initiates at embryonic day (E)13.5 as the nerves associate with vascular smooth muscle cells and follow arterial differentiation. By E17.5 axonal projections associate with kidney structures such as glomeruli and tubules and the network continues to expand postnatally. These nerves are synapsin I-positive, highlighting ongoing axonogenesis and the potential for functional crosstalk. We show that sensory and sympathetic nerves innervate the kidney concomitantly and classify the sensory fibers as calcitonin gene related peptide (CGRP)+, substance P+, TRPV1+, and PIEZO2+, establishing the presence of PIEZO2 mechanosensory fibers in the kidney. Using retrograde tracing, we identified the primary dorsal root ganglia, T10-L2, from which PIEZO2+ sensory afferents project to the kidney. Taken together our findings elucidate the temporality of kidney innervation and resolve the identity of kidney sympathetic and sensory nerves.
Collapse
Affiliation(s)
- Pierre-Emmanuel Y. N’Guetta
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah R. McLarnon
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sepenta Shirvan
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA 92037
| | - Rose Z. Hill
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA 92037
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; New York Stem Cell Foundation – Robertson Investigator, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lori L. O’Brien
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Tian C, Ziegler JN, Zucker IH. Extracellular Vesicle MicroRNAs in Heart Failure: Pathophysiological Mediators and Therapeutic Targets. Cells 2023; 12:2145. [PMID: 37681877 PMCID: PMC10486980 DOI: 10.3390/cells12172145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Extracellular vesicles (EVs) are emerging mediators of intracellular and inter-organ communications in cardiovascular diseases (CVDs), especially in the pathogenesis of heart failure through the transference of EV-containing bioactive substances. microRNAs (miRNAs) are contained in EV cargo and are involved in the progression of heart failure. Over the past several years, a growing body of evidence has suggested that the biogenesis of miRNAs and EVs is tightly regulated, and the sorting of miRNAs into EVs is highly selective and tightly controlled. Extracellular miRNAs, particularly circulating EV-miRNAs, have shown promising potential as prognostic and diagnostic biomarkers for heart failure and as therapeutic targets. In this review, we summarize the latest progress concerning the role of EV-miRNAs in HF and their application in a therapeutic strategy development for heart failure.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Jessica N. Ziegler
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
4
|
Cao W, Yang Z, Liu X, Ren S, Su H, Yang B, Liu Y, Wilcox CS, Hou FF. A kidney-brain neural circuit drives progressive kidney damage and heart failure. Signal Transduct Target Ther 2023; 8:184. [PMID: 37169751 PMCID: PMC10175540 DOI: 10.1038/s41392-023-01402-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 05/13/2023] Open
Abstract
Chronic kidney disease (CKD) and heart failure (HF) are highly prevalent, aggravate each other, and account for substantial mortality. However, the mechanisms underlying cardiorenal interaction and the role of kidney afferent nerves and their precise central pathway remain limited. Here, we combined virus tracing techniques with optogenetic techniques to map a polysynaptic central pathway linking kidney afferent nerves to subfornical organ (SFO) and thereby to paraventricular nucleus (PVN) and rostral ventrolateral medulla that modulates sympathetic outflow. This kidney-brain neural circuit was overactivated in mouse models of CKD or HF and subsequently enhanced the sympathetic discharge to both the kidney and the heart in each model. Interruption of the pathway by kidney deafferentation, selective deletion of angiotensin II type 1a receptor (AT1a) in SFO, or optogenetic silence of the kidney-SFO or SFO-PVN projection decreased the sympathetic discharge and lessened structural damage and dysfunction of both kidney and heart in models of CKD and HF. Thus, kidney afferent nerves activate a kidney-brain neural circuit in CKD and HF that drives the sympathetic nervous system to accelerate disease progression in both organs. These results demonstrate the crucial role of kidney afferent nerves and their central connections in engaging cardiorenal interactions under both physiological and disease conditions. This suggests novel therapies for CKD or HF targeting this kidney-brain neural circuit.
