1
|
Andelman-Gur M, Snitz K, Honigstein D, Weissbrod A, Soroka T, Ravia A, Gorodisky L, Pinchover L, Ezra A, Hezi N, Gurevich T, Sobel N. Discriminating Parkinson's disease patients from healthy controls using nasal respiratory airflow. COMMUNICATIONS MEDICINE 2024; 4:233. [PMID: 39543393 PMCID: PMC11564766 DOI: 10.1038/s43856-024-00660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Breathing patterns may inform on health. We note that the sites of earliest brain damage in Parkinson's disease (PD) house the neural pace-makers of respiration. We therefore hypothesized that ongoing long-term temporal dynamics of respiration may be altered in PD. METHODS We applied a wearable device that precisely logs nasal airflow over time in 28 PD patients (mostly H&Y stage-II) and 33 matched healthy controls. Each participant wore the device for 24 h of otherwise routine daily living. RESULTS We observe significantly altered temporal patterns of nasal airflow in PD, where inhalations are longer and less variable than in matched controls (mean PD = -1.22 ± 1.9 (combined respiratory features score), Control = 1.04 ± 2.16, Wilcoxon rank-sum test, z = -4.1, effect size Cliff's δ = -0.61, 95% confidence interval = -0.79 - (-0.34), P = 4.3 × 10-5). The extent of alteration is such that using only 30 min of recording we detect PD at 87% accuracy (AUC = 0.85, 79% sensitivity (22 of 28), 94% specificity (31 of 33), z = 5.7, p = 3.5 × 10-9), and also predict disease severity (correlation with UPDRS-Total score: r = 0.49; P = 0.008). CONCLUSIONS We conclude that breathing patterns are altered by H&Y stage-II in the disease cascade, and our methods may be further refined in the future to provide an indication with diagnostic and prognostic value.
Collapse
Affiliation(s)
- Michal Andelman-Gur
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Kobi Snitz
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Danielle Honigstein
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Weissbrod
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Timna Soroka
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Ravia
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Gorodisky
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Pinchover
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Ezra
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Sourasky Medical Center (TASMC), Tel-Aviv, Israel
| | - Neomi Hezi
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Sourasky Medical Center (TASMC), Tel-Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Sourasky Medical Center (TASMC), Tel-Aviv, Israel
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Noam Sobel
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Khalilpour J, Soltani Zangbar H, Alipour MR, Shahabi P. The hypoxic respiratory response of the pre-Bötzinger complex. Heliyon 2024; 10:e34491. [PMID: 39114066 PMCID: PMC11305331 DOI: 10.1016/j.heliyon.2024.e34491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Since the discovery of the pre-Bötzinger Complex (preBötC) as a crucial region for generating the main respiratory rhythm, our understanding of its cellular and molecular aspects has rapidly increased within the last few decades. It is now apparent that preBötC is a highly flexible neuronal network that reconfigures state-dependently to produce the most appropriate respiratory output in response to various metabolic challenges, such as hypoxia. However, the responses of the preBötC to hypoxic conditions can be varied based on the intensity, pattern, and duration of the hypoxic challenge. This review discusses the preBötC response to hypoxic challenges at the cellular and network level. Particularly, the involvement of preBötC in the classical biphasic response of the respiratory network to acute hypoxia is illuminated. Furthermore, the article discusses the functional and structural changes of preBötC neurons following intermittent and sustained hypoxic challenges. Accumulating evidence shows that the preBötC neural circuits undergo substantial changes following hypoxia and contribute to several types of the respiratory system's hypoxic ventilatory responses.
