1
|
Kornfield JM, Bright H, Drake MG. Touching a Nerve: Neuroimmune Interactions in Asthma. Immunol Rev 2025; 331:e70025. [PMID: 40186378 DOI: 10.1111/imr.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Asthma is an inflammatory airway disease characterized by excessive bronchoconstriction and airway hyperresponsiveness. Airway nerves play a crucial role in regulating these processes. In asthma, interactions between inflammatory cells and nerves result in nerve dysfunction, which worsens airway function. This review discusses new insights regarding the role of airway nerves in healthy lungs and examines how communication between nerves and leukocytes, including eosinophils, mast cells, dendritic cells, and innate lymphoid cells, contributes to nerve dysfunction and the worsening of airway disease. Clinical implications and therapeutic opportunities presented by neuroimmune interactions are also addressed.
Collapse
Affiliation(s)
- James M Kornfield
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health and Science University, Portland, Oregon, USA
| | - Hoyt Bright
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health and Science University, Portland, Oregon, USA
| | - Matthew G Drake
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Xing Y, Nho Y, Lawson K, Zhu Y, Ellison AE, Chang MY, Hancock W, Han L. MrgprC11 + Jugular Neurons Control Airway Hyperresponsiveness in Allergic Airway Inflammation. Am J Respir Cell Mol Biol 2025; 72:393-407. [PMID: 39405479 PMCID: PMC12005045 DOI: 10.1165/rcmb.2024-0153oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/15/2024] [Indexed: 04/02/2025] Open
Abstract
The lung is densely innervated by sensory nerves, the majority of which are derived from the vagal sensory neurons. Vagal ganglia consist of two different ganglia, termed nodose and jugular ganglia, with distinct embryonic origins, innervation patterns, and physiological functions in the periphery. Because nodose neurons constitute the majority of the vagal ganglia, our understanding of the function of jugular nerves in the lung is very limited. This study aims to investigate the role of MrgprC11+ jugular sensory neurons in a mouse allergic asthma model. Our previous study has shown that MrgprC11+ jugular neurons mediate cholinergic bronchoconstriction. In this study, we found that, in addition to MrgprC11, several other Mrgpr family members, including MrgprA3, MrgprB4, and MrgprD, are also specifically expressed in the jugular sensory neurons. MrgprC11+ jugular neurons exhibit dense innervation in the respiratory tract, including the larynx, trachea, proximal bronchus, and distal bronchus. We also found that receptors for IL-4 and oncostatin M, two critical cytokines promoting allergic airway inflammation, are mainly expressed in jugular sensory neurons. Both IL-4 and oncostatin M can sensitize the neuronal responses of MrgprC11+ jugular neurons. Moreover, ablation of MrgprC11+ neurons significantly inhibited airway hyperresponsiveness in the asthmatic lung, demonstrating the critical role of MrgprC11+ neurons in controlling airway constriction. Our results emphasize the critical role of jugular sensory neurons in respiratory diseases and present MrgprC11+ neurons as a potential therapeutic target for treating airway hyperresponsiveness.
Collapse
Affiliation(s)
- Yanyan Xing
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Yeseul Nho
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Katy Lawson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Yuyan Zhu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Alexandra E Ellison
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Margaret Y Chang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - William Hancock
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Liang Han
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
3
|
Li J, Liu Y. Vagal sensory circuits of the lower airway in respiratory physiology: Insights from neuronal diversity. Curr Opin Neurobiol 2025; 92:103000. [PMID: 40101474 DOI: 10.1016/j.conb.2025.103000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 03/20/2025]
Abstract
Sensory neurons innervating the lower airway provide essential feedback information that regulates respiratory physiology. These neurons synapse with second-order neurons in the central nervous system, which project directly or indirectly to the respiratory and autonomic centers. Both primary sensory neurons and second-order neurons within these circuits exhibit significant heterogeneity, and the precise roles of individual neuronal subtypes in coding the airway's internal states and modulating respiratory and autonomic outputs remain incompletely understood. In this review, we summarize recent advances in understanding the neuronal diversity along sensory circuits of the lower airway and their physiological functions. We also highlight the challenges in elucidating the roles of specific neuronal subtypes due to the extensive molecular and anatomical diversity among these neurons. Improving targeting specificity for neuronal manipulation, combined with the development of a comprehensive connectivity map, will be critical for revealing the coding and wiring logics that underlie the precise control of respiratory physiology.
Collapse
Affiliation(s)
- Jie Li
- HHMI/Janelia Research Campus, Ashburn, VA 20147, USA
| | - Yin Liu
- HHMI/Janelia Research Campus, Ashburn, VA 20147, USA.
| |
Collapse
|
4
|
Poliacek I, Veterník M, Martvon L, Simera M, Cibulkova L, Kotmanova Z, Berikova D, Bolser DC. Peripheral antitussives affect temporal features of tracheobronchial coughing in cats. J Appl Physiol (1985) 2025; 138:22-30. [PMID: 39561004 DOI: 10.1152/japplphysiol.00551.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
The influence of peripheral antitussive drugs on spatiotemporal features of coughing has not been reported. We hypothesized that this class of compounds would alter the cough motor pattern, in part, by lengthening cough phases. Peripherally acting antitussives, 3-aminopropylphosphinic acid (3APPi, 5 mg/kg) and levodropropizine (Levo, 3 mg/kg) were injected intravenously in anesthetized spontaneously breathing cats (13 males, 2 females; 4.38 ± 0.19 kg). Spatio-temporal analysis of cough induced by mechanical stimulation of the trachea showed significant reductions in cough number and expiratory cough efforts after the administration of each drug. A significant reduction in inspiratory cough efforts occurred after Levo. Both drugs induced temporal changes in the cough motor pattern, including prolongations of inspiratory phase, inspiratory-expiratory transition, total cough diaphragm activity, and total cough cycle duration. Levo also significantly lengthened the expiratory phase of cough. A shortening of the overlap between diaphragm and abdominal activity and cough abdominal electromyogram (EMG) activity was observed after the administration of 3APPi. No significant changes in cardiorespiratory data were seen, with the exception of prolonged expiratory phase after 3APPi and lower blood pressure after Levo. Peripherally induced cough suppression is accompanied with changes in cough temporal characteristics that are not observed after the administration of centrally acting antitussives. The motor output produced by the cough central pattern generator differs significantly when coughing is perturbed by peripherally and centrally acting antitussives.NEW & NOTEWORTHY In a study on anesthetized cats, peripherally acting antitussives 3-aminopropylphosphinic acid (3APPi) and levodropropizine (Levo) significantly reduced cough number and expiratory efforts, with Levo also reducing inspiratory efforts. Both antitussives altered the cough motor pattern, extending various cough phases. 3APPi shortened diaphragm-abdominal activity overlap, whereas Levo decreased the respiratory rate. These changes contrast with those induced by centrally acting antitussives.
Collapse
Affiliation(s)
- Ivan Poliacek
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marcel Veterník
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lukas Martvon
- Medical Education Support Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Simera
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lucia Cibulkova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kotmanova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Denisa Berikova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
5
|
Xu YZ, Xu ZY, Fu HX, Yue M, Li JQ, Cui CP, Wu D, Li BY. Caution for Multidrug Therapy: Significant Baroreflex Afferent Neuroexcitation Coordinated by Multi-Channels/Pumps Under the Threshold Concentration of Yoda1 and Dobutamine Combination. Biomolecules 2024; 14:1311. [PMID: 39456244 PMCID: PMC11506362 DOI: 10.3390/biom14101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Multi-drug therapies are common in cardiovascular disease intervention; however, io channel/pump coordination has not been tested electrophysiologically. Apparently, inward currents were not elicited by Yoda1/10 nM or Dobutamine/100 nM alone in Ah-type baroreceptor neurons, but were by their combination. To verify this, electroneurography and the whole-cell patch-clamp technique were performed. The results showed that Ah- and C-volley were dramatically increased by the combination at 0.5 V and 5 V, in contrast to A-volley, as consistent with repetitive discharge elicited by step and ramp with markedly reduced current injection/stimulus intensity. Notably, a frequency-dependent action potential (AP) duration was increased with Iberiotoxin-sensitive K+ component. Furthermore, an increased peak in AP measured in phase plots suggested enhanced Na+ influx, cytoplasmic Ca2+ accumulation through reverse mode of Na+/Ca2+ exchanger, and, consequently, functional KCa1.1 up-regulation. Strikingly, the Yoda1- or Dbtm-mediated small/transient Na+/K+-pump currents were robustly increased by their combination, implying a quick ion equilibration that may also be synchronized by hyperpolarization-induced voltage-sag, enabling faster repetitive firing. These novel findings demonstrate multi-channel/pump collaboration together to integrate neurotransmission at the cellular level for baroreflex, providing an afferent explanation in sexual dimorphic blood pressure regulation, and raising the caution regarding the individual drug concentration in multi-drug therapies to optimize efficacy and minimize toxicity.