Collapse
Affiliation(s)
- Wei Cao
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, PR China
| | - Zhichen Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, PR China
| | - Xiaoting Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, PR China
| | - Siqiang Ren
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence; Key Laboratory of Mental Health of the Ministry of Education; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China
| | - Huanjuan Su
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, PR China
| | - Bihui Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, PR China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, PR China
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension, Georgetown University Medical Central, Washington, DC, USA
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, PR China.
| |
Collapse
|
5
|
Miura T, Kuno A, Tanaka M. Diabetes modulation of the myocardial infarction- acute kidney injury axis. Am J Physiol Heart Circ Physiol 2022; 322:H394-H405. [PMID: 35089809 DOI: 10.1152/ajpheart.00639.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since there is crosstalk in functions of the heart and kidney, acute or chronic injury in one of the two organs provokes adaptive and/or maladaptive responses in both organs, leading to cardiorenal syndrome (CRS). Acute kidney injury (AKI) induced by acute heart failure is referred to as type 1 CRS, and a frequent cause of this type of CRS is acute myocardial infarction (AMI). Diabetes mellitus increases the risk of AMI and also the risk of AKI of various causes. However, there have been only a few studies in which animal models of diabetes were used to examine how diabetes modulates AMI-induced AKI. In this review, we summarize findings regarding the mechanisms of type 1 CRS and the impact of diabetes on both AMI and renal susceptibility to AKI and we discuss mechanisms by which diabetes modulates AMI-induced AKI. Hemodynamic alterations induced by AMI could be augmented by diabetes via its detrimental effect on infarct size and contractile function of the non-infarcted region in the heart. Diabetes increases susceptibility of renal cells to hypoxia and oxidative stress by modulation of signaling pathways that regulate cell survival and autophagy. Recent studies have shown that diabetes mellitus even at early stage of cardiomyopathy/nephropathy predisposes the kidney to AMI-induced AKI, in which activation of toll-like receptors and reactive oxygen species derived from NADPH oxidases are involved. Further analysis of crosstalk between diabetic cardiomyopathy and diabetic kidney disease is necessary for obtaining a more comprehensive understanding of modulation of the AMI-AKI axis by diabetes.
Collapse
Affiliation(s)
- Tetsuji Miura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan.,Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
6
|
Ernsberger U, Deller T, Rohrer H. The sympathies of the body: functional organization and neuronal differentiation in the peripheral sympathetic nervous system. Cell Tissue Res 2021; 386:455-475. [PMID: 34757495 PMCID: PMC8595186 DOI: 10.1007/s00441-021-03548-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
During the last 30 years, our understanding of the development and diversification of postganglionic sympathetic neurons has dramatically increased. In parallel, the list of target structures has been critically extended from the cardiovascular system and selected glandular structures to metabolically relevant tissues such as white and brown adipose tissue, lymphoid tissues, bone, and bone marrow. A critical question now emerges for the integration of the diverse sympathetic neuron classes into neural circuits specific for these different target tissues to achieve the homeostatic regulation of the physiological ends affected.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany.
| | - Thomas Deller
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany
| | - Hermann Rohrer
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany.
| |
Collapse
|
7
|
Sobowale CO, Hori Y, Ajijola OA. Neuromodulation Therapy in Heart Failure: Combined Use of Drugs and Devices. J Innov Card Rhythm Manag 2020; 11:4151-4159. [PMID: 32724706 PMCID: PMC7377644 DOI: 10.19102/icrm.2020.110705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is the fastest-growing cardiovascular disease globally. The autonomic nervous system plays an important role in the regulation and homeostasis of cardiac function but, once there is HF, it takes on a detrimental role in cardiac function that makes it a rational target. In this review, we cover the remodeling of the autonomic nervous system in HF and the latest treatments available targeting it.
Collapse
Affiliation(s)
- Christopher O Sobowale
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yuichi Hori
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Cardiology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
8
|
Chen WJ, Liu H, Wang ZH, Liu C, Fan JQ, Wang ZL, Xu YP, Zhang B, Gyawali L, Li Q, Ling ZY, Yin YH. The Impact of Renal Denervation on the Progression of Heart Failure in a Canine Model Induced by Right Ventricular Rapid Pacing. Front Physiol 2020; 10:1625. [PMID: 32082182 PMCID: PMC7004968 DOI: 10.3389/fphys.2019.01625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/24/2019] [Indexed: 01/25/2023] Open
Abstract
Heart failure (HF) has been proposed as a potential indication of renal denervation (RDN). However, the mechanisms enabling RDN to attenuate HF are not well understood, especially the central effects of RDN. The aim of this study was to decipher the mode of operation of RDN in the treatment of HF using a canine model of right ventricular rapid pacing-induced HF. Accordingly, 24 Chinese Kunming dogs were randomly grouped to receive sham procedure (sham-operated group), bilateral RDN (RDN group), rapid pacing to induce HF (HF-control group), and bilateral RDN plus rapid pacing (RDN + HF group). Echocardiography, plasma brain natriuretic peptide (BNP), and norepinephrine (NE) concentrations of randomized dogs were measured at baseline and 4 weeks after interventions, followed by histological and molecular analyses. Twenty dogs completed the research successfully and were enrolled for data analyses. Results showed that the average optical density of renal efferent and afferent nerves were significantly lower in the RDN and RDN + HF groups than in the sham-operated group, with a significant reduction of renal NE concentration. Rapid pacing in the RDN + HF and HF-control groups, compared with the sham-operated group, induced a significant increase in left ventricular end-diastolic volume and decrease in left ventricular ejection fraction and correspondingly resulted in cardiac fibrosis and dysfunction. Cardiac fibrosis evaluated by Masson’s trichrome staining and the expression of transforming growth factor-β1 (TGF-β1) were significantly higher in the HF-control group than in the sham-operated group, which were remarkably attenuated by the application of the RDN technique in the RDN + HF group. In terms of central renin–angiotensin system (RAS), the expression of angiotensin II (AngII)/angiotensin-converting enzyme (ACE)/AngII type 1 receptor (AT1R) in the hypothalamus of dogs in the HF-control group, compared with the sham-operated group, was upregulated and that of the angiotensin-(1-7) [Ang-(1-7)]/ACE2 was downregulated. Furthermore, both of them were significantly attenuated by the RDN therapy in the RDN + HF group. In conclusion, the RDN technique could damage renal nerves and suppress the cardiac remodeling procedure in canine with HF while concomitantly attenuating the overactivity of central RAS in the hypothalamus.