Collapse
Affiliation(s)
- Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Joana Alves M, Browe BM, Carolina Rodrigues Dias A, Torres JM, Zaza G, Bangudi S, Blackburn J, Wang W, de Araujo Fernandes-Junior S, Fadda P, Toland A, Baer LA, Stanford KI, Czeisler C, Garcia AJ, Javier Otero J. Metabolic trade-offs in Neonatal sepsis triggered by TLR4 and TLR1/2 ligands result in unique dysfunctions in neural breathing circuits. Brain Behav Immun 2024; 119:333-350. [PMID: 38561095 DOI: 10.1016/j.bbi.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Neonatal sepsis remains one of the leading causes of mortality in newborns. Several brainstem-regulated physiological processes undergo disruption during neonatal sepsis. Mechanistic knowledge gaps exist at the interplay between metabolism and immune activation to brainstem neural circuits and pertinent physiological functions in neonates. To delineate this association, we induced systemic inflammation either by TLR4 (LPS) or TLR1/2 (PAM3CSK4) ligand administration in postnatal day 5 mice (PD5). Our findings show that LPS and PAM3CSK4 evoke substantial changes in respiration and metabolism. Physiological trade-offs led to hypometabolic-hypothermic responses due to LPS, but not PAM3CSK4, whereas to both TLR ligands blunted respiratory chemoreflexes. Neuroinflammatory pathways modulation in brainstem showed more robust effects in LPS than PAM3CSK4. Brainstem neurons, microglia, and astrocyte gene expression analyses showed unique responses to TLR ligands. PAM3CSK4 did not significantly modulate gene expression changes in GLAST-1 positive brainstem astrocytes. PD5 pups receiving PAM3CSK4 failed to maintain a prolonged metabolic state repression, which correlated to enhanced gasping latency and impaired autoresuscitation during anoxic chemoreflex challenges. In contrast, LPS administered pups showed no significant changes in anoxic chemoreflex. Electrophysiological studies from brainstem slices prepared from pups exposed to either TLR4 or PAM3CSK4 showed compromised transmission between preBötzinger complex and Hypoglossal as an exclusive response to the TLR1/2 ligand. Spatial gene expression analysis demonstrated a region-specific modulation of PAM3CSK4 within the raphe nucleus relative to other anatomical sites evaluated. Our findings suggest that metabolic changes due to inflammation might be a crucial tolerance mechanism for neonatal sepsis preserving neural control of breathing.
Collapse
Affiliation(s)
- Michele Joana Alves
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Brigitte M Browe
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Neuroscience Institute, The University of Chicago, Chicago, IL, United States
| | - Ana Carolina Rodrigues Dias
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Juliet M Torres
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Giuliana Zaza
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Suzy Bangudi
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Jessica Blackburn
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Wesley Wang
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | | | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Amanda Toland
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States; Department of Cancer Biology and Genetics and Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Lisa A Baer
- Department of Cancer Biology and Genetics and Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Catherine Czeisler
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Alfredo J Garcia
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Neuroscience Institute, The University of Chicago, Chicago, IL, United States.
| | - José Javier Otero
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States.
| |
Collapse
|
4
|
Huff AD, Karlen-Amarante M, Oliveira LM, Ramirez JM. Chronic intermittent hypoxia reveals role of the Postinspiratory Complex in the mediation of normal swallow production. eLife 2024; 12:RP92175. [PMID: 38655918 PMCID: PMC11042803 DOI: 10.7554/elife.92175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurological and systemic comorbidities, including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently, we showed the postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests that glutamatergic-cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.
Collapse
Affiliation(s)
- Alyssa D Huff
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Neurological Surgery, University of Washington School of MedicineSeattleUnited States
| |
Collapse
|
5
|
Huff A, Karlen-Amarante M, Oliveira LM, Ramirez JM. Chronic Intermittent Hypoxia reveals role of the Postinspiratory Complex in the mediation of normal swallow production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559560. [PMID: 37808787 PMCID: PMC10557756 DOI: 10.1101/2023.09.26.559560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurologic and systemic comorbidities including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently we showed the Postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger Complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests, glutamatergic-cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.