Collapse
Affiliation(s)
- Yin-zhi Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhao-yuan Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hui-xiao Fu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mao Yue
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jia-qun Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chang-peng Cui
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Di Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Bai-yan Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
6
|
Moe AAK, Bautista TG, Trewella MW, Korim WS, Yao ST, Behrens R, Driessen AK, McGovern AE, Mazzone SB. Investigation of vagal sensory neurons in mice using optical vagal stimulation and tracheal neuroanatomy. iScience 2024; 27:109182. [PMID: 38414860 PMCID: PMC10897902 DOI: 10.1016/j.isci.2024.109182] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
In rats and guinea pigs, sensory innervation of the airways is derived largely from the vagus nerve, with the extrapulmonary airways innervated by Wnt1+ jugular neurons and the intrapulmonary airways and lungs by Phox2b+ nodose neurons; however, our knowledge of airway innervation in mice is limited. We used genetically targeted expression of enhanced yellow fluorescent protein-channelrhodopsin-2 (EYFP-ChR2) in Wnt1+ or Phox2b+ tissues to characterize jugular and nodose-mediated physiological responses and airway innervation in mice. With optical stimulation, Phox2b+ vagal fibers modulated cardiorespiratory function in a frequency-dependent manner while right Wnt1+ vagal fibers induced a small increase in respiratory rate. Mouse tracheae contained sparse Phox2b-EYFP fibers but dense networks of Wnt1-EYFP fibers. Retrograde tracing from the airways showed limited tracheal innervation by the jugular sensory neurons, distinct from other species. These differences in physiology and vagal sensory distribution have important implications when using mice for studying airway neurobiology.
Collapse
Affiliation(s)
- Aung Aung Kywe Moe
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Clayton Campus, Clayton, VIC 3800, Australia
| | - Tara G Bautista
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew W Trewella
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Willian S Korim
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Song T Yao
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robert Behrens
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexandria K Driessen
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alice E McGovern
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
7
|
Bordoni B, Escher AR. Motor Dysfunctions in Fibromyalgia Patients: The Importance of Breathing. Open Access Rheumatol 2024; 16:55-66. [PMID: 38476512 PMCID: PMC10929242 DOI: 10.2147/oarrr.s442327] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
The classification of fibromyalgia (FM) is not always immediate and simple, with the time from the first diagnosis, compared to the onset of symptoms, of a few years. Currently, we do not have instrumental or biochemical tests considered as gold standards; the clinician will make a diagnosis of FM based on the patient's medical history and subjective assessment. The symptoms can involve physical, cognitive and psychological disorders, with the presence of pain of different origins and classifications: nociplastic, nociceptive and neuropathic pain. Among the symptoms highlighted, postural disorders and neuromotor uncoordination emerge, whose functional dysfunctions can increase the mortality and morbidity rate. An alteration of the diaphragm muscle could generate such functional motor problems. Considering that the current literature underestimates the importance of breathing in FM, the article aims to highlight the relationship between motor and diaphragmatic difficulties in the patient, soliciting new points of view for the clinical and therapeutic framework.
Collapse
Affiliation(s)
- Bruno Bordoni
- Dipartimento di Cardiologia, Fondazione Don Carlo Gnocchi IRCCS, Istituto di Ricovero e Cura, S Maria Nascente, Milano, 20100, Italia
| | - Allan R Escher
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| |
Collapse
|
8
|
Wang Q, Caraballo SG, Rychkov G, McGovern AE, Mazzone SB, Brierley SM, Harrington AM. Comparative localization of colorectal sensory afferent central projections in the mouse spinal cord dorsal horn and caudal medulla dorsal vagal complex. J Comp Neurol 2024; 532:e25546. [PMID: 37837642 DOI: 10.1002/cne.25546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/04/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
The distal colon and rectum (colorectum) are innervated by spinal and vagal afferent pathways. The central circuits into which vagal and spinal afferents relay colorectal nociceptive information remain to be comparatively assessed. To address this, regional colorectal retrograde tracing and colorectal distension (CRD)-evoked neuronal activation were used to compare the circuits within the dorsal vagal complex (DVC) and dorsal horn (thoracolumbar [TL] and lumbosacral [LS] spinal levels) into which vagal and spinal colorectal afferents project. Vagal afferent projections were observed in the nucleus tractus solitarius (NTS), area postrema (AP), and dorsal motor nucleus of the vagus (DMV), labeled from the rostral colorectum. In the NTS, projections were opposed to catecholamine and pontine parabrachial nuclei (PbN)-projecting neurons. Spinal afferent projections were labeled from rostral through to caudal aspects of the colorectum. In the dorsal horn, the number of neurons activated by CRD was linked to pressure intensity, unlike in the DVC. In the NTS, 13% ± 0.6% of CRD-activated neurons projected to the PbN. In the dorsal horn, at the TL spinal level, afferent input was associated with PbN-projecting neurons in lamina I (LI), with 63% ± 3.15% of CRD-activated neurons in LI projecting to the PbN. On the other hand, at the LS spinal level, only 18% ± 0.6% of CRD-activated neurons in LI projected to the PbN. The collective data identify differences in the central neuroanatomy that support the disparate roles of vagal and spinal afferent signaling in the facilitation and modulation of colorectal nociceptive responses.
Collapse
Affiliation(s)
- QingQing Wang
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Sonia Garcia Caraballo
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Grigori Rychkov
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Alice E McGovern
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Kornfield J, De La Torre U, Mize E, Drake MG. Illuminating Airway Nerve Structure and Function in Chronic Cough. Lung 2023; 201:499-509. [PMID: 37985513 PMCID: PMC10673771 DOI: 10.1007/s00408-023-00659-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Airway nerves regulate vital airway functions including bronchoconstriction, cough, and control of respiration. Dysregulation of airway nerves underlies the development and manifestations of airway diseases such as chronic cough, where sensitization of neural pathways leads to excessive cough triggering. Nerves are heterogeneous in both expression and function. Recent advances in confocal imaging and in targeted genetic manipulation of airway nerves have expanded our ability to visualize neural organization, study neuro-immune interactions, and selectively modulate nerve activation. As a result, we have an unprecedented ability to quantitatively assess neural remodeling and its role in the development of airway disease. This review highlights our existing understanding of neural heterogeneity and how advances in methodology have illuminated airway nerve morphology and function in health and disease.
Collapse
Affiliation(s)
- James Kornfield
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Ubaldo De La Torre
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Emily Mize
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Matthew G Drake
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA.
| |
Collapse
|
10
|
Behrens R, Dutschmann M, Trewella M, Mazzone SB, Moe AAK. Regulation of vagally-evoked respiratory responses by the lateral parabrachial nucleus in the mouse. Respir Physiol Neurobiol 2023; 316:104141. [PMID: 37597796 DOI: 10.1016/j.resp.2023.104141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Vagal sensory inputs to the brainstem can alter breathing through the modulation of pontomedullary respiratory circuits. In this study, we set out to investigate the localised effects of modulating lateral parabrachial nucleus (LPB) activity on vagally-evoked changes in breathing pattern. In isoflurane-anaesthetised and instrumented mice, electrical stimulation of the vagus nerve (eVNS) produced stimulation frequency-dependent changes in diaphragm electromyograph (dEMG) activity with an evoked tachypnoea and apnoea at low and high stimulation frequencies, respectively. Muscimol microinjections into the LPB significantly attenuated eVNS-evoked respiratory rate responses. Notably, muscimol injections reaching the caudal LPB, previously unrecognised for respiratory modulation, potently modulated eVNS-evoked apnoea, whilst muscimol injections reaching the intermediate LPB selectively modulated the eVNS-evoked tachypnoea. The effects of muscimol on eVNS-evoked breathing rate changes occurred without altering basal eupneic breathing. These results highlight novel roles for the LPB in regulating vagally-evoked respiratory reflexes.
Collapse
Affiliation(s)
- Robert Behrens
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Matthew Trewella
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia.
| | - Aung Aung Kywe Moe
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia; Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
| |
Collapse
|
11
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
12
|
Kim SH, Patil MJ, Hadley SH, Bahia PK, Butler SG, Madaram M, Taylor-Clark TE. Mapping of the Sensory Innervation of the Mouse Lung by Specific Vagal and Dorsal Root Ganglion Neuronal Subsets. eNeuro 2022; 9:ENEURO.0026-22.2022. [PMID: 35365503 PMCID: PMC9015009 DOI: 10.1523/eneuro.0026-22.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022] Open
Abstract
The airways are densely innervated by sensory afferent nerves, whose activation regulates respiration and triggers defensive reflexes (e.g., cough, bronchospasm). Airway innervation is heterogeneous, and distinct afferent subsets have distinct functional responses. However, little is known of the innervation patterns of subsets within the lung. A neuroanatomical map is critical for understanding afferent activation under physiological and pathophysiological conditions. Here, we quantified the innervation of the mouse lung by vagal and dorsal root ganglion (DRG) sensory subsets defined by the expression of Pirt (all afferents), 5HT3 (vagal nodose afferents), Tac1 (tachykinergic afferents), and transient receptor potential vanilloid 1 channel (TRPV1; defensive/nociceptive afferents) using Cre-mediated reporter expression. We found that vagal afferents innervate almost all conducting airways and project into the alveolar region, whereas DRG afferents only innervate large airways. Of the two vagal ganglia, only nodose afferents project into the alveolar region, but both nodose and jugular afferents innervate conducting airways throughout the lung. Many afferents that project into the alveolar region express TRPV1. Few DRG afferents expressed TRPV1. Approximately 25% of blood vessels were innervated by vagal afferents (many were Tac1+). Approximately 10% of blood vessels had DRG afferents (some were Tac1+), but this was restricted to large vessels. Lastly, innervation of neuroepithelial bodies (NEBs) correlated with the cell number within the bodies. In conclusion, functionally distinct sensory subsets have distinct innervation patterns within the conducting airways, alveoli and blood vessels. Physiologic (e.g., stretch) and pathophysiological (e.g., inflammation, edema) stimuli likely vary throughout these regions. Our data provide a neuroanatomical basis for understanding afferent responses in vivo.
