1
|
Baez F, Soria D, Contin M, Caniffi C, Tripodi V. Maternal high-fat diet reduces hepatic CoQ in newborn rats. Clin Res Hepatol Gastroenterol 2025; 49:102592. [PMID: 40185472 DOI: 10.1016/j.clinre.2025.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Affiliation(s)
| | | | - Mario Contin
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAD Buenos Aires, Argentina
| | | | | |
Collapse
|
2
|
Camacho-Morales A, Noriega LG, Sánchez-García A, Torre-Villalvazo I, Vázquez-Manjarrez N, Maldonado-Ruiz R, Cárdenas-Tueme M, Villegas-Romero M, Alamilla-Martínez I, Rodriguez-Rocha H, Garcia-Garcia A, Corona JC, Tovar AR, Saville J, Fuller M, Gonzalez-Gonzalez JG, Rivas-Estilla AM. Plasma C24:0 ceramide impairs adipose tissue remodeling and promotes liver steatosis and glucose imbalance in offspring of rats. Heliyon 2024; 10:e39206. [PMID: 39640709 PMCID: PMC11620212 DOI: 10.1016/j.heliyon.2024.e39206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Fetal programming by exposure to high-energy diets increases the susceptibility to type 2 diabetes mellitus (T2DM2) in the offspring. Glucose imbalance during fetal programming might be associated to still unknown selective lipid species and their characterization might be beneficial for T2DM diagnosis and treatment. We aim to characterize the effect of the lipid specie, C24:0 ceramide, on glucose imbalance and metabolic impairment in cellular and murine models. A lipidomic analysis identified accumulation of C24:0 ceramide in plasma of offspring rats exposed to high-energy diets during fetal programing, as well as in obese-T2DM subjects. In vitro experiments in 3T3L-1, hMSC and HUH7 cells and in in vivo models of Wistar rats and C57BL/6 mice demonstrated that C24:0 ceramide disrupted glucose balance, and differentiation and lipid accumulation in adipocytes, whereas promoted liver steatosis. Mechanistically, C24:0 ceramide impaired mitochondrial fatty acid oxidation in adipocytes and hepatic cells, tentatively by favoring reactive oxygen species accumulation and calcium overload in the mitochondria; and also, activates endoplasmic reticulum (ER) stress in hepatocytes. We propose that C24:0 ceramide accumulation in the offspring followed a prenatal diet exposure, impair lipid allocation into adipocytes and enhances liver steatosis associated to mitochondrial dysfunction and ER stress, leading to glucose imbalance.
Collapse
Affiliation(s)
- Alberto Camacho-Morales
- Biochemistry and Molecular Medicine Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Lilia G. Noriega
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Adriana Sánchez-García
- University Hospital "Dr. Jose E. Gonzalez, Endocrinology Division. Department of Internal Medicine. Autonomous University of Nuevo Leon Monterrey, Mexico
| | - Ivan Torre-Villalvazo
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Natalia Vázquez-Manjarrez
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Roger Maldonado-Ruiz
- Biochemistry and Molecular Medicine Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Marcela Cárdenas-Tueme
- Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Mariana Villegas-Romero
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Itzayana Alamilla-Martínez
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Humberto Rodriguez-Rocha
- Histology Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Aracely Garcia-Garcia
- Histology Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Juan Carlos Corona
- Neuroscience Laboratory, Hospital Infantil de México, Federico Gómez, México City, Mexico
| | - Armando R. Tovar
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Jennifer Saville
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, University of Adelaide, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, University of Adelaide, Australia
| | - José Gerardo Gonzalez-Gonzalez
- University Hospital "Dr. Jose E. Gonzalez, Endocrinology Division. Department of Internal Medicine. Autonomous University of Nuevo Leon Monterrey, Mexico
| | - Ana María Rivas-Estilla
- Biochemistry and Molecular Medicine Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
| |
Collapse
|
3
|
Kanaan MN, Pileggi CA, Karam CY, Kennedy LS, Fong-McMaster C, Cuperlovic-Culf M, Harper ME. Cystine/glutamate antiporter xCT controls skeletal muscle glutathione redox, bioenergetics and differentiation. Redox Biol 2024; 73:103213. [PMID: 38815331 PMCID: PMC11167394 DOI: 10.1016/j.redox.2024.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024] Open
Abstract
Cysteine, the rate-controlling amino acid in cellular glutathione synthesis is imported as cystine, by the cystine/glutamate antiporter, xCT, and subsequently reduced to cysteine. As glutathione redox is important in muscle regeneration in aging, we hypothesized that xCT exerts upstream control over skeletal muscle glutathione redox, metabolism and regeneration. Bioinformatic analyses of publicly available datasets revealed that expression levels of xCT and GSH-related genes are inversely correlated with myogenic differentiation genes. Muscle satellite cells (MuSCs) isolated from Slc7a11sut/sut mice, which harbour a mutation in the Slc7a11 gene encoding xCT, required media supplementation with 2-mercaptoethanol to support cell proliferation but not myotube differentiation, despite persistently lower GSH. Slc7a11sut/sut primary myotubes were larger compared to WT myotubes, and also exhibited higher glucose uptake and cellular oxidative capacities. Immunostaining of myogenic markers (Pax7, MyoD, and myogenin) in cardiotoxin-damaged tibialis anterior muscle fibres revealed greater MuSC activation and commitment to differentiation in Slc7a11sut/sut muscle compared to WT mice, culminating in larger myofiber cross-sectional areas at 21 days post-injury. Slc7a11sut/sut mice subjected to a 5-week exercise training protocol demonstrated enhanced insulin tolerance compared to WT mice, but blunted muscle mitochondrial biogenesis and respiration in response to exercise training. Our results demonstrate that the absence of xCT inhibits cell proliferation but promotes myotube differentiation by regulating cellular metabolism and glutathione redox. Altogether, these results support the notion that myogenesis is a redox-regulated process and may help inform novel therapeutic approaches for muscle wasting and dysfunction in aging and disease.
Collapse
Affiliation(s)
- Michel N Kanaan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada; Dr. Eric Poulin Centre for Neuromuscular Disease (CNMD), University of Ottawa, ON, K1H 8M5, Canada
| | - Chantal A Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Charbel Y Karam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Luke S Kennedy
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Claire Fong-McMaster
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Miroslava Cuperlovic-Culf
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada; National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Mthembu SXH, Mazibuko-Mbeje SE, Ziqubu K, Muvhulawa N, Marcheggiani F, Cirilli I, Nkambule BB, Muller CJF, Basson AK, Tiano L, Dludla PV. Potential regulatory role of PGC-1α within the skeletal muscle during metabolic adaptations in response to high-fat diet feeding in animal models. Pflugers Arch 2024; 476:283-293. [PMID: 38044359 PMCID: PMC10847180 DOI: 10.1007/s00424-023-02890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
High-fat diet (HFD) feeding in rodents has become an essential tool to critically analyze and study the pathological effects of obesity, including mitochondrial dysfunction and insulin resistance. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) regulates cellular energy metabolism to influence insulin sensitivity, beyond its active role in stimulating mitochondrial biogenesis to facilitate skeletal muscle adaptations in response to HFD feeding. Here, some of the major electronic databases like PubMed, Embase, and Web of Science were accessed to update and critically discuss information on the potential role of PGC-1α during metabolic adaptations within the skeletal muscle in response to HFD feeding in rodents. In fact, available evidence suggests that partial exposure to HFD feeding (potentially during the early stages of disease development) is associated with impaired metabolic adaptations within the skeletal muscle, including mitochondrial dysfunction and reduced insulin sensitivity. In terms of implicated molecular mechanisms, these negative effects are partially associated with reduced activity of PGC-1α, together with the phosphorylation of protein kinase B and altered expression of genes involving nuclear respiratory factor 1 and mitochondrial transcription factor A within the skeletal muscle. Notably, metabolic abnormalities observed with chronic exposure to HFD (likely during the late stages of disease development) may potentially occur independently of PGC-1α regulation within the muscle of rodents. Summarized evidence suggests the causal relationship between PGC-1α regulation and effective modulations of mitochondrial biogenesis and metabolic flexibility during the different stages of disease development. It further indicates that prominent interventions like caloric restriction and physical exercise may affect PGC-1α regulation during effective modulation of metabolic processes.
Collapse
Affiliation(s)
- Sinenhlanhla X H Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Sithandiwe E Mazibuko-Mbeje
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Ndivhuwo Muvhulawa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Ilenia Cirilli
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa
- Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa.