Collapse
Affiliation(s)
- Alyssa Huff
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Luiz Marcelo Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA, 98108
| |
Collapse
|
6
|
Baldo BA. Neonatal opioid toxicity: opioid withdrawal (abstinence) syndrome with emphasis on pharmacogenomics and respiratory depression. Arch Toxicol 2023; 97:2575-2585. [PMID: 37537419 DOI: 10.1007/s00204-023-03563-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
The increasing use of opioids in pregnant women has led to an alarming rise in the number of cases of neonates with drug-induced withdrawal symptoms known as neonatal opioid withdrawal syndrome (NOWS). NOWS is a toxic heterogeneous condition with many neurologic, autonomic, and gastrointestinal symptoms including poor feeding, irritability, tachycardia, hypertension, respiratory defects, tremors, hyperthermia, and weight loss. Paradoxically, for the management of NOWS, low doses of morphine, methadone, or buprenorphine are administered. NOWS is a polygenic disorder supported by studies of genomic variation in opioid-related genes. Single-nucleotide polymorphisms (SNPs) in CYP2B6 are associated with variations in NOWS infant responses to methadone and SNPs in the OPRM1, ABCB1, and COMT genes are associated with need for treatment and length of hospital stay. Epigenetic gene changes showing higher methylation levels in infants and mothers have been associated with more pharmacologic treatment in the case of newborns, and for mothers, longer infant hospital stays. Respiratory disturbances associated with NOWS are not well characterized. Little is known about the effects of opioids on developing neonatal respiratory control and respiratory distress (RD), a potential problem for survival of the neonate. In a rat model to test the effect of maternal opioids on the developing respiratory network and neonatal breathing, maternal-derived methadone increased apneas and lessened RD in neonates at postnatal (P) days P0 and P1. From P3, breathing normalized with age suggesting reorganization of respiratory rhythm-generating circuits at a time when the preBötC becomes the dominant inspiratory rhythm generator. In medullary slices containing the preBötC, maternal opioid treatment plus exposure to exogenous opioids showed respiratory activity was maintained in younger but not older neonates. Thus, maternal opioids blunt centrally controlled respiratory frequency responses to exogenous opioids in an age-dependent manner. In the absence of maternal opioid treatment, exogenous opioids abolished burst frequencies at all ages. Prenatal opioid exposure in children stunts growth rate and development while studies of behavior and cognitive ability reveal poor performances. In adults, high rates of attention deficit disorder, hyperactivity, substance abuse, and poor performances in intelligence and memory tests have been reported.
Collapse
Affiliation(s)
- Brian A Baldo
- Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, Sydney, NSW, 2065, Australia.
- Department of Medicine, University of Sydney, Sydney, NSW, 2000, Australia.
| |
Collapse
|
7
|
Kang J, Lu N, Yang S, Guo B, Zhu Y, Wu S, Huang X, Wong-Riley MTT, Liu YY. Alterations in synapses and mitochondria induced by acute or chronic intermittent hypoxia in the pre-Bötzinger complex of rats: an ultrastructural triple-labeling study with immunocytochemistry and histochemistry. Front Cell Neurosci 2023; 17:1132241. [PMID: 37396926 PMCID: PMC10312010 DOI: 10.3389/fncel.2023.1132241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The pre-Bötzinger complex (pre-BötC), a kernel of inspiratory rhythmogenesis, is a heterogeneous network with excitatory glutamatergic and inhibitory GABAergic and glycinergic neurons. Inspiratory rhythm generation relies on synchronous activation of glutamatergic neuron, whilst inhibitory neurons play a critical role in shaping the breathing pattern, endowing the rhythm with flexibility in adapting to environmental, metabolic, and behavioral needs. Here we report ultrastructural alterations in excitatory, asymmetric synapses (AS) and inhibitory, symmetric synapses (SS), especially perforated synapses with discontinuous postsynaptic densities (PSDs) in the pre-BötC in rats exposed to daily acute intermittent hypoxia (dAIH) or chronic (C) IH. Methods We utilized for the first time a combination of somatostatin (SST) and neurokinin 1 receptor (NK1R) double immunocytochemistry with cytochrome oxidase histochemistry, to reveal synaptic characteristics and mitochondrial dynamic in the pre-BötC. Results We found perforated synapses with synaptic vesicles accumulated in distinct pools in apposition to each discrete PSD segments. dAIH induced significant increases in the PSD size of macular AS, and the proportion of perforated synapses. AS were predominant in the dAIH group, whereas SS were in a high proportion in the CIH group. dAIH significantly increased SST and NK1R expressions, whereas CIH led to a decrease. Desmosome-like contacts (DLC) were characterized for the first time in the pre-BötC. They were distributed alongside of synapses, especially SS. Mitochondria appeared in more proximity to DLC than synapses, suggestive of a higher energy demand of the DLC. Findings of single spines with dual AS and SS innervation provide morphological evidence of excitation-inhibition interplay within a single spine in the pre-BötC. In particular, we characterized spine-shaft microdomains of concentrated synapses coupled with mitochondrial positioning that could serve as a structural basis for synchrony of spine-shaft communication. Mitochondria were found within spines and ultrastructural features of mitochondrial fusion and fission were depicted for the first time in the pre-BötC. Conclusion We provide ultrastructural evidence of excitation-inhibition synapses in shafts and spines, and DLC in association with synapses that coincide with mitochondrial dynamic in their contribution to respiratory plasticity in the pre-BötC.