Collapse
Affiliation(s)
- Wei-Jie Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zi-Hao Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin-Qi Fan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng-Long Wang
- Department of Cardiology, The Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Yan-Ping Xu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Zhang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Laxman Gyawali
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Li
- Department of Cardiology, The People's Hospital of Chongqing Nanchuan District, Chongqing, China
| | - Zhi-Yu Ling
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue-Hui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Zheng H, Liu X, Katsurada K, Patel KP. Renal denervation improves sodium excretion in rats with chronic heart failure: effects on expression of renal ENaC and AQP2. Am J Physiol Heart Circ Physiol 2019; 317:H958-H968. [PMID: 31490733 DOI: 10.1152/ajpheart.00299.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Previously we have shown that increased expression of renal epithelial sodium channels (ENaC) may contribute to the renal sodium and water retention observed during chronic heart failure (CHF). The goal of this study was to examine whether renal denervation (RDN) changed the expressions of renal sodium transporters ENaC, sodium-hydrogen exchanger-3 proteins (NHE3), and water channel aquaporin 2 (AQP2) in rats with CHF. CHF was produced by left coronary artery ligation in rats. Four weeks after ligation surgery, surgical bilateral RDN was performed. The expression of ENaC, NHE3, and AQP2 in both renal cortex and medulla were measured. As a functional test for ENaC activation, diuretic and natriuretic responses to ENaC inhibitor benzamil were monitored in four groups of rats (Sham, Sham+RDN, CHF, CHF+RDN). Western blot analysis indicated that RDN (1 wk later) significantly reduced protein levels of α-ENaC, β-ENaC, γ-ENaC, and AQP2 in the renal cortex of CHF rats. RDN had no significant effects on the protein expression of kidney NHE3 in both Sham and CHF rats. Immunofluorescence studies of kidney sections confirmed the reduced signaling of ENaC and AQP2 in the CHF+RDN rats compared with the CHF rats. There were increases in diuretic and natriuretic responses to ENaC inhibitor benzamil in rats with CHF. RDN reduced the diuretic and natriuretic responses to benzamil in CHF rats. These findings suggest a critical role for renal nerves in the enhanced expression of ENaC and AQP2 and subsequent pathophysiology of renal sodium and water retention associated with CHF.NEW & NOTEWORTHY This is the first study to show in a comprehensive way that renal denervation initiated after a period of chronic heart failure reduces the expression of epithelial sodium channels and aquaporin 2 leading to reduced epithelial sodium channel function and sodium retention.