Collapse
Affiliation(s)
- Seol-Hee Kim
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Mayur J Patil
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Stephen H Hadley
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Parmvir K Bahia
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Shane G Butler
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Meghana Madaram
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Thomas E Taylor-Clark
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| |
Collapse
|
13
|
Abstract
This chapter broadly reviews cardiopulmonary sympathetic and vagal sensors and their reflex functions during physiologic and pathophysiologic processes. Mechanosensory operating mechanisms, including their central projections, are described under multiple sensor theory. In addition, ways to interpret evidence surrounding several controversial issues are provided, with detailed reasoning on how conclusions are derived. Cardiopulmonary sensory roles in breathing control and the development of symptoms and signs and pathophysiologic processes in cardiopulmonary diseases (such as cough and neuroimmune interaction) also are discussed.
Collapse
Affiliation(s)
- Jerry Yu
- Department of Medicine (Pulmonary), University of Louisville, and Robley Rex VA Medical Center, Louisville, KY, United States.
| |
Collapse
|
14
|
Taylor-Clark TE, Undem BJ. Neural control of the lower airways: Role in cough and airway inflammatory disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:373-391. [PMID: 35965034 PMCID: PMC10688079 DOI: 10.1016/b978-0-323-91534-2.00013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Airway function is under constant neurophysiological control, in order to maximize airflow and gas exchange and to protect the airways from aspiration, damage, and infection. There are multiple sensory nerve subtypes, whose disparate functions provide a wide array of sensory information into the CNS. Activation of these subtypes triggers specific reflexes, including cough and alterations in autonomic efferent control of airway smooth muscle, secretory cells, and vasculature. Importantly, every aspect of these reflex arcs can be impacted and altered by local inflammation caused by chronic lung disease such as asthma, bronchitis, and infections. Excessive and inappropriate activity in sensory and autonomic nerves within the airways is thought to contribute to the morbidity and symptoms associated with lung disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Bradley J Undem
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
15
|
Yu X, Hu Y, Yu M, Undem BJ, Yu S. Deoxycholic acid activates and sensitizes vagal nociceptive afferent C-fibers in guinea pig esophagus. Am J Physiol Gastrointest Liver Physiol 2021; 321:G149-G156. [PMID: 34160291 PMCID: PMC8410107 DOI: 10.1152/ajpgi.00187.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bile acid reflux in the esophagus plays a role in the pathogenesis of certain esophageal disorders, where it can induce esophageal pain and heartburn. The present study aimed to determine whether bile acid, deoxycholic acid (DCA), directly activates and sensitizes esophageal vagal nociceptive afferent C-fiber subtypes. DCA-elicited effects on vagal nodose and jugular neurons were studied by calcium imaging. Its effects on esophageal-labeled nodose and jugular neurons were then determined by patch-clamp recording. At nodose and jugular C-fiber nerve endings in the esophagus, DCA-evoked action potentials (APs) were compared by extracellular single-unit recordings in ex vivo esophageal-vagal preparations. DCA application induced calcium influxes in nodose and jugular neurons and elicited inward currents in esophageal-labeled nodose and jugular neurons. In the presence of DCA, the current densities elicited by capsaicin were enhanced in those labeled neurons. Consistently, DCA perfusion at nerve terminals in the esophagus evoked APs in about 50% of esophageal nodose and jugular C-fibers. In DCA-sensitive C-fibers, DCA perfusion also sensitized the fibers such that the subsequent response to capsaicin was amplified. Collectively, these results provide new evidence that DCA directly activates and sensitizes nociceptive nodose and jugular C-fibers in the esophagus. Such activation and sensitization effects may contribute to bile acid-induced esophageal nociceptive symptoms that are refractory to proton-pump inhibitor therapy.NEW & NOTEWORTHY Bile acid reflux in the esophagus can induce pain and heartburn in certain esophageal disorders, but the underlying neuronal mechanism is still unclear. The present study demonstrated that bile acid, deoxycholic acid (DCA), directly activates esophageal vagal afferent nodose and jugular nociceptive C-fibers and sensitizes their response to capsaicin. Such effects may contribute to bile acid-induced esophageal nociceptive symptoms that refractory to proton-pump inhibitors (PPIs) therapy.
Collapse
Affiliation(s)
- Xiaoyun Yu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Youtian Hu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mingwei Yu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bradley J. Undem
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shaoyong Yu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
Yu M, Chang C, Undem BJ, Yu S. Capsaicin-Sensitive Vagal Afferent Nerve-Mediated Interoceptive Signals in the Esophagus. Molecules 2021; 26:3929. [PMID: 34203134 PMCID: PMC8271978 DOI: 10.3390/molecules26133929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/14/2023] Open
Abstract
Heartburn and non-cardiac chest pain are the predominant symptoms in many esophageal disorders, such as gastroesophageal reflux disease (GERD), non-erosive reflux disease (NERD), functional heartburn and chest pain, and eosinophilic esophagitis (EoE). At present, neuronal mechanisms underlying the process of interoceptive signals in the esophagus are still less clear. Noxious stimuli can activate a subpopulation of primary afferent neurons at their nerve terminals in the esophagus. The evoked action potentials are transmitted through both the spinal and vagal pathways to their central terminals, which synapse with the neurons in the central nervous system to induce esophageal nociception. Over the last few decades, progress has been made in our understanding on the peripheral and central neuronal mechanisms of esophageal nociception. In this review, we focus on the roles of capsaicin-sensitive vagal primary afferent nodose and jugular C-fiber neurons in processing nociceptive signals in the esophagus. We briefly compare their distinctive phenotypic features and functional responses to mechanical and chemical stimulations in the esophagus. Then, we summarize activation and/or sensitization effects of acid, inflammatory cells (eosinophils and mast cells), and mediators (ATP, 5-HT, bradykinin, adenosine, S1P) on these two nociceptive C-fiber subtypes. Lastly, we discuss the potential roles of capsaicin-sensitive esophageal afferent nerves in processing esophageal sensation and nociception. A better knowledge of the mechanism of nociceptive signal processes in primary afferent nerves in the esophagus will help to develop novel treatment approaches to relieve esophageal nociceptive symptoms, especially those that are refractory to proton pump inhibitors.
Collapse
Affiliation(s)
| | | | | | - Shaoyong Yu
- Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, 720 Rutland Ave, Baltimore, MD 21205, USA; (M.Y.); (C.C.); (B.J.U.)
| |
Collapse
|
17
|
Zhang M, Du S, Ou H, Cui R, Jiang N, Lin Y, Ge R, Ma D, Zhang J. Ablation of Zfhx4 results in early postnatal lethality by disrupting the respiratory center in mice. J Mol Cell Biol 2021; 13:210-224. [PMID: 33475140 PMCID: PMC8260053 DOI: 10.1093/jmcb/mjaa081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/19/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Breathing is an integrated motor behavior that is driven and controlled by a network of brainstem neurons. Zfhx4 is a zinc finger transcription factor and our results showed that it was specifically expressed in several regions of the mouse brainstem. Mice lacking Zfhx4 died shortly after birth from an apparent inability to initiate respiration. We also found that the electrical rhythm of brainstem‒spinal cord preparations was significantly depressed in Zfhx4-null mice compared to wild-type mice. Immunofluorescence staining revealed that Zfhx4 was coexpressed with Phox2b and Math1 in the brainstem and that Zfhx4 ablation greatly decreased the expression of these proteins, especially in the retrotrapezoid nucleus. Combined ChIP‒seq and mRNA expression microarray analysis identified Phox2b as the direct downstream target gene of Zfhx4, and this finding was validated by ChIP‒qPCR. Previous studies have reported that both Phox2b and Math1 play key roles in the development of the respiratory center, and Phox2b and Math1 knockout mice are neonatal lethal due to severe central apnea. On top of this, our study revealed that Zfhx4 is a critical regulator of Phox2b expression and essential for perinatal breathing.