- Cochrane South Africa, South African Medical Research Council, Tygerberg, 7505, South Africa.
| |
Collapse
|
5
|
Omar AK, Li Puma LC, Whitcomb LA, Risk BD, Witt AC, Bruemmer JE, Winger QA, Bouma GJ, Chicco AJ. High-fat diet during pregnancy promotes fetal skeletal muscle fatty acid oxidation and insulin resistance in an ovine model. Am J Physiol Regul Integr Comp Physiol 2023; 325:R523-R533. [PMID: 37642284 PMCID: PMC11178291 DOI: 10.1152/ajpregu.00059.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. We examined the effects of a high-fat diet (HFD) during pregnancy on fetal skeletal muscle metabolism and metabolic risk parameters using an ovine model. White-faced ewes were fed a standardized diet containing 5% fat wt/wt (CON), or the same diet supplemented with 6% rumen-protected fats (11% total fat wt/wt; HFD) beginning 2 wk before mating until midgestation (GD75). Maternal HFD increased maternal weight gain, fetal body weight, and low-density lipoprotein levels in the uterine and umbilical circulation but had no significant effects on circulating glucose, triglycerides, or placental fatty acid transporters. Fatty acid (palmitoylcarnitine) oxidation capacity of permeabilized hindlimb muscle fibers was >50% higher in fetuses from HFD pregnancies, whereas pyruvate and maximal (mixed substrate) oxidation capacities were similar to CON. This corresponded to greater triacylglycerol content and protein expression of fatty acid transport and oxidation enzymes in fetal muscle but no significant effect on respiratory chain complexes or pyruvate dehydrogenase expression. However, serine-308 phosphorylation of insulin receptor substrate-1 was greater in fetal muscle from HFD pregnancies along with c-jun-NH2 terminal kinase activation, consistent with prenatal inhibition of skeletal muscle insulin signaling. These results indicate that maternal high-fat feeding shifts fetal skeletal muscle metabolism toward a greater capacity for fatty acid over glucose utilization and favors prenatal development of insulin resistance, which may predispose offspring to metabolic syndrome later in life.NEW & NOTEWORTHY Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. This study examined the effects of a high-fat diet during pregnancy on metabolic risk parameters using a new sheep model. Results align with findings previously reported in nonhuman primates, demonstrating changes in fetal skeletal muscle metabolism that may predispose offspring to metabolic syndrome later in life.
Collapse
Affiliation(s)
- Asma K Omar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Lance C Li Puma
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Luke A Whitcomb
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Briana D Risk
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, United States
| | - Aria C Witt
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Jason E Bruemmer
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Quinton A Winger
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Gerrit J Bouma
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
6
|
Pileggi CA, Parmar G, Elkhatib H, Stewart CM, Alecu I, Côté M, Bennett SA, Sandhu JK, Cuperlovic-Culf M, Harper ME. The SARS-CoV-2 spike glycoprotein interacts with MAO-B and impairs mitochondrial energetics. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100112. [PMID: 38020812 PMCID: PMC10663135 DOI: 10.1016/j.crneur.2023.100112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
SARS-CoV-2 infection is associated with both acute and post-acute neurological symptoms. Emerging evidence suggests that SARS-CoV-2 can alter mitochondrial metabolism, suggesting that changes in brain metabolism may contribute to the development of acute and post-acute neurological complications. Monoamine oxidase B (MAO-B) is a flavoenzyme located on the outer mitochondrial membrane that catalyzes the oxidative deamination of monoamine neurotransmitters. Computational analyses have revealed high similarity between the SARS-CoV-2 spike glycoprotein receptor binding domain on the ACE2 receptor and MAO-B, leading to the hypothesis that SARS-CoV-2 spike glycoprotein may alter neurotransmitter metabolism by interacting with MAO-B. Our results empirically establish that the SARS-CoV-2 spike glycoprotein interacts with MAO-B, leading to increased MAO-B activity in SH-SY5Y neuron-like cells. Common to neurodegenerative disease pathophysiological mechanisms, we also demonstrate that the spike glycoprotein impairs mitochondrial bioenergetics, induces oxidative stress, and perturbs the degradation of depolarized aberrant mitochondria through mitophagy. Our findings also demonstrate that SH-SY5Y neuron-like cells expressing the SARS-CoV-2 spike protein were more susceptible to MPTP-induced necrosis, likely necroptosis. Together, these results reveal novel mechanisms that may contribute to SARS-CoV-2-induced neurodegeneration.
Collapse
Affiliation(s)
- Chantal A. Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Gaganvir Parmar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Hussein Elkhatib
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Corina M. Stewart
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Current Address: Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Irina Alecu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, ON, K1H 8M5, Canada
| | - Steffany A.L. Bennett
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jagdeep K. Sandhu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, ON, K1H 8M5, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Miroslava Cuperlovic-Culf
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
7
|
Vogt MC, Hobert O. Starvation-induced changes in somatic insulin/IGF-1R signaling drive metabolic programming across generations. SCIENCE ADVANCES 2023; 9:eade1817. [PMID: 37027477 PMCID: PMC10081852 DOI: 10.1126/sciadv.ade1817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/08/2023] [Indexed: 05/30/2023]
Abstract
Exposure to adverse nutritional and metabolic environments during critical periods of development can exert long-lasting effects on health outcomes of an individual and its descendants. Although such metabolic programming has been observed in multiple species and in response to distinct nutritional stressors, conclusive insights into signaling pathways and mechanisms responsible for initiating, mediating, and manifesting changes to metabolism and behavior across generations remain scarce. By using a starvation paradigm in Caenorhabditis elegans, we show that starvation-induced changes in dauer formation-16/forkhead box transcription factor class O (DAF-16/FoxO) activity, the main downstream target of insulin/insulin-like growth factor 1 (IGF-1) receptor signaling, are responsible for metabolic programming phenotypes. Tissue-specific depletion of DAF-16/FoxO during distinct developmental time points demonstrates that DAF-16/FoxO acts in somatic tissues, but not directly in the germline, to both initiate and manifest metabolic programming. In conclusion, our study deciphers multifaceted and critical roles of highly conserved insulin/IGF-1 receptor signaling in determining health outcomes and behavior across generations.
Collapse
|
8
|
Maternal Fructose Intake, Programmed Mitochondrial Function and Predisposition to Adult Disease. Int J Mol Sci 2022; 23:ijms232012215. [DOI: 10.3390/ijms232012215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Fructose consumption is now recognised as a major risk factor in the development of metabolic diseases, such as hyperlipidaemia, diabetes, non-alcoholic fatty liver disease and obesity. In addition to environmental, social, and genetic factors, an unfavourable intrauterine environment is now also recognised as an important factor in the progression of, or susceptibility to, metabolic disease during adulthood. Developmental trajectory in the short term, in response to nutrient restriction or excessive nutrient availability, may promote adaptation that serves to maintain organ functionality necessary for immediate survival and foetal development. Consequently, this may lead to decreased function of organ systems when presented with an unfavourable neonatal, adolescent and/or adult nutritional environment. These early events may exacerbate susceptibility to later-life disease since sub-optimal maternal nutrition increases the risk of non-communicable diseases (NCDs) in future generations. Earlier dietary interventions, implemented in pregnant mothers or those considering pregnancy, may have added benefit. Although, the mechanisms by which maternal diets high in fructose and the vertical transmission of maternal metabolic phenotype may lead to the predisposition to adult disease are poorly understood. In this review, we will discuss the potential contribution of excessive fructose intake during pregnancy and how this may lead to developmental reprogramming of mitochondrial function and predisposition to metabolic disease in offspring.
Collapse
|
9
|
Pileggi CA, Blondin DP, Hooks BG, Parmar G, Alecu I, Patten DA, Cuillerier A, O'Dwyer C, Thrush AB, Fullerton MD, Bennett SA, Doucet É, Haman F, Cuperlovic-Culf M, McPherson R, Dent RRM, Harper ME. Exercise training enhances muscle mitochondrial metabolism in diet-resistant obesity. EBioMedicine 2022; 83:104192. [PMID: 35965199 PMCID: PMC9482931 DOI: 10.1016/j.ebiom.2022.104192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 12/14/2022] Open
Abstract
Background Current paradigms for predicting weight loss in response to energy restriction have general validity but a subset of individuals fail to respond adequately despite documented diet adherence. Patients in the bottom 20% for rate of weight loss following a hypocaloric diet (diet-resistant) have been found to have less type I muscle fibres and lower skeletal muscle mitochondrial function, leading to the hypothesis that physical exercise may be an effective treatment when diet alone is inadequate. In this study, we aimed to assess the efficacy of exercise training on mitochondrial function in women with obesity with a documented history of minimal diet-induced weight loss. Methods From over 5000 patient records, 228 files were reviewed to identify baseline characteristics of weight loss response from women with obesity who were previously classified in the top or bottom 20% quintiles based on rate of weight loss in the first 6 weeks during which a 900 kcal/day meal replacement was consumed. A subset of 20 women with obesity were identified based on diet-resistance (n=10) and diet sensitivity (n=10) to undergo a 6-week supervised, progressive, combined aerobic and resistance exercise intervention. Findings Diet-sensitive women had lower baseline adiposity, higher fasting insulin and triglycerides, and a greater number of ATP-III criteria for metabolic syndrome. Conversely in diet-resistant women, the exercise intervention improved body composition, skeletal muscle mitochondrial content and metabolism, with minimal effects in diet-sensitive women. In-depth analyses of muscle metabolomes revealed distinct group- and intervention- differences, including lower serine-associated sphingolipid synthesis in diet-resistant women following exercise training. Interpretation Exercise preferentially enhances skeletal muscle metabolism and improves body composition in women with a history of minimal diet-induced weight loss. These clinical and metabolic mechanism insights move the field towards better personalised approaches for the treatment of distinct obesity phenotypes. Funding Canadian Institutes of Health Research (CIHR-INMD and FDN-143278; CAN-163902; CIHR PJT-148634).