Collapse
Affiliation(s)
- Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota
| | - Xuefei Liu
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
10
|
Ramchandra R, Xing DT, Matear M, Lambert G, Allen AM, May CN. Neurohumoral interactions contributing to renal vasoconstriction and decreased renal blood flow in heart failure. Am J Physiol Regul Integr Comp Physiol 2019; 317:R386-R396. [DOI: 10.1152/ajpregu.00026.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In heart failure (HF), increases in renal sympathetic nerve activity (RSNA), renal norepinephrine spillover, and renin release cause renal vasoconstriction, which may contribute to the cardiorenal syndrome. To increase our understanding of the mechanisms causing renal vasoconstriction in HF, we investigated the interactions between the increased activity of the renal nerves and the renal release of norepinephrine and renin in an ovine pacing-induced model of HF compared with healthy sheep. In addition, we determined the level of renal angiotensin type-1 receptors and the renal vascular responsiveness to stimulation of the renal nerves and α1-adrenoceptors. In conscious sheep with mild HF (ejection fraction 35%–40%), renal blood flow (276 ± 13 to 185 ± 18 mL/min) and renal vascular conductance (3.8 ± 0.2 to 3.1 ± 0.2 mL·min−1·mmHg−1) were decreased compared with healthy sheep. There were increases in the burst frequency of RSNA (27%), renal norepinephrine spillover (377%), and plasma renin activity (141%), whereas the density of renal medullary angiotensin type-1 receptors decreased. In anesthetized sheep with HF, the renal vasoconstrictor responses to electrical stimulation of the renal nerves or to phenylephrine were attenuated. Irbesartan improved the responses to nerve stimulation, but not to phenylephrine, in HF and reduced the responses in normal sheep. In summary, in HF, the increases in renal norepinephrine spillover and plasma renin activity are augmented compared with the increase in RSNA. The vasoconstrictor effect of the increased renal norepinephrine and angiotensin II is offset by reduced levels of renal angiotensin type-1 receptors and reduced renal vasoconstrictor responsiveness to α1-adrenoceptor stimulation.
Collapse
Affiliation(s)
- Rohit Ramchandra
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Daniel T. Xing
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Marcus Matear
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Gavin Lambert
- Iverson Health Innovation Research Institute and Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew M. Allen
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Clive N. May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
McArdle Z, Pontes RB, Yao ST, Lankadeva YR, Singh RR, Hood SG, Schlaich MP, May CN, Booth LC. Blunted diuretic and natriuretic responses to acute sodium loading early after catheter-based renal denervation in normotensive sheep. Am J Physiol Regul Integr Comp Physiol 2019; 317:R319-R327. [DOI: 10.1152/ajpregu.00228.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Catheter-based renal denervation (RDN) was introduced as a treatment for resistant hypertension. There remain critical questions regarding the physiological mechanisms underlying the hypotensive effects of catheter-based RDN. Previous studies indicate that surgical denervation reduces renin and the natriuretic response to saline loading; however, the effects on these variables of catheter-based RDN, which does not yield complete denervation, are largely unknown. The aim of this study was to investigate the effects of catheter-based RDN on glomerular-associated renin and regulation of fluid and sodium homeostasis in response to physiological challenges. First, immunohistochemical staining for renin was performed in normotensive sheep ( n = 6) and sheep at 1 wk ( n = 6), 5.5 mo ( n = 5), and 11 mo ( n = 5) after unilateral RDN using the same catheter used in patients (Symplicity). Following catheter-based RDN (1 wk), renin-positive glomeruli were significantly reduced compared with sham animals ( P < 0.005). This was sustained until 5.5 mo postdenervation. To determine whether the reduction in renin after 1 wk had physiological effects, in a separate cohort, Merino ewes were administered high and low saline loads before and 1 wk after bilateral RDN ( n = 9) or sham procedure ( n = 8). After RDN (1 wk), the diuretic response to a low saline load was significantly reduced ( P < 0.05), and both the diuretic and natriuretic responses to a high saline load were significantly attenuated ( P < 0.05). In conclusion, these findings indicate that catheter-based RDN acutely alters the ability of the kidney to regulate fluid and electrolyte balance. Further studies are required to determine the long-term effects of catheter-based RDN on renal sodium and water homeostasis.
Collapse
Affiliation(s)
- Zoe McArdle
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Roberto B. Pontes
- Cardiovascular Division, Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | - Song T. Yao
- Faculty of Medicine, Dentistry and Health Sciences, Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Yugeesh R. Lankadeva
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Reetu R. Singh
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Sally G. Hood
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Markus P. Schlaich
- Dobney Hypertension Centre, School of Medicine-Royal Perth Hospital Unit, University of Western Australia, Perth, Australia
| | - Clive N. May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Lindsea C. Booth
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
AlMarabeh S, Abdulla MH, O'Halloran KD. Is Aberrant Reno-Renal Reflex Control of Blood Pressure a Contributor to Chronic Intermittent Hypoxia-Induced Hypertension? Front Physiol 2019; 10:465. [PMID: 31105584 PMCID: PMC6491928 DOI: 10.3389/fphys.2019.00465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Renal sensory nerves are important in the regulation of body fluid and electrolyte homeostasis, and blood pressure. Activation of renal mechanoreceptor afferents triggers a negative feedback reno-renal reflex that leads to the inhibition of sympathetic nervous outflow. Conversely, activation of renal chemoreceptor afferents elicits reflex sympathoexcitation. Dysregulation of reno-renal reflexes by suppression of the inhibitory reflex and/or activation of the excitatory reflex impairs blood pressure control, predisposing to hypertension. Obstructive sleep apnoea syndrome (OSAS) is causally related to hypertension. Renal denervation in patients with OSAS or in experimental models of chronic intermittent hypoxia (CIH), a cardinal feature of OSAS due to recurrent apnoeas (pauses in breathing), results in a decrease in circulating norepinephrine levels and attenuation of hypertension. The mechanism of the beneficial effect of renal denervation on blood pressure control in models of CIH and OSAS is not fully understood, since renal denervation interrupts renal afferent signaling to the brain and sympathetic efferent signals to the kidneys. Herein, we consider the currently proposed mechanisms involved in the development of hypertension in CIH disease models with a focus on oxidative and inflammatory mediators in the kidneys and their potential influence on renal afferent control of blood pressure, with wider consideration of the evidence available from a variety of hypertension models. We draw focus to the potential contribution of aberrant renal afferent signaling in the development, maintenance and progression of high blood pressure, which may have relevance to CIH-induced hypertension.