Collapse
Affiliation(s)
- Meiqin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sichen Du
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huayuan Ou
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Renjie Cui
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yifeng Lin
- Children's Hospital, Fudan University, Shanghai 201102, China
| | - Runsheng Ge
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Children's Hospital, Fudan University, Shanghai 201102, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Taylor-Clark TE. Molecular identity, anatomy, gene expression and function of neural crest vs. placode-derived nociceptors in the lower airways. Neurosci Lett 2020; 742:135505. [PMID: 33197519 DOI: 10.1016/j.neulet.2020.135505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
The lower airways (larynx to alveoli) are protected by a complex array of neural networks that regulate respiration and airway function. Harmful stimuli trigger defensive responses such as apnea, cough and bronchospasm by activating a subpopulation of sensory afferent nerves (termed nociceptors) which are found throughout the airways. Airway nociceptive fibers are projected from the nodose vagal ganglia, the jugular vagal ganglia and the dorsal root ganglia, which are derived from distinct embryological sources: the former from the epibranchial placodes, the latter two from the neural crest. Embryological source determines nociceptive gene expression of receptors and neurotransmitters and recent evidence suggests that placode- and neural crest-derived nociceptors have distinct stimuli sensitivity, innervation patterns and functions. Improved understanding of the function of each subset in specific reflexes has substantial implications for therapeutic targeting of the neuronal components of airway disease such as asthma, viral infections and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
19
|
Abstract
Air pollutants pose a serious worldwide health hazard, causing respiratory and cardiovascular morbidity and mortality. Pollutants perturb the autonomic nervous system, whose function is critical to cardiopulmonary homeostasis. Recent studies suggest that pollutants can stimulate defensive sensory nerves within the cardiopulmonary system, thus providing a possible mechanism for pollutant-induced autonomic dysfunction. A better understanding of the mechanisms involved would likely improve the management and treatment of pollution-related disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
20
|
Descending Modulation of Laryngeal Vagal Sensory Processing in the Brainstem Orchestrated by the Submedius Thalamic Nucleus. J Neurosci 2020; 40:9426-9439. [PMID: 33115928 DOI: 10.1523/jneurosci.2430-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
The nodose and jugular vagal ganglia supply sensory innervation to the airways and lungs. Jugular vagal airway sensory neurons wire into a brainstem circuit with ascending projections into the submedius thalamic nucleus (SubM) and ventrolateral orbital cortex (VLO), regions known to regulate the endogenous analgesia system. Here we investigate whether the SubM-VLO circuit exerts descending regulation over airway vagal reflexes in male and female rats using a range of neuroanatomical tracing, reflex physiology, and chemogenetic techniques. Anterograde and retrograde neuroanatomical tracing confirmed the connectivity of the SubM and VLO. Laryngeal stimulation in anesthetized rats reduced respiration, a reflex that was potently inhibited by activation of SubM. Conversely, inhibition of SubM potentiated laryngeal reflex responses, while prior lesions of VLO abolished the effects of SubM stimulation. In conscious rats, selective chemogenetic activation of SubM neurons specifically projecting to VLO significantly inhibited respiratory responses evoked by inhalation of the nociceptor stimulant capsaicin. Jugular vagal inputs to SubM via the medullary paratrigeminal nucleus were confirmed using anterograde transsynaptic conditional herpes viral tracing. Respiratory responses evoked by microinjections of capsaicin into the paratrigeminal nucleus were significantly attenuated by SubM stimulation, whereas those evoked via the nucleus of the solitary tract were unaltered. These data suggest that jugular vagal sensory pathways input to a nociceptive thalamocortical circuit capable of regulating jugular sensory processing in the medulla. This circuit organization suggests an intersection between vagal sensory pathways and the endogenous analgesia system, potentially important for understanding vagal sensory processing in health and mechanisms of hypersensitivity in disease.SIGNIFICANCE STATEMENT Jugular vagal sensory pathways are increasingly recognized for their important role in defensive respiratory responses evoked from the airways. Jugular ganglia neurons wire into a central circuit that is notable for overlapping with somatosensory processing networks in the brain rather than the viscerosensory circuits in receipt of inputs from the nodose vagal ganglia. Here we demonstrate a novel and functionally relevant example of intersection between vagal and somatosensory processing in the brain. The findings of the study offer new insights into interactions between vagal and spinal sensory processing, including the medullary targets of the endogenous analgesia system, and offer new insights into the central processes involved in airway defense in health and disease.
Collapse
|
21
|
Farrell MJ, Bautista TG, Liang E, Azzollini D, Egan GF, Mazzone SB. Evidence for multiple bulbar and higher brain circuits processing sensory inputs from the respiratory system in humans. J Physiol 2020; 598:5771-5787. [DOI: 10.1113/jp280220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Michael J. Farrell
- Departmental of Medical Imaging and Radiation Sciences Monash University Clayton VIC Australia
- Monash Biomedical Imaging Monash University Clayton VIC Australia
| | - Tara G. Bautista
- Department of Anatomy and Neuroscience University of Melbourne Parkville Victoria Australia
| | - Emma Liang
- Monash Biomedical Imaging Monash University Clayton VIC Australia
| | - Damian Azzollini
- Monash Biomedical Imaging Monash University Clayton VIC Australia
| | - Gary F. Egan
- Monash Biomedical Imaging Monash University Clayton VIC Australia
- School of Psychological Sciences Monash University Clayton VIC Australia
- ARC Centre of Excellence for Integrative Brain Function Monash University Clayton VIC Australia
| | - Stuart B. Mazzone
- Department of Anatomy and Neuroscience University of Melbourne Parkville Victoria Australia
| |
Collapse
|
22
|
Paranathala MP, Mitchell P. Neurogenic Cough Associated with Hyperintensity in Dorsal Medulla: Case Report and Anatomical Discussion. World Neurosurg 2020; 144:196-198. [PMID: 32977030 DOI: 10.1016/j.wneu.2020.09.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND The nucleus tractus solitarius and paratrigeminal nucleus, which are implicated in the processing of airway-derived sensory information, are found in the dorsal medulla. The mechanism and localization of higher-order processing of urge to cough is poorly understood, and much of the existing anatomical localization is limited to animal studies. CASE DESCRIPTION A 44-year-old Caucasian lady underwent elective foramen magnum decompression for symptomatic Chiari I malformation; postoperatively she had resolution of Chiari symptoms but developed an intractable neurogenic cough. She has no significant medical history or premorbid respiratory issues. Postoperative magnetic resonance imaging of her head demonstrated signal change in the left dorsal medulla, corresponding with the nucleus tractus solitarius and paratrigeminal nucleus. CONCLUSIONS We suggest that this lesion explains her isolated new cough and localizes the pathway for "urge to cough" to this region of the medulla.
Collapse
Affiliation(s)
| | - Patrick Mitchell
- Department of Neurosurgery, Royal Victoria Hospital, Newcastle, UK
| |
Collapse
|
23
|
Singh N, Driessen AK, McGovern AE, Moe AAK, Farrell MJ, Mazzone SB. Peripheral and central mechanisms of cough hypersensitivity. J Thorac Dis 2020; 12:5179-5193. [PMID: 33145095 PMCID: PMC7578480 DOI: 10.21037/jtd-2020-icc-007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic cough is a difficult to treat symptom of many respiratory and some non-respiratory diseases, indicating that varied pathologies can underpin the development of chronic cough. However, clinically and experimentally it has been useful to collate these different pathological processes into the single unifying concept of cough hypersensitivity. Cough hypersensitivity syndrome is reflected by troublesome cough often precipitated by levels of stimuli that ordinarily don't cause cough in healthy people, and this appears to be a hallmark feature in many patients with chronic cough. Accordingly, a strong argument has emerged that changes in the excitability and/or normal regulation of the peripheral and central neural circuits responsible for cough are instrumental in establishing cough hypersensitivity and for causing excessive cough in disease. In this review, we explore the current peripheral and central neural mechanisms that are believed to be involved in altered cough sensitivity and present possible links to the mechanism of action of novel therapies that are currently undergoing clinical trials for chronic cough.
Collapse
Affiliation(s)
- Nabita Singh
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
| | - Alexandria K. Driessen
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Alice E. McGovern
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Aung Aung Kywe Moe
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Michael J. Farrell
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Stuart B. Mazzone
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| |
Collapse
|
24
|
Development of a Mouse Reporter Strain for the Purinergic P2X 2 Receptor. eNeuro 2020; 7:ENEURO.0203-20.2020. [PMID: 32669344 PMCID: PMC7418537 DOI: 10.1523/eneuro.0203-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The ATP-sensitive P2X2 ionotropic receptor plays a critical role in a number of signal processes including taste and hearing, carotid body detection of hypoxia, the exercise pressor reflex and sensory transduction of mechanical stimuli in the airways and bladder. Elucidation of the role of P2X2 has been hindered by the lack of selective tools. In particular, detection of P2X2 using established pharmacological and biochemical techniques yields dramatically different expression patterns, particularly in the peripheral and central nervous systems. Here, we have developed a knock-in P2X2-cre mouse, which we crossed with a cre-sensitive tdTomato reporter mouse to determine P2X2 expression. P2X2 was found in more than 80% of nodose vagal afferent neurons, but not in jugular vagal afferent neurons. Reporter expression correlated in vagal neurons with sensitivity to α,β methylene ATP (αβmATP). P2X2 was expressed in 75% of petrosal afferents, but only 12% and 4% of dorsal root ganglia (DRG) and trigeminal afferents, respectively. P2X2 expression was limited to very few cell types systemically. Together with the central terminals of P2X2-expressing afferents, reporter expression in the CNS was mainly found in brainstem neurons projecting mossy fibers to the cerebellum, with little expression in the hippocampus or cortex. The structure of peripheral terminals of P2X2-expressing afferents was demonstrated in the tongue (taste buds), carotid body, trachea and esophagus. P2X2 was observed in hair cells and support cells in the cochlear, but not in spiral afferent neurons. This mouse strain provides a novel approach to the identification and manipulation of P2X2-expressing cell types.