Collapse
Affiliation(s)
- Chantal A Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; National Research Council of Canada, Digital Technologies Research Centre, Ottawa, Canada
| | - Denis P Blondin
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Breana G Hooks
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada
| | - Gaganvir Parmar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Irina Alecu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - David A Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Alexanne Cuillerier
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Conor O'Dwyer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - A Brianne Thrush
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Steffany Al Bennett
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Éric Doucet
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - François Haman
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Miroslava Cuperlovic-Culf
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; National Research Council of Canada, Digital Technologies Research Centre, Ottawa, Canada
| | - Ruth McPherson
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario Canada
| | - Robert R M Dent
- Division of Endocrinology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.
| |
Collapse
|
10
|
Dias-Rocha CP, Almeida MM, Woyames J, Mendonça R, Andrade CBV, Pazos-Moura CC, Trevenzoli IH. Maternal high-fat diet alters thermogenic markers but not muscle or brown adipose cannabinoid receptors in adult rats. Life Sci 2022; 306:120831. [PMID: 35882274 DOI: 10.1016/j.lfs.2022.120831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 12/26/2022]
Abstract
AIMS The endocannabinoid system (ECS) increases food intake, appetite for fat and lipogenesis, while decreases energy expenditure (thermogenesis), contributing to metabolic dysfunctions. We demonstrated that maternal high-fat diet (HFD) alters cannabinoid signaling in brown adipose tissue (BAT) of neonate and weanling male rat offspring, which have increased adiposity but also higher energy expenditure in adulthood. In this study, the main objective was to investigate the ECS expression in thermogenic tissues as BAT and skeletal muscle of adult rats programmed by maternal HFD. We hypothesized that maternal HFD would modulate ECS and energy metabolism markers in BAT and skeletal muscle of adult male offspring. MATERIALS AND METHODS Female rats received standard diet (9.4 % of calories as fat) or isocaloric HFD (28.9 % of calories as fat) for 8 weeks premating and throughout gestation and lactation. Male offspring were weaned on standard diet and euthanatized in adulthood. KEY FINDINGS Maternal HFD increased body weight, adiposity, glycemia, leptinemia while decreased testosterone levels in adult offspring. Maternal HFD did not change cannabinoid receptors in BAT or skeletal muscle as hypothesized but increased the content of uncoupling protein and tyrosine hydroxylase (thermogenic markers) in parallel to changes in mitochondrial morphology in skeletal muscle of adult offspring. SIGNIFICANCE In metabolic programming models, the ECS modulation in the BAT and skeletal muscle may be more important early in life to adapt energy metabolism during maternal dietary insult, and other mechanisms are possibly involved in muscle metabolism long-term regulation.
Collapse
Affiliation(s)
- Camilla P Dias-Rocha
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Mariana M Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Juliana Woyames
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Raphael Mendonça
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Cherley B V Andrade
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Carmen C Pazos-Moura
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis H Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Chaves A, Weyrauch LA, Zheng D, Biagioni EM, Krassovskaia PM, Davidson BL, Broskey NT, Boyle KE, May LE, Houmard JA. Influence of Maternal Exercise on Glucose and Lipid Metabolism in Offspring Stem Cells: ENHANCED by Mom. J Clin Endocrinol Metab 2022; 107:e3353-e3365. [PMID: 35511592 DOI: 10.1210/clinem/dgac270] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 02/06/2023]
Abstract
CONTEXT Recent preclinical data suggest exercise during pregnancy can improve the metabolic phenotype not only of the mother, but of the developing offspring as well. However, investigations in human offspring are lacking. OBJECTIVE To characterize the effect of maternal aerobic exercise on the metabolic phenotype of the offspring's mesenchymal stem cells (MSCs). DESIGN Randomized controlled trial. SETTING Clinical research facility. PATIENTS Healthy female adults between 18 and 35 years of age and ≤ 16 weeks' gestation. INTERVENTION Mothers were randomized into 1 of 2 groups: aerobic exercise (AE, n = 10) or nonexercise control (CTRL, n = 10). The AE group completed 150 minutes of weekly moderate-intensity exercise, according to American College of Sports Medicine guidelines, during pregnancy, whereas controls attended stretching sessions. MAIN OUTCOME MEASURES Following delivery, MSCs were isolated from the umbilical cord of the offspring and metabolic tracer and immunoblotting experiments were completed in the undifferentiated (D0) or myogenically differentiated (D21) state. RESULTS AE-MSCs at D0 had an elevated fold-change over basal in insulin-stimulated glycogen synthesis and reduced nonoxidized glucose metabolite (NOGM) production (P ≤ 0.05). At D21, AE-MSCs had a significant elevation in glucose partitioning toward oxidation (oxidation/NOGM ratio) compared with CTRL (P ≤ 0.05). Immunoblot analysis revealed elevated complex I expression in the AE-MSCs at D21 (P ≤ 0.05). Basal and palmitate-stimulated lipid metabolism was similar between groups at D0 and D21. CONCLUSIONS These data provide evidence of a programmed metabolic phenotype in human offspring with maternal AE during pregnancy.
Collapse
Affiliation(s)
- Alec Chaves
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Luke A Weyrauch
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Donghai Zheng
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Ericka M Biagioni
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Polina M Krassovskaia
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Breanna L Davidson
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Nicholas T Broskey
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Kristen E Boyle
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Linda E May
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Joseph A Houmard
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
12
|
Woyames J, Souza AFP, Miranda RA, Oliveira LS, Caetano B, Andrade CBV, Fortunato RS, Atella GC, Trevenzoli IH, Souza LL, Pazos-Moura CC. Maternal high-fat diet aggravates fructose-induced mitochondrial damage in skeletal muscles and causes differentiated adaptive responses on lipid metabolism in adult male offspring. J Nutr Biochem 2022; 104:108976. [PMID: 35245653 DOI: 10.1016/j.jnutbio.2022.108976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/18/2021] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
Maternal high-fat diet (HFD) is associated with metabolic disturbances in the offspring. Fructose is a highly consumed lipogenic sugar; however, it is unknown whether skeletal muscle of maternal HFD offspring respond differentially to a fructose overload. Female Wistar rats received standard diet (STD: 9% fat) or isocaloric high-fat diet (HFD: 29% fat) during 8 weeks before mating until weaning. After weaning, male offspring received STD and, from 120 to 150 days-old, they drank water or 15% fructose in water (STD-F and HFD-F). At 150th day, we collected the oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles. Fructose-treated groups exhibited hypertriglyceridemia, regardless of maternal diet. Soleus of maternal HFD offspring showed increased triglycerides and monounsaturated fatty acid content, independent of fructose, with increased fatty acid transporters and lipogenesis markers. The EDL exhibited unaltered triglycerides content, with an apparent equilibrium between lipogenesis and lipid oxidation markers in HFD, and higher lipid uptake (fatty acid-binding protein 4) accompanied by enhanced monounsaturated fatty acid in fructose-treated groups. Mitochondrial complexes proteins and Tfam mRNA were increased in the soleus of HFD, while uncoupling protein 3 was decreased markedly in HFD-F. In EDL, maternal HFD increased ATP synthase, while fructose decreased Tfam predominantly in STD offspring. Maternal HFD and fructose induced mitochondria ultrastructural damage, intensified in HFD-F in both muscles. Thus, alterations in molecular markers of lipid metabolism and mitochondrial function in response to fructose are modified by an isocaloric and moderate maternal HFD and are fiber-type specific, representing adaptation/maladaptation mechanisms associated with higher skeletal muscle fructose-induced mitochondria injury in adult offspring.