Collapse
Affiliation(s)
- Junjun Kang
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, China
| | - Naining Lu
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, China
| | - Shoujing Yang
- Department of Pathology, The Fourth Military Medical University, Xi’an, China
| | - Baolin Guo
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, China
| | - Yuanyuan Zhu
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, China
| | - Shengxi Wu
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, China
| | - Xiaofeng Huang
- Department of Pathology, Xi’an Gaoxin Hospital, Xi’an, China
| | - Margaret T. T. Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ying-Ying Liu
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
8
|
Ramirez JM, Carroll MS, Burgraff N, Rand CM, Weese-Mayer DE. A narrative review of the mechanisms and consequences of intermittent hypoxia and the role of advanced analytic techniques in pediatric autonomic disorders. Clin Auton Res 2023; 33:287-300. [PMID: 37326924 DOI: 10.1007/s10286-023-00958-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Disorders of autonomic functions are typically characterized by disturbances in multiple organ systems. These disturbances are often comorbidities of common and rare diseases, such as epilepsy, sleep apnea, Rett syndrome, congenital heart disease or mitochondrial diseases. Characteristic of many autonomic disorders is the association with intermittent hypoxia and oxidative stress, which can cause or exaggerate a variety of other autonomic dysfunctions, making the treatment and management of these syndromes very complex. In this review we discuss the cellular mechanisms by which intermittent hypoxia can trigger a cascade of molecular, cellular and network events that result in the dysregulation of multiple organ systems. We also describe the importance of computational approaches, artificial intelligence and the analysis of big data to better characterize and recognize the interconnectedness of the various autonomic and non-autonomic symptoms. These techniques can lead to a better understanding of the progression of autonomic disorders, ultimately resulting in better care and management.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA
| | - Casey M Rand
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Ludwig K, Malatantis-Ewert S, Huppertz T, Bahr-Hamm K, Seifen C, Pordzik J, Matthias C, Simon P, Gouveris H. Central Apneic Event Prevalence in REM and NREM Sleep in OSA Patients: A Retrospective, Exploratory Study. BIOLOGY 2023; 12:298. [PMID: 36829574 PMCID: PMC9953334 DOI: 10.3390/biology12020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Patients with sleep-disordered breathing show a combination of different respiratory events (central, obstructive, mixed), with one type being predominant. We observed a reduced prevalence of central apneic events (CAEs) during REM sleep compared to NREM sleep in patients with predominant obstructive sleep apnea (OSA). The aim of this retrospective, exploratory study was to describe this finding and to suggest pathophysiological explanations. The polysomnography (PSG) data of 141 OSA patients were assessed for the prevalence of CAEs during REM and NREM sleep. On the basis of the apnea-hypopnea index (AHI), patients were divided into three OSA severity groups (mild: AHI < 15/h; moderate: AHI = 15-30/h; severe: AHI > 30/h). We compared the frequency of CAEs adjusted for the relative length of REM and NREM sleep time, and a significantly increased frequency of CAEs in NREM was found only in severely affected OSA patients. Given that the emergence of CAEs is strongly associated with the chemosensitivity of the brainstem nuclei regulating breathing mechanics in humans, a sleep-stage-dependent chemosensitivity is proposed. REM-sleep-associated neuronal circuits in humans may act protectively against the emergence of CAEs, possibly by reducing chemosensitivity. On the contrary, a significant increase in the chemosensitivity of the brainstem nuclei during NREM sleep is suggested.