Collapse
|
25
|
Driessen AK, Devlin AC, Lundy FT, Martin SL, Sergeant GP, Mazzone SB, McGarvey LP. Perspectives on neuroinflammation contributing to chronic cough. Eur Respir J 2020; 56:13993003.00758-2020. [DOI: 10.1183/13993003.00758-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Chronic cough can be a troublesome clinical problem. Current thinking is that increased activity and/or enhanced sensitivity of the peripheral and central neural pathways mediates chronic cough via processes similar to those associated with the development of chronic pain. While inflammation is widely thought to be involved in the development of chronic cough, the true mechanisms causing altered neural activity and sensitisation remain largely unknown. In this back-to-basics perspective article we explore evidence that inflammation in chronic cough may, at least in part, involve neuroinflammation orchestrated by glial cells of the nervous system. We summarise the extensive evidence for the role of both peripheral and central glial cells in chronic pain, and hypothesise that the commonalities between pain and cough pathogenesis and clinical presentation warrant investigations into the neuroinflammatory mechanisms that contribute to chronic cough. We open the debate that glial cells may represent an underappreciated therapeutic target for controlling troublesome cough in disease.
Collapse
|
26
|
Driessen AK, McGovern AE, Behrens R, Moe AAK, Farrell MJ, Mazzone SB. A role for neurokinin 1 receptor expressing neurons in the paratrigeminal nucleus in bradykinin-evoked cough in guinea-pigs. J Physiol 2020; 598:2257-2275. [PMID: 32237239 DOI: 10.1113/jp279644] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Airway projecting sensory neurons arising from the jugular vagal ganglia terminate centrally in the brainstem paratrigeminal nucleus, synapsing upon neurons expressing the neurokinin 1 receptor. This study aimed to assess the involvement of paratrigeminal neurokinin 1 receptor neurons in the regulation of cough, breathing and airway defensive responses. Lesioning neurokinin 1 receptor expressing paratrigeminal neurons significantly reduced cough evoked by inhaled bradykinin but not inhaled ATP or tracheal mechanical stimulation. The reduction in bradykinin-evoked cough was not accompanied by changes in baseline or evoked respiratory variables (e.g. frequency, volume or timing), animal avoidance behaviours or the laryngeal apnoea reflex. These findings warrant further investigations into targeting the jugular ganglia and paratrigeminal nucleus as a therapy for treating cough in disease. ABSTRACT Jugular vagal ganglia sensory neurons innervate the large airways and are thought to mediate cough and associated perceptions of airway irritations to a range of chemical irritants. The central terminals of jugular sensory neurons lie within the brainstem paratrigeminal nucleus, where postsynaptic neurons can be differentiated based on the absence or presence of the neurokinin 1 (NK1) receptor. Therefore, in the present study, we set out to test the hypothesis that NK1 receptor expressing paratrigeminal neurons play a role in cough evoked by inhaled chemical irritants. To test this, we performed selective neurotoxin lesions of NK1 receptor expressing neurons in the paratrigeminal nucleus in guinea-pigs using substance P conjugated to saporin (SSP-SAP). Sham lesion control or SSP-SAP lesion guinea-pigs received nebulised challenges, with the pan-nociceptor stimulant bradykinin or the nodose ganglia specific stimulant adenosine 5'-triphosphate (ATP), in conscious whole-body plethysmography to study cough and associated behaviours. Laryngeal apnoea reflexes and cough evoked by mechanical stimulation of the trachea were additionally investigated in anaesthetised guinea-pigs. SSP-SAP significantly and selectively reduced the number of NK1 receptor expressing neurons in the paratrigeminal nucleus. This was associated with a significant reduction in bradykinin-evoked cough, but not ATP-evoked cough, mechanical cough or laryngeal apnoeic responses. These data provide further evidence for a role of jugular vagal pathways in cough, and additionally suggest an involvement of NK1 receptor expressing neurons in the paratrigeminal nucleus. Therefore, this neural pathway may provide novel therapeutic opportunities to treat conditions of chronic cough.
Collapse
Affiliation(s)
- Alexandria K Driessen
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alice E McGovern
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robert Behrens
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Aung Aung Kywe Moe
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael J Farrell
- Department of Medical Imaging and Radiation Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
27
|
Mapping of Sensory Nerve Subsets within the Vagal Ganglia and the Brainstem Using Reporter Mice for Pirt, TRPV1, 5-HT3, and Tac1 Expression. eNeuro 2020; 7:ENEURO.0494-19.2020. [PMID: 32060036 PMCID: PMC7294455 DOI: 10.1523/eneuro.0494-19.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 11/21/2022] Open
Abstract
Vagal afferent sensory nerves, originating in jugular and nodose ganglia, are composed of functionally distinct subsets whose activation evokes distinct thoracic and abdominal reflex responses. We used Cre-expressing mouse strains to identify specific vagal afferent populations and map their central projections within the brainstem. We show that Pirt is expressed in virtually all vagal afferents; whereas, 5-HT3 is expressed only in nodose neurons, with little expression in jugular neurons. Transient receptor potential vanilloid 1 (TRPV1), the capsaicin receptor, is expressed in a subset of small nodose and jugular neurons. Tac1, the gene for tachykinins, is expressed predominantly in jugular neurons, some of which also express TRPV1. Vagal fibers project centrally to the nucleus tractus solitarius (nTS), paratrigeminal complex, area postrema, and to a limited extent the dorsal motor nucleus of the vagus. nTS subnuclei preferentially receive projections by specific afferent subsets, with TRPV1+ fibers terminating in medial and dorsal regions predominantly caudal of obex, whereas TRPV1− fibers terminate in ventral and lateral regions throughout the rostral–caudal aspect of the medulla. Many vagal Tac1+ afferents (mostly derived from the jugular ganglion) terminate in the nTS. The paratrigeminal complex was the target of multiple vagal afferent subsets. Importantly, lung-specific TRPV1+ and Tac1+ afferent terminations were restricted to the caudal medial nTS, with no innervation of other medulla regions. In summary, this study identifies the specific medulla regions innervated by vagal afferent subsets. The distinct terminations provide a neuroanatomic substrate for the diverse range of reflexes initiated by vagal afferent activation.
Collapse
|
28
|
Undem BJ, Sun H. Molecular/Ionic Basis of Vagal Bronchopulmonary C-Fiber Activation by Inflammatory Mediators. Physiology (Bethesda) 2020; 35:57-68. [PMID: 31799905 PMCID: PMC6985783 DOI: 10.1152/physiol.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Stimulation of bronchopulmonary vagal afferent C fibers by inflammatory mediators can lead to coughing, chest tightness, and changes in breathing pattern, as well as reflex bronchoconstriction and secretions. These responses serve a defensive function in healthy lungs but likely contribute to many of the signs and symptoms of inflammatory airway diseases. A better understanding of the mechanisms underlying the activation of bronchopulmonary C-fiber terminals may lead to novel therapeutics that would work in an additive or synergic manner with existing anti-inflammatory strategies.
Collapse
Affiliation(s)
| | - Hui Sun
- Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
29
|
Transcriptional Profiling of Individual Airway Projecting Vagal Sensory Neurons. Mol Neurobiol 2019; 57:949-963. [DOI: 10.1007/s12035-019-01782-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
|
30
|
Driessen AK. Vagal Afferent Processing by the Paratrigeminal Nucleus. Front Physiol 2019; 10:1110. [PMID: 31555145 PMCID: PMC6722180 DOI: 10.3389/fphys.2019.01110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022] Open
Abstract
The paratrigeminal nucleus is an obscure region in the dorsal lateral medulla, which has been best characterized as a collection of interstitial cells located in the dorsal tip of the spinal trigeminal tract. The paratrigeminal nucleus receives afferent input from the vagus, trigeminal, spinal, and glossopharyngeal nerves, which contribute to its long-known roles in the baroreceptor reflex and nociceptive processing. More recently, studies have shown that this region is also involved in the processing of airway-derived sensory information. Notably, these studies highlight an underappreciated complexity in the neuronal content and circuit connectivity of the paratrigeminal nucleus. However, much remains to be understood about how paratrigeminal processing of vagal afferents is altered in disease. The aim of the present review is to provide an update of the current understanding of vagal afferent processing in the paratrigeminal nucleus and to explore how dysregulation at this site may contribute to vagal sensory neural dysfunction during disease.