Collapse
Affiliation(s)
- Juliana Woyames
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | | | - Rosiane Aparecida Miranda
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Lorraine Soares Oliveira
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Bruna Caetano
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | | | - Rodrigo Soares Fortunato
- Laboratory of Molecular Radiobiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Luana Lopes Souza
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | | |
Collapse
|
13
|
Gestational Exercise Increases Male Offspring's Maximal Workload Capacity Early in Life. Int J Mol Sci 2022; 23:ijms23073916. [PMID: 35409278 PMCID: PMC8999565 DOI: 10.3390/ijms23073916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Mothers’ antenatal strategies to improve the intrauterine environment can positively decrease pregnancy-derived intercurrences. By challenging the mother–fetus unit, gestational exercise (GE) favorably modulates deleterious stimuli, such as high-fat, high-sucrose (HFHS) diet-induced adverse consequences for offspring. We aimed to analyze whether GE alters maternal HFHS-consumption effects on male offspring’s maximal workload performance (MWP) and in some skeletal muscle (the soleus—SOL and the tibialis anterior—TA) biomarkers associated with mitochondrial biogenesis and oxidative fitness. Infant male Sprague-Dawley rats were divided into experimental groups according to mothers’ dietary and/or exercise conditions: offspring of sedentary control diet-fed or HFHS-fed mothers (C–S or HFHS–S, respectively) and of exercised HFHS-fed mothers (HFHS–E). Although maternal HFHS did not significantly alter MWP, offspring from GE dams exhibited increased MWP. Lower SOL AMPk levels in HFHS–S were reverted by GE. SOL PGC-1α, OXPHOS C-I and C-IV subunits remained unaltered by maternal diet, although increased in HFHS–E offspring. Additionally, GE prevented maternal diet-related SOL miR-378a overexpression, while upregulated miR-34a expression. Decreased TA C-IV subunit expression in HFHS–S was reverted in HFHS–E, concomitantly with the downregulation of miR-338. In conclusion, GE in HFHS-fed dams increases the offspring’s MWP, which seems to be associated with the intrauterine modulation of SM mitochondrial density and functional markers.
Collapse
|
14
|
Dietary lipid droplet structure in postnatal life improves hepatic energy and lipid metabolism in a mouse model for postnatal programming. Pharmacol Res 2022; 179:106193. [DOI: 10.1016/j.phrs.2022.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022]
|
15
|
Maternal Fructose Intake Causes Developmental Reprogramming of Hepatic Mitochondrial Catalytic Activity and Lipid Metabolism in Weanling and Young Adult Offspring. Int J Mol Sci 2022; 23:ijms23020999. [PMID: 35055185 PMCID: PMC8780605 DOI: 10.3390/ijms23020999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/16/2022] Open
Abstract
Excess dietary fructose is a major public health concern, yet little is known about its influence on offspring development and later-life disease when consumed in excess during pregnancy. To determine whether increased maternal fructose intake could have long-term consequences on offspring health, we investigated the effects of 10% w/v fructose water intake during preconception and pregnancy in guinea pigs. Female Dunkin Hartley guinea pigs were fed a control diet (CD) or fructose diet (FD; providing 16% of total daily caloric intake) ad libitum 60 days prior to mating and throughout gestation. Dietary interventions ceased at day of delivery. Offspring were culled at day 21 (D21) (weaning) and at 4 months (4 M) (young adult). Fetal exposure to excess maternal fructose intake significantly increased male and female triglycerides at D21 and 4 M and circulating palmitoleic acid and total omega-7 through day 0 (D0) to 4 M. Proteomic and functional analysis of significantly differentially expressed proteins revealed that FD offspring (D21 and 4 M) had significantly increased mitochondrial metabolic activities of β-oxidation, electron transport chain (ETC) and oxidative phosphorylation and reactive oxygen species production compared to the CD offspring. Western blotting analysis of both FD offspring validated the increased protein abundances of mitochondrial ETC complex II and IV, SREBP-1c and FAS, whereas VDAC1 expression was higher at D21 but lower at 4 M. We provide evidence demonstrating offspring programmed hepatic mitochondrial metabolism and de novo lipogenesis following excess maternal fructose exposure. These underlying asymptomatic programmed pathways may lead to a predisposition to metabolic dysfunction later in life.
Collapse
|
16
|
Beleza J, Stevanović-Silva J, Coxito P, Costa RC, Ascensão A, Torrella JR, Magalhães J. Building-up fit muscles for the future: Transgenerational programming of skeletal muscle through physical exercise. Eur J Clin Invest 2021; 51:e13515. [PMID: 33580562 DOI: 10.1111/eci.13515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
'Special issue - In Utero and Early Life Programming of Aging and Disease'. Skeletal muscle (SM) adaptations to physical exercise (PE) have been extensively studied due, not only to the relevance of its in situ plasticity, but also to the SM endocrine-like effects in noncontractile tissues, such as brain, liver or adipocytes. Regular PE has been considered a pleiotropic nonpharmacological strategy to prevent and counteract the deleterious consequences of several metabolic, cardiovascular, oncological and neurodegenerative disorders. Additionally, PE performed by parents seems to have a direct impact in the offspring through the transgenerational programming of different tissues, such as SM. In fact, SM offspring programming mechanisms seems to be orchestrated, at least in part, by epigenetic machinery conditioning transcriptional or post-transcriptional processes. Ultimately, PE performed in the early in life is also a critical window of opportunity to positively modulate the juvenile and adult phenotype. Parental PE has a positive impact in several health-related offspring outcomes, such as SM metabolism, differentiation, morphology and ultimately in offspring exercise volition and endurance. Also, early-life PE counteracts conceptional-related adverse effects and induces long-lasting healthy benefits throughout adulthood. Additionally, epigenetics mechanisms seem to play a key role in the PE-induced SM adaptations. Despite the undoubtedly positive role of parental and early-life PE on SM phenotype, a strong research effort is still needed to better understand the mechanisms that positively regulate PE-induced SM programming.
Collapse
Affiliation(s)
- Jorge Beleza
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jelena Stevanović-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Rui Carlos Costa
- Department of Communication and Art, Research Institute for Design, Media and Culture (ID+), Aveiro University, Aveiro, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Joan Ramon Torrella
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Cui J, Song L, Wang R, Hu S, Yang Z, Zhang Z, Sun B, Cui W. Maternal Metformin Treatment during Gestation and Lactation Improves Skeletal Muscle Development in Offspring of Rat Dams Fed High-Fat Diet. Nutrients 2021; 13:nu13103417. [PMID: 34684418 PMCID: PMC8538935 DOI: 10.3390/nu13103417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/04/2022] Open
Abstract
Maternal high-fat (HF) diet is associated with offspring metabolic disorder. This study intended to determine whether maternal metformin (MT) administration during gestation and lactation prevents the effect of maternal HF diet on offspring’s skeletal muscle (SM) development and metabolism. Pregnant Sprague-Dawley rats were divided into four groups according to maternal diet {CHOW (11.8% fat) or HF (60% fat)} and MT administration {control (CT) or MT (300 mg/kg/day)} during gestation and lactation: CH-CT, CH-MT, HF-CT, HF-MT. All offspring were weaned on CHOW diet. SM was collected at weaning and 18 weeks in offspring. Maternal metformin reduced plasma insulin, leptin, triglyceride and cholesterol levels in male and female offspring. Maternal metformin increased MyoD expression but decreased Ppargc1a, Drp1 and Mfn2 expression in SM of adult male and female offspring. Decreased MRF4 expression in SM, muscle dysfunction and mitochondrial vacuolization were observed in weaned HF-CT males, while maternal metformin normalized them. Maternal metformin increased AMPK phosphorylation and decreased 4E-BP1 phosphorylation in SM of male and female offspring. Our data demonstrate that maternal metformin during gestation and lactation can potentially overcome the negative effects of perinatal exposure to HF diet in offspring, by altering their myogenesis, mitochondrial biogenesis and dynamics through AMPK/mTOR pathways in SM.