Collapse
Affiliation(s)
- Sara AlMarabeh
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Zheng H, Katsurada K, Liu X, Knuepfer MM, Patel KP. Specific Afferent Renal Denervation Prevents Reduction in Neuronal Nitric Oxide Synthase Within the Paraventricular Nucleus in Rats With Chronic Heart Failure. Hypertension 2019; 72:667-675. [PMID: 30012866 DOI: 10.1161/hypertensionaha.118.11071] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Renal denervation (RDN) has been shown to restore endogenous neuronal nitric oxide synthase (nNOS) in the paraventricular nucleus (PVN) and reduce sympathetic drive during chronic heart failure (CHF). The purpose of the present study was to assess the contribution of afferent renal nerves to the nNOS-mediated sympathetic outflow within the PVN in rats with CHF. CHF was induced in rats by ligation of the left coronary artery. Four weeks after surgery, selective afferent RDN (A-RDN) was performed by bilateral perivascular application of capsaicin on the renal arteries. Seven days after intervention, nNOS protein expression, nNOS immunostaining signaling, and diaphorase-positive stained cells were significantly decreased in the PVN of CHF rats, changes that were reversed by A-RDN. A-RDN reduced basal lumbar sympathetic nerve activity in rats with CHF (8.5%±0.5% versus 17.0%±1.2% of max). Microinjection of nNOS inhibitor L-NMMA (L-NG-monomethyl arginine citrate) into the PVN produced a blunted increase in lumbar sympathetic nerve activity in rats with CHF. This response was significantly improved after A-RDN (Δ lumbar sympathetic nerve activity: 25.7%±2.4% versus 11.2%±0.9%). Resting afferent renal nerves activity was substantially increased in CHF compared with sham rats (56.3%±2.4% versus 33.0%±4.7%). These results suggest that intact afferent renal nerves contribute to the reduction of nNOS in the PVN. A-RDN restores nNOS and thus attenuates the sympathoexcitation. Also, resting afferent renal nerves activity is elevated in CHF rats, which may highlight a crucial neural mechanism arising from the kidney in the maintenance of enhanced sympathetic drive in CHF.
Collapse
Affiliation(s)
- Hong Zheng
- From the Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (H.Z., X.L.)
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (K.K., K.P.P.)
| | - Xuefei Liu
- From the Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (H.Z., X.L.)
| | - Mark M Knuepfer
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, MO (M.M.K.)
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (K.K., K.P.P.)
| |
Collapse
|
14
|
Luo Q, Jin Q, Zhang N, Huang S, Han Y, Lin C, Ling T, Chen K, Pan W, Wu L. Antifibrillatory effects of renal denervation on ventricular fibrillation in a canine model of pacing-induced heart failure. Exp Physiol 2017; 103:19-30. [PMID: 29094471 DOI: 10.1113/ep086472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/27/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Qingzhi Luo
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Qi Jin
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Ning Zhang
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Shangwei Huang
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yanxin Han
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Changjian Lin
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Tianyou Ling
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Kang Chen
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Wenqi Pan
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Liqun Wu
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|
15
|
Abstract
Purpose of Review The etiology of hypertension, a critical public health issue affecting one in three US adults, involves the integration of the actions of multiple organ systems, including the renal sympathetic nerves. The renal sympathetic nerves, which are comprised of both afferent (sensory input) and efferent (sympathetic outflow) arms, have emerged as a major potential therapeutic target to treat hypertension and disease states exhibiting excess renal sympathetic activity. Recent Findings This review highlights recent advances in both clinical and basic science that have provided new insight into the distribution, function, and reinnervation of the renal sympathetic nerves, with a focus on the renal afferent nerves, in hypertension and hypertension-evoked disease states including salt-sensitive hypertension, obesity-induced hypertension, and chronic kidney disease. Summary Increased understanding of the differential role of the renal afferent versus efferent nerves in the pathophysiology of hypertension has the potential to identify novel targets and refine therapeutic interventions designed to treat hypertension.