Collapse
Affiliation(s)
- Alexandria K Driessen
- School of Biomedical Science, Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
31
|
Mahadi KM, Lall VK, Deuchars SA, Deuchars J. Cardiovascular autonomic effects of transcutaneous auricular nerve stimulation via the tragus in the rat involve spinal cervical sensory afferent pathways. Brain Stimul 2019; 12:1151-1158. [PMID: 31129152 DOI: 10.1016/j.brs.2019.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/17/2019] [Accepted: 05/02/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Electrical stimulation on select areas of the external auricular dermatome influences the autonomic nervous system. It has been postulated that activation of the Auricular Branch of the Vagus Nerve (ABVN) mediates such autonomic changes. However, the underlying neural pathways mediating these effects are unknown and, further, our understanding of the anatomical distribution of the ABVN in the auricle has now been questioned. OBJECTIVE To investigate the effects of electrical stimulation of the tragus on autonomic outputs in the rat and probe the underlying neural pathways. METHODS Central neuronal projections from nerves innervating the external auricle were investigated by injections of the transganglionic tracer cholera toxin B chain (CTB) into the right tragus of Wistar rats. Physiological recordings of heart rate, perfusion pressure, respiratory rate and sympathetic nerve activity were made in an anaesthetic free Working Heart Brainstem Preparation (WHBP) of the rat and changes in response to electrical stimulation of the tragus analysed. RESULTS Neuronal tracing from the tragus revealed that the densest CTB labelling was within laminae III-IV of the dorsal horn of the upper cervical spinal cord, ipsilateral to the injection sites. In the medulla oblongata, CTB labelled afferents were observed in the paratrigeminal nucleus, spinal trigeminal tract and cuneate nucleus. Surprisingly, only sparse labelling was observed in the vagal afferent termination site, the nucleus tractus solitarius. Recordings made from rats at night time revealed more robust sympathetic activity in comparison to day time rats, thus subsequent experiments were conducted in rats at night time. Electrical stimulation was delivered across the tragus for 5 min. Direct recording from the sympathetic chain revealed a central sympathoinhibition by up to 36% following tragus stimulation. Sympathoinhibition remained following sectioning of the cervical vagus nerve ipsilateral to the stimulation site, but was attenuated by sectioning of the upper cervical afferent nerve roots. CONCLUSIONS Inhibition of the sympathetic nervous system activity upon electrical stimulation of the tragus in the rat is mediated at least in part through sensory afferent projections to the upper cervical spinal cord. This challenges the notion that tragal stimulation is mediated by the auricular branch of the vagus nerve and suggests that alternative mechanisms may be involved.
Collapse
Affiliation(s)
- K M Mahadi
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, United Kingdom; Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - V K Lall
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, United Kingdom
| | - S A Deuchars
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, United Kingdom.
| | - J Deuchars
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, United Kingdom.
| |
Collapse
|
32
|
Bautista TG, Leech J, Mazzone SB, Farrell MJ. Regional brain stem activations during capsaicin inhalation using functional magnetic resonance imaging in humans. J Neurophysiol 2019; 121:1171-1182. [DOI: 10.1152/jn.00547.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coughing is an airway protective behavior elicited by airway irritation. Animal studies show that airway sensory information is relayed via vagal sensory fibers to termination sites within dorsal caudal brain stem and thereafter relayed to more rostral sites. Using functional magnetic resonance imaging (fMRI) in humans, we previously reported that inhalation of the tussigenic stimulus capsaicin evokes a perception of airway irritation (“urge to cough”) accompanied by activations in a widely distributed brain network including the primary sensorimotor, insular, prefrontal, and posterior parietal cortices. Here we refine our imaging approach to provide a directed survey of brain stem areas activated by airway irritation. In 15 healthy participants, inhalation of capsaicin at a maximal dose that elicits a strong urge to cough without behavioral coughing was associated with activation of medullary regions overlapping with the nucleus of the solitary tract, paratrigeminal nucleus, spinal trigeminal nucleus and tract, cardiorespiratory regulatory areas homologous to the ventrolateral medulla in animals, and the midline raphe. Interestingly, the magnitude of activation within two cardiorespiratory regulatory areas was positively correlated ( r2 = 0.47, 0.48) with participants’ subjective ratings of their urge to cough. Capsaicin-related activations were also observed within the pons and midbrain. The current results add to knowledge of the representation and processing of information regarding airway irritation in the human brain, which is pertinent to the pursuit of novel cough therapies. NEW & NOTEWORTHY Functional brain imaging in humans was optimized for the brain stem. We provide the first detailed description of brain stem sites activated in response to airway irritation. The results are consistent with findings in animal studies and extend our foundational knowledge of brain processing of airway irritation in humans.
Collapse
Affiliation(s)
- Tara G. Bautista
- The Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Jennifer Leech
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Stuart B. Mazzone
- The Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael J. Farrell
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
33
|
Umans BD, Liberles SD. Neural Sensing of Organ Volume. Trends Neurosci 2018; 41:911-924. [PMID: 30143276 PMCID: PMC6252275 DOI: 10.1016/j.tins.2018.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 07/12/2018] [Indexed: 01/04/2023]
Abstract
Many internal organs change volume periodically. For example, the stomach accommodates ingested food and drink, the bladder stores urine, the heart fills with blood, and the lungs expand with every breath. Specialized peripheral sensory neurons function as mechanoreceptors that detect tissue stretch to infer changes in organ volume and then relay this information to the brain. Central neural circuits process this information and evoke perceptions (satiety, nausea), control physiology (breathing, heart rate), and impact behavior (feeding, micturition). Yet, basic questions remain about how neurons sense organ distension and whether common sensory motifs are involved across organs. Here, we review candidate mechanosensory receptors, cell types, and neural circuits, focusing on the stomach, bladder, and airways. Understanding mechanisms of organ stretch sensation may provide new ways to treat autonomic dysfunction.
Collapse
Affiliation(s)
- Benjamin D Umans
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
34
|
García-Magro N, Martin YB, Negredo P, Avendaño C. The greater occipital nerve and its spinal and brainstem afferent projections: A stereological and tract-tracing study in the rat. J Comp Neurol 2018; 526:3000-3019. [PMID: 30080243 DOI: 10.1002/cne.24511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/27/2022]
Abstract
The neuromodulation of the greater occipital nerve (GON) has proved effective to treat chronic refractory neurovascular headaches, in particular migraine and cluster headache. Moreover, animal studies have shown convergence of cervical and trigeminal afferents on the same territories of the upper cervical and lower medullary dorsal horn (DH), the so-called trigeminocervical complex (TCC), and recent studies in rat models of migraine and craniofacial neuropathy have shown that GON block or stimulation alter nociceptive processing in TCC. The present study examines in detail the anatomy of GON and its central projections in the rat applying different tracers to the nerve and quantifying its ultrastructure, the ganglion neurons subserving GON, and their innervation territories in the spinal cord and brainstem. With considerable intersubject variability in size, GON contains on average 900 myelinated and 3,300 unmyelinated axons, more than 90% of which emerge from C2 ganglion neurons. Unmyelinated afferents from GON innervates exclusively laminae I-II of the lateral DH, mostly extending along segments C2-3 . Myelinated fibers distribute mainly in laminae I and III-V of the lateral DH between C1 and C6 and, with different terminal patterns, in medial parts of the DH at upper cervical segments, and ventrolateral rostral cuneate, paratrigeminal, and marginal part of the spinal caudal and interpolar nuclei. Sparse projections also appear in other locations nearby. These findings will help to better understand the bases of sensory convergence on spinomedullary systems, a critical pathophysiological factor for pain referral and spread in severe painful craniofacial disorders.
Collapse
Affiliation(s)
- Nuria García-Magro
- Autonoma University of Madrid, Medical School, Department of Anatomy, Histology & Neuroscience, Madrid, Spain
| | - Yasmina B Martin
- Francisco de Vitoria University (UFV), Department of Anatomy, Faculty of Health Sciences, Madrid, Spain
| | - Pilar Negredo
- Autonoma University of Madrid, Medical School, Department of Anatomy, Histology & Neuroscience, Madrid, Spain
| | - Carlos Avendaño
- Autonoma University of Madrid, Medical School, Department of Anatomy, Histology & Neuroscience, Madrid, Spain
| |
Collapse
|
35
|
Driessen AK, Farrell MJ, Dutschmann M, Stanic D, McGovern AE, Mazzone SB. Reflex regulation of breathing by the paratrigeminal nucleus via multiple bulbar circuits. Brain Struct Funct 2018; 223:4005-4022. [PMID: 30116890 DOI: 10.1007/s00429-018-1732-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/04/2018] [Indexed: 01/06/2023]
Abstract
Sensory neurons of the jugular vagal ganglia innervate the respiratory tract and project to the poorly studied medullary paratrigeminal nucleus. In the present study, we used neuroanatomical tracing, pharmacology and physiology in guinea pig to investigate the paratrigeminal neural circuits mediating jugular ganglia-evoked respiratory reflexes. Retrogradely traced laryngeal jugular ganglia neurons were largely (> 60%) unmyelinated and expressed the neuropeptide substance P and calcitonin gene-related peptide, although a population (~ 30%) of larger diameter myelinated jugular neurons was defined by the expression of vGlut1. Within the brainstem, vagal afferent terminals were confined to the caudal two-thirds of the paratrigeminal nucleus. Electrical stimulation of the laryngeal mucosa evoked a vagally mediated respiratory slowing that was mimicked by laryngeal capsaicin application. These laryngeal reflexes were modestly reduced by neuropeptide receptor antagonist microinjections into the paratrigeminal nucleus, but abolished by ionotropic glutamate receptor antagonists. D,L-Homocysteic acid microinjections into the paratrigeminal nucleus mimicked the laryngeal-evoked respiratory slowing, whereas capsaicin microinjections evoked a persistent tachypnoea that was insensitive to glutamatergic inhibition but abolished by neuropeptide receptor antagonists. Extensive projections from paratrigeminal neurons were anterogradely traced throughout the pontomedullary respiratory column. Dual retrograde tracing from pontine and ventrolateral medullary termination sites, as well as immunohistochemical staining for calbindin and neurokinin 1 receptors, supported the existence of different subpopulations of paratrigeminal neurons. Collectively, these data provide anatomical and functional evidence for at least two types of post-synaptic paratrigeminal neurons involved in respiratory reflexes, highlighting an unrecognised complexity in sensory processing in this region of the brainstem.