Collapse
Affiliation(s)
- Jiaqi Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Lin Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (L.S.); (R.W.); (S.H.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an 710061, China
| | - Rui Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (L.S.); (R.W.); (S.H.)
| | - Shuyuan Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (L.S.); (R.W.); (S.H.)
| | - Zhao Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Zengtie Zhang
- Department of Pathology, Xi’an Jiao Tong University Health Science Center, Xi’an 710061, China;
| | - Bo Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (L.S.); (R.W.); (S.H.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence: (B.S.); (W.C.)
| | - Wei Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
- Correspondence: (B.S.); (W.C.)
| |
Collapse
|
18
|
Bolam SM, Satokar VV, Konar S, Coleman B, Monk AP, Cornish J, Munro JT, Vickers MH, Albert BB, Musson DS. A Maternal High Fat Diet Leads to Sex-Specific Programming of Mechanical Properties in Supraspinatus Tendons of Adult Rat Offspring. Front Nutr 2021; 8:729427. [PMID: 34589513 PMCID: PMC8473632 DOI: 10.3389/fnut.2021.729427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Over half of women of reproductive age are now overweight or obese. The impact of maternal high-fat diet (HFD) is emerging as an important factor in the development and health of musculoskeletal tissues in offspring, however there is a paucity of evidence examining its effects on tendon. Alterations in the early life environment during critical periods of tendon growth therefore have the potential to influence tendon health that cross the lifespan. We hypothesised that a maternal HFD would alter biomechanical, morphological and gene expression profiles of adult offspring rotator cuff tendon. Materials and Methods: Female Sprague-Dawley rats were randomly assigned to either: control diet (CD; 10% kcal or 43 mg/g from fat) or HFD (45% kcal or 235 mg/g from fat) 14 days prior to mating and throughout pregnancy and lactation. Eight female and male offspring from each maternal diet group were weaned onto a standard chow diet and then culled at postnatal day 100 for tissue collection. Supraspinatus tendons were used for mechanical testing and histological assessment (cellularity, fibre organisation, nuclei shape) and tail tendons were collected for gene expression analysis. Results: A maternal HFD increased the elasticity (Young's Modulus) in the supraspinatus tendon of male offspring. Female offspring tendon biomechanical properties were not affected by maternal HFD. Gene expression of SCX and COL1A1 were reduced in male and female offspring of maternal HFD, respectively. Despite this, tendon histological organisation were similar between maternal diet groups in both sexes. Conclusion: An obesogenic diet during pregnancy increased tendon elasticity in male, but not female, offspring. This is the first study to demonstrate that maternal diet can modulate the biomechanical properties of offspring tendon. A maternal HFD may be an important factor in regulating adult offspring tendon homeostasis that may predispose offspring to developing tendinopathies and adverse tendon outcomes in later life.
Collapse
Affiliation(s)
- Scott M. Bolam
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Vidit V. Satokar
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Subhajit Konar
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
| | - Brendan Coleman
- Department of Orthopaedic Surgery, Middlemore Hospital, Auckland, New Zealand
| | - Andrew Paul Monk
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jillian Cornish
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
| | - Jacob T. Munro
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - David S. Musson
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Nutrition, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Renzini A, Riera CS, Minic I, D’Ercole C, Lozanoska-Ochser B, Cedola A, Gigli G, Moresi V, Madaro L. Metabolic Remodeling in Skeletal Muscle Atrophy as a Therapeutic Target. Metabolites 2021; 11:517. [PMID: 34436458 PMCID: PMC8398298 DOI: 10.3390/metabo11080517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a highly responsive tissue, able to remodel its size and metabolism in response to external demand. Muscle fibers can vary from fast glycolytic to slow oxidative, and their frequency in a specific muscle is tightly regulated by fiber maturation, innervation, or external causes. Atrophic conditions, including aging, amyotrophic lateral sclerosis, and cancer-induced cachexia, differ in the causative factors and molecular signaling leading to muscle wasting; nevertheless, all of these conditions are characterized by metabolic remodeling, which contributes to the pathological progression of muscle atrophy. Here, we discuss how changes in muscle metabolism can be used as a therapeutic target and review the evidence in support of nutritional interventions and/or physical exercise as tools for counteracting muscle wasting in atrophic conditions.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Carles Sánchez Riera
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Isidora Minic
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Chiara D’Ercole
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Biliana Lozanoska-Ochser
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Alessia Cedola
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Giuseppe Gigli
- Institute of Nanotechnology, c/o Campus Ecotekne, National Research Council (CNR-NANOTEC), Monteroni, 73100 Lecce, Italy;
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Luca Madaro
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| |
Collapse
|
20
|
Kanakis I, Alameddine M, Folkes L, Moxon S, Myrtziou I, Ozanne SE, Peffers MJ, Goljanek-Whysall K, Vasilaki A. Small-RNA Sequencing Reveals Altered Skeletal Muscle microRNAs and snoRNAs Signatures in Weanling Male Offspring from Mouse Dams Fed a Low Protein Diet during Lactation. Cells 2021; 10:cells10051166. [PMID: 34064819 PMCID: PMC8150574 DOI: 10.3390/cells10051166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022] Open
Abstract
Maternal diet during gestation and lactation affects the development of skeletal muscles in offspring and determines muscle health in later life. In this paper, we describe the association between maternal low protein diet-induced changes in offspring skeletal muscle and the differential expression (DE) of small non-coding RNAs (sncRNAs). We used a mouse model of maternal protein restriction, where dams were fed either a normal (N, 20%) or a low protein (L, 8%) diet during gestation and newborns were cross-fostered to N or L lactating dams, resulting in the generation of NN, NL and LN offspring groups. Total body and tibialis anterior (TA) weights were decreased in weanling NL male offspring but were not different in the LN group, as compared to NN. However, histological evaluation of TA muscle revealed reduced muscle fibre size in both groups at weaning. Small RNA-sequencing demonstrated DE of multiple miRs, snoRNAs and snRNAs. Bioinformatic analyses of miRs-15a, -34a, -122 and -199a, in combination with known myomiRs, confirmed their implication in key muscle-specific biological processes. This is the first comprehensive report for the DE of sncRNAs in nutrition-associated programming of skeletal muscle development, highlighting the need for further research to unravel the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
- Correspondence: or
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Leighton Folkes
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Simon Moxon
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
| | - Susan E. Ozanne
- Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Mandy J. Peffers
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, Galway H91 TK33, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| |
Collapse
|
21
|
Liaghati A, Pileggi CA, Parmar G, Patten DA, Hadzimustafic N, Cuillerier A, Menzies KJ, Burelle Y, Harper ME. Grx2 Regulates Skeletal Muscle Mitochondrial Structure and Autophagy. Front Physiol 2021; 12:604210. [PMID: 33762963 PMCID: PMC7982873 DOI: 10.3389/fphys.2021.604210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Glutathione is an important antioxidant that regulates cellular redox status and is disordered in many disease states. Glutaredoxin 2 (Grx2) is a glutathione-dependent oxidoreductase that plays a pivotal role in redox control by catalyzing reversible protein deglutathionylation. As oxidized glutathione (GSSG) can stimulate mitochondrial fusion, we hypothesized that Grx2 may contribute to the maintenance of mitochondrial dynamics and ultrastructure. Here, we demonstrate that Grx2 deletion results in decreased GSH:GSSG, with a marked increase of GSSG in primary muscle cells isolated from C57BL/6 Grx2-/- mice. The altered glutathione redox was accompanied by increased mitochondrial length, consistent with a more fused mitochondrial reticulum. Electron microscopy of Grx2-/- skeletal muscle fibers revealed decreased mitochondrial surface area, profoundly disordered ultrastructure, and the appearance of multi-lamellar structures. Immunoblot analysis revealed that autophagic flux was augmented in Grx2-/- muscle as demonstrated by an increase in the ratio of LC3II/I expression. These molecular changes resulted in impaired complex I respiration and complex IV activity, a smaller diameter of tibialis anterior muscle, and decreased body weight in Grx2 deficient mice. Together, these are the first results to show that Grx2 regulates skeletal muscle mitochondrial structure, and autophagy.
Collapse
Affiliation(s)
- Ava Liaghati
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Chantal A Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Gaganvir Parmar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - David A Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Nina Hadzimustafic
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Alexanne Cuillerier
- Faculty of Health Science, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Keir J Menzies
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Health Science, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Yan Burelle
- Faculty of Health Science, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
Deguise MO, Pileggi C, De Repentigny Y, Beauvais A, Tierney A, Chehade L, Michaud J, Llavero-Hurtado M, Lamont D, Atrih A, Wishart TM, Gillingwater TH, Schneider BL, Harper ME, Parson SH, Kothary R. SMN Depleted Mice Offer a Robust and Rapid Onset Model of Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2021; 12:354-377.e3. [PMID: 33545428 PMCID: PMC8257458 DOI: 10.1016/j.jcmgh.2021.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) is considered a health epidemic with potential devastating effects on the patients and the healthcare systems. Current preclinical models of NAFLD are invariably imperfect and generally take a long time to develop. A mouse model of survival motor neuron (SMN) depletion (Smn2B/- mice) was recently shown to develop significant hepatic steatosis in less than 2 weeks from birth. The rapid onset of fatty liver in Smn2B/- mice provides an opportunity to identify molecular markers of NAFLD. Here, we investigated whether Smn2B/- mice display typical features of NAFLD/nonalcoholic steatohepatitis (NASH). METHODS Biochemical, histologic, electron microscopy, proteomic, and high-resolution respirometry were used. RESULTS The Smn2B/- mice develop microvesicular steatohepatitis within 2 weeks, a feature prevented by AAV9-SMN gene therapy. Although fibrosis is not overtly apparent in histologic sections of the liver, there is molecular evidence of fibrogenesis and presence of stellate cell activation. The consequent liver damage arises from mitochondrial reactive oxygen species production and results in hepatic dysfunction in protein output, complement, coagulation, iron homeostasis, and insulin-like growth factor-1 metabolism. The NAFLD phenotype is likely due to non-esterified fatty acid overload from peripheral lipolysis subsequent to hyperglucagonemia compounded by reduced muscle use and insulin resistance. Despite the low hepatic mitochondrial content, isolated mitochondria show enhanced β-oxidation, likely as a compensatory response, resulting in the production of reactive oxygen species. In contrast to typical NAFLD/NASH, the Smn2B/- mice lose weight because of their associated neurological condition (spinal muscular atrophy) and develop hypoglycemia. CONCLUSIONS The Smn2B/- mice represent a good model of microvesicular steatohepatitis. Like other models, it is not representative of the complete NAFLD/NASH spectrum. Nevertheless, it offers a reliable, low-cost, early-onset model that is not dependent on diet to identify molecular players in NAFLD pathogenesis and can serve as one of the very few models of microvesicular steatohepatitis for both adult and pediatric populations.