Collapse
|
16
|
Prieto I, Segarra AB, Martinez-Canamero M, De Gasparo M, Zorad S, Ramirez-Sanchez M. Bidirectional asymmetry in the neurovisceral communication for the cardiovascular control: New insights. Endocr Regul 2017; 51:157-167. [DOI: 10.1515/enr-2017-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
The cardiovascular control involves a bidirectional functional connection between the brain and heart. We hypothesize that this connection could be extended to other organs using endocrine and autonomic nervous systems (ANS) as communication pathways. This implies a neuroendocrine interaction controlling particularly the cardiovascular function where the enzymatic cascade of the renin-angiotensin system (RAS) plays an essential role. It acts not only through its classic endocrine connection but also the ANS. In addition, the brain is functionally, anatomically, and neurochemically asymmetric. Moreover, this asymmetry goes even beyond the brain and it includes both sides of the peripheral nervous and neuroendocrine systems. We revised the available information and analyze the asymmetrical neuroendocrine bidirectional interaction for the cardiovascular control. Negative and positive correlations involving the RAS have been observed between brain, heart, kidney, gut, and plasma in physiologic and pathologic conditions. The central role of the peptides and enzymes of the RAS within this neurovisceral communication, as well as the importance of the asymmetrical distribution of the various RAS components in the pathologies involving this connection, are particularly discussed. In conclusion, there are numerous evidences supporting the existence of a neurovisceral connection with multiorgan involvement that controls, among others, the cardiovascular function. This connection is asymmetrically organized.
Collapse
Affiliation(s)
- I Prieto
- Unit of Physiology , University of Jaen , Jaen , Spain
| | - AB Segarra
- Unit of Physiology , University of Jaen , Jaen , Spain
| | | | - M De Gasparo
- Cardiovascular & Metabolic Syndrome Adviser , Rossemaison, Switzerland
| | - S Zorad
- Institute of Experimental Endocrinology , Biomedical Research Centre of the Slovak Academy of Sciences , Bratislava , Slovakia
| | | |
Collapse
|
17
|
Liao SY, Zhen Z, Liu Y, Au KW, Lai WH, Tsang A, Tse HF. Improvement of Myocardial Function Following Catheter-Based Renal Denervation in Heart Failure. ACTA ACUST UNITED AC 2017; 2:270-281. [PMID: 30062148 PMCID: PMC6034460 DOI: 10.1016/j.jacbts.2017.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/25/2017] [Accepted: 03/05/2017] [Indexed: 01/14/2023]
Abstract
A porcine model of heart failure was induced by myocardial infarction followed by rapid ventricular pacing for 4 weeks. Catheter-based renal denervation was performed using an expandable basket with 4 electrodes to deliver radiofrequency energy. Histological examination showed significant denervation of the renal arteries after the procedure. Compared with the control group, animals that received renal denervation showed significant improvement of cardiac function as determined by LV ejection fraction, maximum rate of LV pressure rise normalized to instantaneous developed pressure, and reduction of myocardial and renal norepinephrine gradient at 10 weeks after procedure.
Renal denervation (RD) is a potential novel nonpharmacological therapy for heart failure (HF). We performed bilateral catheter-based RD in 10 adult pigs and compared them with 10 control subjects after induction of HF to investigate the long-term beneficial effects of RD on left ventricular (LV) function and regional norepinephrine gradient after conventional HF pharmacological therapy. Compared with control subjects, animals treated with RD demonstrated an improvement in LV function and reduction of norepinephrine gradients over the myocardium and kidney at 10-week follow-up. Our results demonstrated that effective bilateral RD decrease regional norepinephrine gradients and improve LV contractile function compared with medical therapy alone.