Collapse
Affiliation(s)
- Alexandria K Driessen
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Michael J Farrell
- Department of Medical Imaging and Radiation Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Mathias Dutschmann
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Davor Stanic
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alice E McGovern
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
36
|
El‐Hashim AZ, Mathews S, Al‐Shamlan F. Central adenosine A 1 receptors inhibit cough via suppression of excitatory glutamatergic and tachykininergic neurotransmission. Br J Pharmacol 2018; 175:3162-3174. [PMID: 29767468 PMCID: PMC6031887 DOI: 10.1111/bph.14360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/02/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The adenosine A1 receptor is reported to mediate several excitatory effects in the airways and has inhibitory effects in the CNS. In this study, we investigated the role of peripheral and central A1 receptors in regulating cough and airway obstruction. EXPERIMENTAL APPROACH Drugs were administered to guinea pigs via inhalation or i.c.v. infusion. Following the administration of different drugs, cough was induced by exposing guinea pigs to aerosolized 0.4 M citric acid. An automated analyser recorded both cough and airway obstruction simultaneously using whole-body plethysmography. KEY RESULTS The A1 receptor agonist, cyclopentyladenosine (CPA, administered by inhalation), dose-dependently inhibited cough and also inhibited airway obstruction. Similarly, CPA, administered i.c.v., inhibited both the citric acid-induced cough and airway obstruction; this was prevented by pretreatment with the A1 receptor antagonist DPCPX (i.c.v.). Treatment with DPCPX alone dose-dependently enhanced the citric acid-induced cough and airway obstruction. This effect was reversed following treatment with either the glutamate GluN1 receptor antagonist D-AP5 or the neurokinin NK1 receptor antagonist FK-888. CONCLUSIONS AND IMPLICATIONS These findings suggest that activation of either peripheral or central adenosine A1 receptors inhibits citric acid-induced cough and airway obstruction. The data also suggest that tonic activation of central adenosine A1 receptors serves as a negative regulator of cough and airway obstruction, secondary to inhibition of excitatory glutamatergic and tachykininergic neurotransmission.
Collapse
Affiliation(s)
- Ahmed Z El‐Hashim
- Department of Pharmacology and Therapeutics, Faculty of PharmacyKuwait UniversityKuwait
| | - Seena Mathews
- Department of Pharmacology and Therapeutics, Faculty of PharmacyKuwait UniversityKuwait
| | - Fajer Al‐Shamlan
- Department of Pharmacology and Therapeutics, Faculty of PharmacyKuwait UniversityKuwait
| |
Collapse
|
37
|
He ZG, Wang Q, Xie RS, Li YS, Hong QX, Xiang HB. Neuroanatomical autonomic substrates of brainstem-gut circuitry identified using transsynaptic tract-tracing with pseudorabies virus recombinants. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2018; 7:16-24. [PMID: 29755854 PMCID: PMC5944814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
To investigate autonomic substrates of brainstem-gut circuitry identified using trans-synaptic tracing with pseudorabies virus (PRV)-152, a strain that expresses enhanced green fluorescent protein, and PRV-614, a strain that expresses enhanced red fluorescent protein, injecting into the rat rectum wall. 3-7 days after PRV-152 injection, spinal cord and brainstem were removed and sectioned, and processed for PRV-152 visualization using immunofluorescence labeling against PRV-152. 6 days after PRV-614 injection, brainstem was sectioned and the neurochemical phenotype of PRV-614-positive neurons was identified using double immunocytochemical labeling against PRV-614 and TPH. We observed that the largest number of PRV-152- or PRV-614-positive neurons was located in the gigantocellular reticular nucleus (Gi), lateral paragigantocellular (LPGi), rostral ventrolateral reticular nucleus (RVL), solitary tract nucleus (Sol), locus coeruleus (LC), raphe magnus nucleus (RMg), subcoeruleus nucleus (SubCD). Double-labeled PRV-614/tryptophan hydroxylase (TPH) neurons were concentrated in the RMg, LPGi and Sol. These brainstem neurons are candidates for relaying autonomic command signals to the gut. The autonomic substrate of brainstem-gut circuitry likely plays an important role in mediating different aspects of stress behaviors.
Collapse
Affiliation(s)
- Zhi-Gang He
- Department of Emergency Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| | - Quan Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| | - Run-Shan Xie
- Class Nine, Grade Two, Wuhan Hantie Senior Middle SchoolWuhan 430012, Hubei, PR China
| | - Yong-Sheng Li
- Department of Emergency Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| | - Qing-Xiong Hong
- Department of Anesthesiology, Guangdong Provincial Hospital of Chinese MedicineGuangzhou 510120, PR China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| |
Collapse
|
38
|
Driessen AK, McGovern AE, Narula M, Yang SK, Keller JA, Farrell MJ, Mazzone SB. Central mechanisms of airway sensation and cough hypersensitivity. Pulm Pharmacol Ther 2017; 47:9-15. [DOI: 10.1016/j.pupt.2017.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
|
39
|
Bonvini SJ, Belvisi MG. Cough and airway disease: The role of ion channels. Pulm Pharmacol Ther 2017; 47:21-28. [PMID: 28669932 DOI: 10.1016/j.pupt.2017.06.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 01/07/2023]
Abstract
Cough is the most common reason for patients to visit a primary care physician, yet it remains an unmet medical need. It can be idiopathic in nature but can also be a troublesome symptom across chronic lung diseases such as asthma, COPD and idiopathic pulmonary fibrosis (IPF). Chronic cough affects up to 12% of the population and yet there are no safe and effective therapies. The cough reflex is regulated by vagal, sensory afferent nerves which innervate the airway. The Transient Receptor Potential (TRP) family of ion channels are expressed on sensory nerve terminals, and when activated can evoke cough. This review focuses on the role of 4 TRP channels; TRP Vannilloid 1 (TRPV1), TRP Ankyrin 1 (TRPA1), TRP Vannilloid 4 (TRPV4) and TRP Melastatin 8 (TRPM8) and the purinergic P2X3 receptor and their possible role in chronic cough. We conclude that these ion channels, given their expression profile and their role in the activation of sensory afferents and the cough reflex, may represent excellent therapeutic targets for the treatment of respiratory symptoms in chronic lung disease.
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London SW7 2AZ, UK
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
40
|
Chou YL, Mori N, Canning BJ. Opposing effects of bronchopulmonary C-fiber subtypes on cough in guinea pigs. Am J Physiol Regul Integr Comp Physiol 2017; 314:R489-R498. [PMID: 29187382 DOI: 10.1152/ajpregu.00313.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have addressed the hypothesis that the opposing effects of bronchopulmonary C-fiber activation on cough are attributable to the activation of C-fiber subtypes. Coughing was evoked in anesthetized guinea pigs by citric acid (0.001-2 M) applied topically in 100-µl aliquots to the tracheal mucosa. In control preparations, citric acid evoked 10 ± 1 coughs cumulatively. Selective activation of the pulmonary C fibers arising from the nodose ganglia with either aerosols or continuous intravenous infusion of adenosine or the 5-HT3 receptor-selective agonist 2-methyl-5-HT nearly abolished coughing evoked subsequently by topical citric acid challenge. Delivering adenosine or 2-methyl-5-HT directly to the tracheal mucosa (where few if any nodose C fibers terminate) was without effect on citric acid-evoked cough. These actions of pulmonary administration of adenosine and 2-methyl-5-HT were accompanied by an increase in respiratory rate, but it is unlikely that the change in respiratory pattern caused the decrease in coughing, as the rapidly adapting receptor stimulant histamine also produced a marked tachypnea but was without effect on cough. In awake guinea pigs, adenosine failed to evoke coughing but reduced coughing induced by the nonselective C-fiber stimulant capsaicin. We conclude that bronchopulmonary C-fiber subtypes in guinea pigs have opposing effects on cough, with airway C fibers arising from the jugular ganglia initiating and/or sensitizing the cough reflex and the intrapulmonary C fibers arising from the nodose ganglia actively inhibiting cough upon activation.