Collapse
Affiliation(s)
- Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Chantal Pileggi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ariane Beauvais
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alexandra Tierney
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Lucia Chehade
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean Michaud
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Maica Llavero-Hurtado
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom,The Roslin Institute, Royal (Dick) School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Douglas Lamont
- FingerPrints Proteomics Facility, University of Dundee, Dundee, United Kingdom
| | - Abdelmadjid Atrih
- FingerPrints Proteomics Facility, University of Dundee, Dundee, United Kingdom
| | - Thomas M. Wishart
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom,The Roslin Institute, Royal (Dick) School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas H. Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom,College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Bernard L. Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,Bertarelli Foundation Gene Therapy Platform, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Simon H. Parson
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom,Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada,Correspondence Address correspondence to: Rashmi Kothary, PhD, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6. fax: (613) 737-8803.
| |
Collapse
|
23
|
Early life fluoxetine treatment causes long-term lean phenotype in skeletal muscle of rats exposed to maternal lard-based high-fat diet. Biomed Pharmacother 2020; 131:110727. [PMID: 32927255 DOI: 10.1016/j.biopha.2020.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/21/2022] Open
Abstract
There is a concern about early life exposure to Selective Serotonin Reuptake Inhibitors (SSRI) in child development and motor system maturation. Little is known, however, about the interaction of environmental factors, such as maternal nutrition, associated with early exposure to SSRI. The increased maternal consumption of high-fat diets is worrisome and affects serotonin system development with repercussions in body phenotype. This study aimed to assess the short- and long-term effects of neonatal fluoxetine treatment on the body and skeletal muscle phenotype of rats exposed to a maternal lard-based high-fat (H) diet during the perinatal period. A maternal lard-based high-fat diet causes reduced birth weight, a short-term reduction in type IIA fibers in the soleus muscle, and in type IIB fibers in the Extensor Digitorum Longus (EDL) muscle, reducing Lactate Dehydrogenase (LDH) activity in both muscles. In the long-term, the soleus showed reduced muscle weight, smaller area and perimeter of muscle fibers, while the EDL muscle showed reduced Citrate Synthase (CS) activity in offspring from the rats on the maternal lard-based high-fat diet. Early-life exposure to fluoxetine reduced body weight and growth and reduced soleus weight and enzymatic activity in young rats. Exposure to neonatal fluoxetine in adult rats caused a decreased body mass index, less food intake, and reduced muscle weight with reduced CS and LDH activity. Neonatal fluoxetine in young rats exposed to a maternal lard-based high-fat diet caused reduced body weight and growth, reduced soleus weight as well as area and perimeter of type I muscle fibers. In adulthood, there was a reduction in food intake, increased proportion of IIA type fibers, reduced area and perimeter of type IIB, and reduction in levels of CS activity in EDL muscle. Neonatal fluoxetine treatment in rats exposed to a maternal lard-based, high-fat diet induces a reduction in muscle weight, an increase in the proportion of oxidative fibers and greater oxidative enzymatic activity in adulthood.
Collapse
|
24
|
Abu Bakar MH, Shariff KA, Tan JS, Lee LK. Celastrol attenuates inflammatory responses in adipose tissues and improves skeletal muscle mitochondrial functions in high fat diet-induced obese rats via upregulation of AMPK/SIRT1 signaling pathways. Eur J Pharmacol 2020; 883:173371. [DOI: 10.1016/j.ejphar.2020.173371] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022]
|
25
|
Sertie R, Kang M, Antipenko JP, Liu X, Maianu L, Habegger K, Garvey WT. In utero nutritional stress as a cause of obesity: Altered relationship between body fat, leptin levels and caloric intake in offspring into adulthood. Life Sci 2020; 254:117764. [PMID: 32407841 PMCID: PMC8513136 DOI: 10.1016/j.lfs.2020.117764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
AIMS Emerging evidence suggests that during gestation the in utero environment programs metabolism and can increase risk of obesity in adult offspring. Our aim was to study how alterations in maternal diets during gestation might alter body weight evolution, circulating leptin levels and caloric intake in offspring, leading to changes in body composition. MATERIALS AND METHODS We fed gestating rats either a control diet (CD), high fat diet (HFD) or an isocaloric low protein diet (LPD), and examined the repercussions in offspring fed similar diets post-weaning on birth weight, body weight evolution, body composition, insulin sensitivity, glucose tolerance and in the relationship between plasma leptin concentration and caloric intake in offspring during growth and development. KEY FINDS Offspring from dams fed LPD maintained reduced body weight with greater % lean mass and consumed fewer calories despite having leptin levels similar to controls. On the other hand, offspring from dams fed a HFD were insulin resistant and maintained increased body weight and % fat mass, while consuming more calories than controls despite elevated leptin concentrations. Therefore the uterine environment, modulated primarily through maternal nutrition, modified the relationship between circulating leptin levels, body fat, and caloric intake in the offspring, and dams fed a HFD produced offspring with excess adiposity, insulin resistance, and leptin resistance into adulthood. SIGNIFICANCE Our data indicates that in utero environmental factors affected by maternal diet program alterations in the set point around which leptin regulates body weight in offspring into adulthood contributing to obesity.
Collapse
Affiliation(s)
- Rogerio Sertie
- Department of Nutrition Sciences, University of Alabama at Birmingham, United States of America
| | - Minsung Kang
- Department of Nutrition Sciences, University of Alabama at Birmingham, United States of America.
| | - Jessica P Antipenko
- Department of Medicine, University of Alabama at Birmingham, United States of America
| | - Xiaobing Liu
- Department of Nutrition Sciences, University of Alabama at Birmingham, United States of America
| | - Lidia Maianu
- Department of Nutrition Sciences, University of Alabama at Birmingham, United States of America
| | - Kirk Habegger
- Department of Medicine, University of Alabama at Birmingham, United States of America
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, United States of America; Birmingham Veterans Affairs Medical Center, Birmingham, AL, United States of America
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW A growing body of epidemiological and experimental data indicate that nutritional or environmental stressors during early development can induce long-term adaptations that increase risk of obesity, diabetes, cardiovascular disease, and other chronic conditions-a phenomenon termed "developmental programming." A common phenotype in humans and animal models is altered body composition, with reduced muscle and bone mass, and increased fat mass. In this review, we summarize the recent literature linking prenatal factors to future body composition and explore contributing mechanisms. RECENT FINDINGS Many prenatal exposures, including intrauterine growth restriction, extremes of birth weight, maternal obesity, and maternal diabetes, are associated with increased fat mass, reduced muscle mass, and decreased bone density, with effects reported throughout infancy and childhood, and persisting into middle age. Mechanisms and mediators include maternal diet, breastmilk composition, metabolites, appetite regulation, genetic and epigenetic influences, stem cell commitment and function, and mitochondrial metabolism. Differences in body composition are a common phenotype following disruptions to the prenatal environment, and may contribute to developmental programming of obesity and diabetes risk.