Collapse
Affiliation(s)
- Song-Yan Liao
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China
| | - Zhe Zhen
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China
| | - Yuan Liu
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China
| | - Kai-Wing Au
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China
| | - Wing-Hon Lai
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China
| | - Anita Tsang
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China.,Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.,Shenzhen Institutes of Research and Innovation, University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Pinkham MI, Loftus MT, Amirapu S, Guild SJ, Quill G, Woodward WR, Habecker BA, Barrett CJ. Renal denervation in male rats with heart failure improves ventricular sympathetic nerve innervation and function. Am J Physiol Regul Integr Comp Physiol 2017; 312:R368-R379. [PMID: 28052866 DOI: 10.1152/ajpregu.00313.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/14/2016] [Accepted: 01/02/2017] [Indexed: 01/19/2023]
Abstract
Heart failure is characterized by the loss of sympathetic innervation to the ventricles, contributing to impaired cardiac function and arrhythmogenesis. We hypothesized that renal denervation (RDx) would reverse this loss. Male Wistar rats underwent myocardial infarction (MI) or sham surgery and progressed into heart failure for 4 wk before receiving bilateral RDx or sham RDx. After additional 3 wk, left ventricular (LV) function was assessed, and ventricular sympathetic nerve fiber density was determined via histology. Post-MI heart failure rats displayed significant reductions in ventricular sympathetic innervation and tissue norepinephrine content (nerve fiber density in the LV of MI+sham RDx hearts was 0.31 ± 0.05% vs. 1.00 ± 0.10% in sham MI+sham RDx group, P < 0.05), and RDx significantly increased ventricular sympathetic innervation (0.76 ± 0.14%, P < 0.05) and tissue norepinephrine content. MI was associated with an increase in fibrosis of the noninfarcted ventricular myocardium, which was attenuated by RDx. RDx improved LV ejection fraction and end-systolic and -diastolic areas when compared with pre-RDx levels. This is the first study to show an interaction between renal nerve activity and cardiac sympathetic nerve innervation in heart failure. Our findings show denervating the renal nerves improves cardiac sympathetic innervation and function in the post-MI failing heart.
Collapse
Affiliation(s)
| | - Michael T Loftus
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Satya Amirapu
- Department of Anatomy and Radiology, University of Auckland, Auckland, New Zealand
| | - Sarah-Jane Guild
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Gina Quill
- Department of Medicine, University of Auckland, Auckland, New Zealand; and
| | - William R Woodward
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Beth A Habecker
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Carolyn J Barrett
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Chen W, Du H, Lu J, Ling Z, Long Y, Xu Y, Xiao P, Gyawali L, Woo K, Yin Y, Zrenner B. Renal Artery Vasodilation May Be An Indicator of Successful Sympathetic Nerve Damage During Renal Denervation Procedure. Sci Rep 2016; 6:37218. [PMID: 27849014 PMCID: PMC5110962 DOI: 10.1038/srep37218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/26/2016] [Indexed: 12/23/2022] Open
Abstract
Autonomic nervous system plays a crucial role in maintaining and regulating vessel tension. Renal denervation (RDN) may induce renal artery vasodilation by damaging renal sympathetic fibers. We conducted this animal study to evaluate whether renal artery vasodilation could be a direct indicator of successful RDN. Twenty-eight Chinese Kunming dogs were randomly assigned into three groups and underwent RDN utilizing temperature-controlled catheter (group A, n = 11) or saline-irrigated catheter (group B, n = 11) or sham procedure (group C, n = 6). Renal angiography, blood pressure (BP) and renal artery vasodilation measurements were performed at baseline, 30-minute, 1-month, and 3-month after interventions. Plasma norepinephrine concentrations were tested at baseline and 3-month after intervention. Results showed that, in addition to significant BP reduction, RDN induced significant renal artery vasodilation. Correlation analyses showed that the induced renal artery vasodilation positively correlated with SBP reduction and plasma norepinephrine reduction over 3 months after ablation. Post hoc analyses showed that saline-irrigated catheter was superior to TC catheter in renal artery vasodilation, especially for the acute dilatation of renal artery at 30-minute after RDN. In conclusion, renal artery vasodilation, induced by RDN, may be a possible indicator of successful renal nerve damage and a predictor of blood pressure response to RDN.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Huaan Du
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Jiayi Lu
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Zhiyu Ling
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Yi Long
- Department of Cardiolgy, Chongqing Province Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yanping Xu
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Peilin Xiao
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Laxman Gyawali
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Kamsang Woo
- School of Life Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Yuehui Yin
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Bernhard Zrenner
- Medizinische Klinik I, Krankenhaus Landshut-Achdorf, Landshut, Germany
| |
Collapse
|
20
|
Zheng H, Patel KP. Integration of renal sensory afferents at the level of the paraventricular nucleus dictating sympathetic outflow. Auton Neurosci 2016; 204:57-64. [PMID: 27527558 DOI: 10.1016/j.autneu.2016.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
The sympathetic nervous system has been identified as a major contributor to the pathophysiology of chronic heart failure (CHF) and other diseases such as hypertension and diabetes, both in experimental animal models and patients. The kidneys have a dense afferent sensory innervation positioning it to be the origin of multimodal input to the central nervous system. Afferent renal nerve (ARN) signals are centrally integrated, and their activation results in a general increase in sympathetic tone, which is directed toward the kidneys as well as other peripheral organs innervated by the sympathetic nerves. In the central nervous system, stimulation of ARN increases the neuronal discharge frequency and neuronal activity in the paraventricular nucleus (PVN) of the hypothalamus. The activity of the neurons in the PVN is attenuated during iontophoretic application of glutamate receptor blocker, AP5. An enhanced afferent renal input to the PVN may be critically involved in dictating sympathoexcitation in CHF. Furthermore, renal denervation abrogates the enhanced neuronal activity within the PVN in rats with CHF, thereby possibly contributing to the reduction in sympathetic tone. Renal denervation also restores the decreased endogenous levels of neuronal nitric oxide synthase (nNOS) in the PVN of rats with CHF. Overall, these data demonstrate that sensory information originating in the kidney excites pre-autonomic sympathetic neurons within the PVN and this "renal-PVN afferent pathway" may contribute to elevated sympathetic nerve activity in hyper-sympathetic disease conditions such as CHF and hypertension.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States.