Collapse
Affiliation(s)
- Yang-Ling Chou
- Johns Hopkins Asthma and Allergy Center , Baltimore, Maryland
| | - Nanako Mori
- Johns Hopkins Asthma and Allergy Center , Baltimore, Maryland
| | | |
Collapse
|
41
|
Panneton WM, Pan B, Gan Q. Somatotopy in the Medullary Dorsal Horn As a Basis for Orofacial Reflex Behavior. Front Neurol 2017; 8:522. [PMID: 29066998 PMCID: PMC5641296 DOI: 10.3389/fneur.2017.00522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022] Open
Abstract
The somatotopy of the trigeminocervical complex of the rat was defined as a basis for describing circuitry for reflex behaviors directed through the facial motor nucleus. Thus, transganglionic transport of horseradish peroxidase conjugates applied to individual nerves/peripheral receptive fields showed that nerves innervating oropharyngeal structures projected most rostrally, followed by nerves innervating snout, periocular, and then periauricular receptive fields most caudally. Nerves innervating mucosae or glabrous receptive fields terminated densely in laminae I, II, and V of the trigeminocervical complex, while those innervating hairy skin terminated in laminae I-V. Projections to lamina II exhibited the most focused somatotopy when individual cases were compared. Retrograde transport of FluoroGold (FG) deposited into the facial motor nucleus resulted in labeled neurons almost solely in lamina V of the trigeminocervical complex. The distribution of these labeled neurons paralleled the somatotopy of primary afferent fibers, e.g., those labeled after FG injections into a functional group of motoneurons innervating lip musculature were found most rostrally while those labeled after injections into motoneurons innervating snout, periocular and preauricular muscles, respectively, were found at progressively more caudal levels. Anterograde transport of injections of biotinylated dextran amine into lamina V at different rostrocaudal levels of the trigeminocervical complex confirmed the notion that the somatotopy of orofacial sensory fields parallels the musculotopy of facial motor neurons. These data suggest that neurons in lamina V are important interneurons in a simple orofacial reflex circuit consisting of a sensory neuron, interneuron and motor neuron. Moreover, the somatotopy of primary afferent fibers from the head and neck confirms the "onion skin hypothesis" and suggests rostral cervical dermatomes blend seamlessly with "cranial dermatomes." The transition area between subnucleus interpolaris and subnucleus caudalis is addressed while the paratrigeminal nucleus is discussed as an interface between the somatic and visceral nervous systems.
Collapse
Affiliation(s)
- W. Michael Panneton
- Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - BingBing Pan
- Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Anesthesiology, Hunan Provincial People’s Hospital, Changsha, China
| | - Qi Gan
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
42
|
Distinct and common expression of receptors for inflammatory mediators in vagal nodose versus jugular capsaicin-sensitive/TRPV1-positive neurons detected by low input RNA sequencing. PLoS One 2017; 12:e0185985. [PMID: 28982197 PMCID: PMC5628920 DOI: 10.1371/journal.pone.0185985] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/23/2017] [Indexed: 11/19/2022] Open
Abstract
Capsaicin-sensitive sensory C-fibers derived from vagal ganglia innervate the visceral organs, and respond to inflammatory mediators and noxious stimuli. These neurons play an important role in maintenance of visceral homeostasis, and contribute to the symptoms of visceral inflammatory diseases. Vagal sensory neurons are located in two ganglia, the jugular ganglia (derived from the neural crest), and the nodose ganglia (from the epibranchial placodes). The functional difference, especially in response to immune mediators, between jugular and nodose neurons is not fully understood. In this study, we microscopically isolated murine nodose and jugular capsaicin-sensitive / Trpv1-expressing C-fiber neurons and performed transcriptome profiling using ultra-low input RNA sequencing. RNAseq detected genes with significantly differential expression in jugular and nodose neurons, which were mostly involved in neural functions. Transcriptional regulators, including Cited1, Hoxb5 and Prdm12 showed distinct expression patterns in the two C-fiber neuronal populations. Common and specific expression of immune receptor proteins was characterized in each neuronal type. The expression of immune receptors that have received little or no attention from vagal sensory biologists is highlighted including receptors for certain chemokines (CXCLs), interleukins (IL-4) and interferons (IFNα, IFNγ). Stimulation of immune receptors with their cognate ligands led to activation of the C-fibers in isolated functional assays.
Collapse
|
43
|
Takahashi K, Hori K, Hayashi H, Fujiu-Kurachi M, Ono T, Tsujimura T, Magara J, Inoue M. Immediate effect of laryngeal surface electrical stimulation on swallowing performance. J Appl Physiol (1985) 2017; 124:10-15. [PMID: 28935826 DOI: 10.1152/japplphysiol.00512.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surface electrical stimulation of the laryngeal region is used to improve swallowing in dysphagic patients. However, little is known about how electrical stimulation affects tongue movements and related functions. We investigated the effect of electrical stimulation on tongue pressure and hyoid movement, as well as suprahyoid and infrahyoid muscle activity, in 18 healthy young participants. Electrical stimulation (0.2-ms duration, 80 Hz, 80% of each participant's maximal tolerance) of the laryngeal region was applied. Each subject swallowed 5 ml of barium sulfate liquid 36 times at 10-s intervals. During the middle 2 min, electrical stimulation was delivered. Tongue pressure, electromyographic activity of the suprahyoid and infrahyoid muscles, and videofluorographic images were simultaneously recorded. Tongue pressure during stimulation was significantly lower than before or after stimulation and was significantly greater after stimulation than at baseline. Suprahyoid activity after stimulation was larger than at baseline, while infrahyoid muscle activity did not change. During stimulation, the position of the hyoid at rest was descended, the highest hyoid position was significantly inferior, and the vertical movement was greater than before or after stimulation. After stimulation, the positions of the hyoid at rest and at the maximum elevation were more superior than before stimulation. The deviation of the highest positions of the hyoid before and after stimulation corresponded to the differences in tongue pressures at those times. These results suggest that surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. NEW & NOTEWORTHY Surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. Tongue muscles may contribute to overshot recovery more than hyoid muscles.
Collapse
Affiliation(s)
- Keizo Takahashi
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan.,Niigata University of Rehabilitation , Niigata , Japan
| | - Kazuhiro Hori
- Division of Comprehensive Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Hirokazu Hayashi
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | | | - Takahiro Ono
- Division of Comprehensive Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| |
Collapse
|
44
|
Brainstem mechanisms underlying the cough reflex and its regulation. Respir Physiol Neurobiol 2017; 243:60-76. [DOI: 10.1016/j.resp.2017.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
|
45
|
Audrit KJ, Delventhal L, Aydin Ö, Nassenstein C. The nervous system of airways and its remodeling in inflammatory lung diseases. Cell Tissue Res 2017; 367:571-590. [PMID: 28091773 DOI: 10.1007/s00441-016-2559-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
Inflammatory lung diseases are associated with bronchospasm, cough, dyspnea and airway hyperreactivity. The majority of these symptoms cannot be primarily explained by immune cell infiltration. Evidence has been provided that vagal efferent and afferent neurons play a pivotal role in this regard. Their functions can be altered by inflammatory mediators that induce long-lasting changes in vagal nerve activity and gene expression in both peripheral and central neurons, providing new targets for treatment of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Katrin Julia Audrit
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Lucas Delventhal
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Öznur Aydin
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Christina Nassenstein
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany. .,German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
46
|
Nonomura K, Woo SH, Chang RB, Gillich A, Qiu Z, Francisco AG, Ranade SS, Liberles SD, Patapoutian A. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature 2016; 541:176-181. [PMID: 28002412 DOI: 10.1038/nature20793] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Respiratory dysfunction is a notorious cause of perinatal mortality in infants and sleep apnoea in adults, but the mechanisms of respiratory control are not clearly understood. Mechanical signals transduced by airway-innervating sensory neurons control respiration; however, the physiological significance and molecular mechanisms of these signals remain obscured. Here we show that global and sensory neuron-specific ablation of the mechanically activated ion channel Piezo2 causes respiratory distress and death in newborn mice. Optogenetic activation of Piezo2+ vagal sensory neurons causes apnoea in adult mice. Moreover, induced ablation of Piezo2 in sensory neurons of adult mice causes decreased neuronal responses to lung inflation, an impaired Hering-Breuer mechanoreflex, and increased tidal volume under normal conditions. These phenotypes are reproduced in mice lacking Piezo2 in the nodose ganglion. Our data suggest that Piezo2 is an airway stretch sensor and that Piezo2-mediated mechanotransduction within various airway-innervating sensory neurons is critical for establishing efficient respiration at birth and maintaining normal breathing in adults.
Collapse
Affiliation(s)
- Keiko Nonomura
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Seung-Hyun Woo
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Rui B Chang
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Astrid Gillich
- Howard Hughes Medical Institute, Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Zhaozhu Qiu
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA.,Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Allain G Francisco
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sanjeev S Ranade
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
47
|
Kodavanti UP. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response. Biochim Biophys Acta Gen Subj 2016; 1860:2880-90. [PMID: 27166979 DOI: 10.1016/j.bbagen.2016.05.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023]
Abstract
Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
48
|
Taylor-Clark TE. Role of reactive oxygen species and TRP channels in the cough reflex. Cell Calcium 2016; 60:155-62. [PMID: 27016063 DOI: 10.1016/j.ceca.2016.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/15/2022]
Abstract
The cough reflex is evoked by noxious stimuli in the airways. Although this reflex is essential for health, it can be triggered chronically in inflammatory and infectious airway disease. Neuronal transient receptor potential (TRP) channels such as ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are polymodal receptors expressed on airway nociceptive afferent nerves. Reactive oxygen species (ROS) and other reactive compounds are associated with inflammation, from either NADPH oxidase or mitochondria. These reactive compounds cause activation and hyperexcitability of nociceptive afferents innervating the airways, and evidence suggests key contributions of TRPA1 and TRPV1.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|