Collapse
Affiliation(s)
- Elvira Isganaitis
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Research Division, Joslin Diabetes Center, 1 Joslin Place, Room 655A, Boston, 02215, MA, USA.
| |
Collapse
|
27
|
Govoni KE, Reed SA, Zinn SA. CELL BIOLOGY SYMPOSIUM: METABOLIC RESPONSES TO STRESS: FROM ANIMAL TO CELL: Poor maternal nutrition during gestation: effects on offspring whole-body and tissue-specific metabolism in livestock species1,2. J Anim Sci 2019; 97:3142-3152. [PMID: 31070226 PMCID: PMC6606510 DOI: 10.1093/jas/skz157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
Poor maternal nutrition, both restricted-feeding and overfeeding, during gestation can negatively affect offspring growth, body composition, and metabolism. The effects are observed as early as the prenatal period and often persist through postnatal growth and adulthood. There is evidence of multigenerational effects demonstrating the long-term negative impacts on livestock production. We and others have demonstrated that poor maternal nutrition impairs muscle growth, increases adipose tissue, and negatively affects liver function. In addition to altered growth, changes in key metabolic factors, increased glucose concentrations, insulin insensitivity, and hyperleptinemia are observed during the postnatal period. Furthermore, there is recent evidence of altered metabolism in specific tissues (e.g., muscle, adipose, and liver) and stem cells. The systemic and local changes in metabolism demonstrate the importance of determining the mechanism(s) by which maternal diet programs offspring growth and metabolism in an effort to develop novel management practices to improve the efficiency of growth and health in these offspring.
Collapse
Affiliation(s)
- Kristen E Govoni
- Department of Animal Science, University of Connecticut, Storrs, CT
| | - Sarah A Reed
- Department of Animal Science, University of Connecticut, Storrs, CT
| | - Steven A Zinn
- Department of Animal Science, University of Connecticut, Storrs, CT
| |
Collapse
|
28
|
Patten DA, Ouellet M, Allan DS, Germain M, Baird SD, Harper ME, Richardson RB. Mitochondrial adaptation in human mesenchymal stem cells following ionizing radiation. FASEB J 2019; 33:9263-9278. [PMID: 31112400 PMCID: PMC6662961 DOI: 10.1096/fj.201801483rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mitochondria are highly dynamic organelles that respond rapidly to a number of stressors to regulate energy transduction, cell death signaling, and reactive oxygen species generation. We hypothesized that mitochondrial remodeling, comprising both structural and functional alterations, following ionizing radiation (IR) may underlie some of the tenets of radiobiology. Mesenchymal stem cells (MSCs) are precursors of bone marrow stroma and are altered in acute myeloid leukemia and by radiation and chemotherapy. Here, we report on changes in mitochondrial remodeling in human MSCs following X-ray IR. Mitochondrial function was significantly increased in MSCs 4 h after IR as measured by mitochondrial oxygen consumption. Consistent with this elevated functional effect, electron transport chain supercomplexes were also increased in irradiated samples. In addition, mitochondria were significantly, albeit modestly, elongated, as measured by high-throughput automated confocal imaging coupled with automated mitochondrial morphometric analyses. We also demonstrate in fibroblasts that mitochondrial remodeling is required for the adaptation of cells to IR. To determine novel mechanisms involved in mitochondrial remodeling, we performed quantitative proteomics on isolated mitochondria from cells following IR. Label-free quantitative mitochondrial proteomics revealed notable changes in proteins in irradiated samples and identified prosaposin, and potentially its daughter protein saposin-B, as a potential candidate for regulating mitochondrial function following IR. Whereas research into the biologic effects of cellular irradiation has long focused on nuclear DNA effects, our experimental work, along with that of others, is finding that mitochondrial effects may have broader implications in the field of stress adaptation and cell death in cancer (including leukemia) and other disease states.-Patten, D. A., Ouellet, M., Allan, D. S., Germain, M., Baird, S. D., Harper, M.-E., Richardson, R. B. Mitochondrial adaptation in human mesenchymal stem cells following ionizing radiation.
Collapse
Affiliation(s)
- David A Patten
- Radiobiology and Health Branch, Chalk River Laboratories, Canadian Nuclear Laboratories (CNL), Chalk River, Ontario, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Mathieu Ouellet
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - David S Allan
- Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc Germain
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Stephen D Baird
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Richard B Richardson
- Radiobiology and Health Branch, Chalk River Laboratories, Canadian Nuclear Laboratories (CNL), Chalk River, Ontario, Canada.,McGill Medical Physics Unit, Glen Site, Cedars Cancer Centre, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Differential effects of maternal high-fat/high-caloric or isocaloric diet on offspring's skeletal muscle phenotype. Life Sci 2018; 215:136-144. [DOI: 10.1016/j.lfs.2018.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
|
30
|
Khamoui AV, Desai M, Ross MG, Rossiter HB. Sex-specific effects of maternal and postweaning high-fat diet on skeletal muscle mitochondrial respiration. J Dev Orig Health Dis 2018; 9:670-677. [PMID: 30111387 PMCID: PMC6363897 DOI: 10.1017/s2040174418000594] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Exposure to maternal over-nutrition in utero is linked with developmental programming of obesity, metabolic syndrome and cardiovascular disease in offspring, which may be exacerbated by postnatal high-fat (HF) diet. Skeletal muscle mitochondrial function contributes to substrate metabolism and is impaired in metabolic disease. We examined muscle mitochondrial respiration in male and female mice exposed to maternal HF diet in utero, followed by postweaning HF diet until middle age. After in utero exposure to maternal control (Con) or HF diet (45% kcal fat; 39.4% lard, 5.5% soybean oil), offspring were weaned to Con or HF, creating four groups: Con/Con (male/female (m/f), n=8/8), Con/HF (m/f, n=7/4), HF/Con (m/f, n=9/6) and HF/HF (m/f, n=4/4). Oxidative phosphorylation (OXPHOS) and electron transfer system (ETS) capacity were measured in permeabilized gastrocnemius bundles. Maternal HF diet increased fasting glucose and lean body mass in males and body fat percentage in both sexes (P⩽0.05). Maximal adenosine diphosphate-stimulated respiration (complex I OXPHOS) was decreased by maternal HF diet in female offspring (-21%, P=0.053), but not in male (-0%, P>0.05). Sexually divergent responses were exacerbated in offspring weaned to HF diet. In females, OXPHOS capacity was lower (-28%, P=0.041) when weaned to high-fat (HF/HF) v. control diet (HF/Con). In males, OXPHOS (+33%, P=0.009) and ETS (+42%, P=0.016) capacity increased. Our data suggest that maternal lard-based HF diet, rich in saturated fat, affects offspring skeletal muscle respiration in a sex-dependent manner, and these differences are exacerbated by HF diet in adulthood.
Collapse
Affiliation(s)
- Andy V. Khamoui
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Mina Desai
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Michael G. Ross
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Harry B. Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
- Faculty of Biological Sciences, University of Leeds, Leeds, LS1 9JT, United Kingdom
| |
Collapse
|
31
|
Falcão-Tebas F, Kuang J, Arceri C, Kerris JP, Andrikopoulos S, Marin EC, McConell GK. Four weeks of exercise early in life reprograms adult skeletal muscle insulin resistance caused by a paternal high-fat diet. J Physiol 2018; 597:121-136. [PMID: 30406963 DOI: 10.1113/jp276386] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS A paternal high-fat diet/obesity before mating can negatively influence the metabolism of offspring. Exercise only early in life has a remarkable effect with respect to reprogramming adult rat offspring exposed to detrimental insults before conception. Exercise only early in life normalized adult whole body and muscle insulin resistance as a result of having a high-fat fed/obese father. Unlike the effects on the muscle, early exercise did not normalize the reduced adult pancreatic beta cell mass as a result of having a high-fat fed/obese father. Early-life exercise training may be able to reprogram an individual whose father was obese, inducing long-lasting beneficial effects on health. ABSTRACT A paternal high-fat diet (HFD) impairs female rat offspring glucose tolerance, pancreatic morphology and insulin secretion. We examined whether only 4 weeks of exercise early in life could reprogram these negative effects. Male Sprague-Dawley rats consumed a HFD for 10 weeks before mating with chow-fed dams. Female offspring remained sedentary or performed moderate intensity treadmill exercise (5 days week-1 , 60 min day-1 , 20 m min-1 ) from 5 to 9 weeks of age. Paternal HFD impaired (P < 0.05) adult offspring whole body insulin sensitivity (i.p. insulin sensitivity test), as well as skeletal muscle ex vivo insulin sensitivity and TBC1D4 phosphorylation. It also lowered β-cell mass and reduced in vivo insulin secretion in response to an i.p. glucose tolerance test. Early-life exercise in offspring reprogrammed the negative effects of a paternal HFD on whole body insulin sensitivity, skeletal muscle ex vivo insulin-stimulated glucose uptake and TBC1D4 phosphorylation and also increased glucose transporter 4 protein. However, early exercise did not normalize the reduced pancreatic β-cell mass or insulin secretion. In conclusion, only 4 weeks of exercise early in life in female rat offspring reprograms reductions in insulin sensitivity in adulthood caused by a paternal HFD without affecting pancreatic β-cell mass or insulin secretion.