| |
Collapse
|
21
|
Ardell JL, Andresen MC, Armour JA, Billman GE, Chen PS, Foreman RD, Herring N, O'Leary DS, Sabbah HN, Schultz HD, Sunagawa K, Zucker IH. Translational neurocardiology: preclinical models and cardioneural integrative aspects. J Physiol 2016; 594:3877-909. [PMID: 27098459 DOI: 10.1113/jp271869] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various 'levels' become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics.
Collapse
Affiliation(s)
- J L Ardell
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - M C Andresen
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - J A Armour
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - G E Billman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - P-S Chen
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R D Foreman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - D S O'Leary
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - H N Sabbah
- Department of Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - H D Schultz
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Sunagawa
- Department of Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - I H Zucker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
22
|
Kishi T. Deep and future insights into neuromodulation therapies for heart failure. J Cardiol 2016; 68:368-372. [PMID: 27293020 DOI: 10.1016/j.jjcc.2016.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022]
Abstract
Major pathophysiology of heart failure is an autonomic nervous system dysfunction as a result of excess sympathoexcitation and/or withdrawal of vagal nerve activity. Although we already have various pharmacological and non-pharmacological therapies for heart failure, survival of heart failure patients remains around 50%. To achieve further reductions in morbidity and mortality of heart failure, neuromodulations with devices, such as baroreflex activating therapy, vagal nerve stimulation, renal sympathetic denervation, spinal cord stimulation, and left cardiac sympathetic denervation, have been expected. Although all of these neuromodulations have benefits on heart failure, efficacy, and safety in preclinical and small-sized clinical studies, the benefits on heart failure have been insufficient and controversial compared to our expectations in large-sized randomized trials. However, we should develop and apply these novel therapies for the patients with heart failure in the near future.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Collaborative Research Institute of Innovation for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan.
| |
Collapse
|
23
|
Abstract
Circulatory homeostasis is associated with interactions between multiple organs, and the disruption of dynamic circulatory homeostasis could be considered as heart failure. The brain is the central unit integrating neural and neurohormonal information from peripheral organs and controlling peripheral organs using the autonomic nervous system. Heart failure is worsened by abnormal sympathoexcitation associated with baroreflex failure and/or chemoreflex activation, and by vagal withdrawal, and autonomic modulation therapies have benefits for heart failure. Recently, we showed that baroreflex failure induces striking volume intolerance independent of left ventricular dysfunction. Many studies have indicated that an overactive renin-angiotensin system, excess oxidative stress and excess inflammation, and/or decreased nitric oxide in the brain cause sympathoexcitation in heart failure. We have demonstrated that angiotensin II type 1 receptor (AT1R)-induced oxidative stress in the rostral ventrolateral medulla (RVLM), which is known as a vasomotor center, causes prominent sympathoexcitation in heart failure model rats. Interestingly, systemic infusion of angiotensin II directly affects brain AT1R with sympathoexcitation and left ventricular diastolic dysfunction. Moreover, we have demonstrated that targeted deletion of AT1R in astrocytes strikingly improved survival with prevention of left ventricular remodeling and sympathoinhibition in myocardial infarction-induced heart failure. From these results, we believe it is possible that AT1R in astrocytes, not in neurons, have a key role in the pathophysiology of heart failure. We would like to propose a novel concept that the brain works as a central processing unit integrating neural and hormonal input, and that the disruption of dynamic circulatory homeostasis mediated by the brain causes heart failure.
Collapse
Affiliation(s)
- Takuya Kishi
- Collaborative Research Institute of Innovation for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine
| |
Collapse
|