Collapse
Affiliation(s)
- Filippe Falcão-Tebas
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.,The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Jujiao Kuang
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Chelsea Arceri
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Jarrod P Kerris
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Sofianos Andrikopoulos
- Department of Medicine, Austin Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Evelyn C Marin
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Austin Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Glenn K McConell
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.,College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Protein expression in submandibular glands of young rats is modified by a high-fat/high-sugar maternal diet. Arch Oral Biol 2018; 96:87-95. [PMID: 30205238 DOI: 10.1016/j.archoralbio.2018.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Maternal diet has consequences on many organs of the offspring, but salivary glands have received little attention despite the importance of the saliva secretory function in oral health and control of food intake. The objective of this work was therefore to document in rats the impact of maternal high-fat/high-sugar diet (Western Diet) on submandibular glands of the progeny. DESIGN Sprague-Dawley rat dams were fed either a Western diet or control diet during gestation and lactation and their pups were sacrificed 25 days after birth. The pups' submandibular gland protein content was characterized by means of 2D-electrophoresis followed by LC-MS/MS. Data were further analyzed by Gene Ontology enrichment analysis and protein-protein interactions mapping. The expression of two specific proteins was also evaluated using immunohistochemistry. RESULTS Combining both male and female pups (n = 18), proteome analysis revealed that proteins involved in protein quality control (e.g. heat shock proteins, proteasome sub-units) and microtubule proteins were over-expressed in Western diet conditions, which may translate intense metabolic activity. A cluster of proteins controlling oxidative stress (e.g. Glutathione peroxidases, peroxiredoxin) and enhancement of the antioxidant activity molecular function were also characteristic of maternal Western diet as well as under-expression of annexin A5. The down-regulating effect of maternal Western diet on Annexin A5 expression was significant only for males (p < 0.05). CONCLUSIONS A maternal Western diet modifies the protein composition of the offspring's salivary glands, which may have consequences on the salivary function.
Collapse
|
33
|
Cardenas-Perez RE, Fuentes-Mera L, de la Garza AL, Torre-Villalvazo I, Reyes-Castro LA, Rodriguez-Rocha H, Garcia-Garcia A, Corona-Castillo JC, Tovar AR, Zambrano E, Ortiz-Lopez R, Saville J, Fuller M, Camacho A. Maternal overnutrition by hypercaloric diets programs hypothalamic mitochondrial fusion and metabolic dysfunction in rat male offspring. Nutr Metab (Lond) 2018; 15:38. [PMID: 29991958 PMCID: PMC5987395 DOI: 10.1186/s12986-018-0279-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Background Maternal overnutrition including pre-pregnancy, pregnancy and lactation promotes a lipotoxic insult leading to metabolic dysfunction in offspring. Diet-induced obesity models (DIO) show that changes in hypothalamic mitochondria fusion and fission dynamics modulate metabolic dysfunction. Using three selective diet formula including a High fat diet (HFD), Cafeteria (CAF) and High Sugar Diet (HSD), we hypothesized that maternal diets exposure program leads to selective changes in hypothalamic mitochondria fusion and fission dynamics in male offspring leading to metabolic dysfunction which is exacerbated by a second exposure after weaning. Methods We exposed female Wistar rats to nutritional programming including Chow, HFD, CAF, or HSD for 9 weeks (pre-mating, mating, pregnancy and lactation) or to the same diets to offspring after weaning. We determined body weight, food intake and metabolic parameters in the offspring from 21 to 60 days old. Hypothalamus was dissected at 60 days old to determine mitochondria-ER interaction markers by mRNA expression and western blot and morphology by transmission electron microscopy (TEM). Mitochondrial-ER function was analyzed by confocal microscopy using hypothalamic cell line mHypoA-CLU192. Results Maternal programming by HFD and CAF leads to failure in glucose, leptin and insulin sensitivity and fat accumulation. Additionally, HFD and CAF programming promote mitochondrial fusion by increasing the expression of MFN2 and decreasing DRP1, respectively. Further, TEM analysis confirms that CAF exposure after programing leads to an increase in mitochondria fusion and enhanced mitochondrial-ER interaction, which partially correlates with metabolic dysfunction and fat accumulation in the HFD and CAF groups. Finally, we identified that lipotoxic palmitic acid stimulus in hypothalamic cells increases Ca2+ overload into mitochondria matrix leading to mitochondrial dysfunction. Conclusions We concluded that maternal programming by HFD induces hypothalamic mitochondria fusion, metabolic dysfunction and fat accumulation in male offspring, which is exacerbated by HFD or CAF exposure after weaning, potentially due to mitochondria calcium overflux.
Collapse
Affiliation(s)
- Robbi E Cardenas-Perez
- 1Departmento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico.,2Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo Leon, Monterrey, Mexico
| | - Lizeth Fuentes-Mera
- 1Departmento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Ana Laura de la Garza
- 3Centro de Investigacion en Nutricion y Salud Publica, Facultad de Salud Publica y Nutricion, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Ivan Torre-Villalvazo
- 4Departamento Fisiología de la Nutrición, Instituto Nacional de Ciencias Medicas y Nutrición, Mexico City, Mexico
| | - Luis A Reyes-Castro
- 5Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubiran, México City, Mexico
| | - Humberto Rodriguez-Rocha
- 6Departmento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Aracely Garcia-Garcia
- 6Departmento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | | | - Armando R Tovar
- 4Departamento Fisiología de la Nutrición, Instituto Nacional de Ciencias Medicas y Nutrición, Mexico City, Mexico
| | - Elena Zambrano
- 5Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubiran, México City, Mexico
| | - Rocio Ortiz-Lopez
- 8Escuela de Medicina y Ciencias de la Salud, Instituto Tecnologico de Monterrey, Monterrey, Mexico
| | - Jennifer Saville
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, University of Adelaide, Adelaide, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, University of Adelaide, Adelaide, Australia
| | - Alberto Camacho
- 1Departmento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico.,2Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo Leon, Monterrey, Mexico.,10Departamento de Bioquimica y Medicina Molecular. Facultad de Medicina, Universidad Autónoma de Nuevo León, Ave. Francisco I Madero y Dr. Eduardo Aguirre Pequeño s/n. Colonia Mitras Centro, C.P. 64460 Monterrey, Nuevo Leon Mexico
| |
Collapse
|
34
|
Agarwal P, Morriseau TS, Kereliuk SM, Doucette CA, Wicklow BA, Dolinsky VW. Maternal obesity, diabetes during pregnancy and epigenetic mechanisms that influence the developmental origins of cardiometabolic disease in the offspring. Crit Rev Clin Lab Sci 2018; 55:71-101. [DOI: 10.1080/10408363.2017.1422109] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Prasoon Agarwal
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Canada
| | - Taylor S. Morriseau
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Canada
| | - Stephanie M. Kereliuk
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Canada
| | - Christine A. Doucette
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Canada
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Brandy A. Wicklow
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Canada
- Department of Pediatrics & Child Health, University of Manitoba, Winnipeg, Canada
| | - Vernon W. Dolinsky
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Canada
| |
Collapse
|
35
|
Kereliuk SM, Brawerman GM, Dolinsky VW. Maternal Macronutrient Consumption and the Developmental Origins of Metabolic Disease in the Offspring. Int J Mol Sci 2017; 18:E1451. [PMID: 28684678 PMCID: PMC5535942 DOI: 10.3390/ijms18071451] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/14/2017] [Accepted: 06/30/2017] [Indexed: 12/18/2022] Open
Abstract
Recent research aimed at understanding the rise in obesity and cardiometabolic disease in children suggests that suboptimal maternal nutrition conditions organ systems and physiological responses in the offspring contributing to disease development. Understanding the mechanisms by which the macronutrient composition of the maternal diet during pregnancy or lactation affects health outcomes in the offspring may lead to new maternal nutrition recommendations, disease prevention strategies and therapies that reduce the increasing incidence of cardiometabolic disease in children. Recent mechanistic animal model research has identified how excess fats and sugars in the maternal diet alter offspring glucose tolerance, insulin signaling and metabolism. Maternal nutrition appears to influence epigenetic alterations in the offspring and the programming of gene expression in key metabolic pathways. This review is focused on experimental studies in animal models that have investigated mechanisms of how maternal consumption of macronutrients affects cardiometabolic disease development in the offspring. Future research using "-omic" technologies is essential to elucidate the mechanisms of how altered maternal macronutrient consumption influences the development of disease in the offspring.
Collapse
Affiliation(s)
- Stephanie M Kereliuk
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Gabriel M Brawerman
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Vernon W Dolinsky
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|