Collapse
Affiliation(s)
- Katharina Ludwig
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Sebastian Malatantis-Ewert
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Tilman Huppertz
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Katharina Bahr-Hamm
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Christopher Seifen
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Johannes Pordzik
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Christoph Matthias
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Perikles Simon
- Department of Sport Medicine, Rehabilitation and Disease Prevention, Faculty of Social Science, Media and Sport, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Haralampos Gouveris
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
10
|
Proceedings of the First Pediatric Coma and Disorders of Consciousness Symposium by the Curing Coma Campaign, Pediatric Neurocritical Care Research Group, and NINDS: Gearing for Success in Coma Advancements for Children and Neonates. Neurocrit Care 2023; 38:447-469. [PMID: 36759418 PMCID: PMC9910782 DOI: 10.1007/s12028-023-01673-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
This proceedings article presents the scope of pediatric coma and disorders of consciousness based on presentations and discussions at the First Pediatric Disorders of Consciousness Care and Research symposium held on September 14th, 2021. Herein we review the current state of pediatric coma care and research opportunities as well as shared experiences from seasoned researchers and clinicians. Salient current challenges and opportunities in pediatric and neonatal coma care and research were identified through the contributions of the presenters, who were Jose I. Suarez, MD, Nina F. Schor, MD, PhD, Beth S. Slomine, PhD Erika Molteni, PhD, and Jan-Marino Ramirez, PhD, and moderated by Varina L. Boerwinkle, MD, with overview by Mark Wainwright, MD, and subsequent audience discussion. The program, executively planned by Varina L. Boerwinkle, MD, Mark Wainwright, MD, and Michelle Elena Schober, MD, drove the identification and development of priorities for the pediatric neurocritical care community.
Collapse
|
11
|
Browe BM, Peng YJ, Nanduri J, Prabhakar NR, Garcia AJ. Gasotransmitter modulation of hypoglossal motoneuron activity. eLife 2023; 12:e81978. [PMID: 36656752 PMCID: PMC9977277 DOI: 10.7554/elife.81978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by sporadic collapse of the upper airway leading to periodic disruptions in breathing. Upper airway patency is governed by genioglossal nerve activity that originates from the hypoglossal motor nucleus. Mice with targeted deletion of the gene Hmox2, encoding the carbon monoxide (CO) producing enzyme, heme oxygenase-2 (HO-2), exhibit OSA, yet the contribution of central HO-2 dysregulation to the phenomenon is unknown. Using the rhythmic brainstem slice preparation that contains the preBötzinger complex (preBötC) and the hypoglossal nucleus, we tested the hypothesis that central HO-2 dysregulation weakens hypoglossal motoneuron output. Disrupting HO-2 activity increased the occurrence of subnetwork activity from the preBötC, which was associated with an increased irregularity of rhythmogenesis. These phenomena were also associated with the intermittent inability of the preBötC rhythm to drive output from the hypoglossal nucleus (i.e. transmission failures), and a reduction in the input-output relationship between the preBötC and the motor nucleus. HO-2 dysregulation reduced excitatory synaptic currents and intrinsic excitability in inspiratory hypoglossal neurons. Inhibiting activity of the CO-regulated H2S producing enzyme, cystathionine-γ-lyase (CSE), reduced transmission failures in HO-2 null brainstem slices, which also normalized excitatory synaptic currents and intrinsic excitability of hypoglossal motoneurons. These findings demonstrate a hitherto uncharacterized modulation of hypoglossal activity through mutual interaction of HO-2/CO and CSE/H2S, and support the potential importance of centrally derived gasotransmitter activity in regulating upper airway control.
Collapse
Affiliation(s)
- Brigitte M Browe
- Institute for Integrative Physiology, University of ChicagoChicagoUnited States
- The University of Chicago Neuroscience Institute, The University of ChicagoChicagoUnited States
- Department of Medicine, Section of Emergency Medicine at The University of ChicagoUniversity of ChicagoUnited States
| | - Ying-Jie Peng
- Institute for Integrative Physiology, University of ChicagoChicagoUnited States
- Department of Medicine, Section of Emergency Medicine at The University of ChicagoUniversity of ChicagoUnited States
| | - Jayasri Nanduri
- Institute for Integrative Physiology, University of ChicagoChicagoUnited States
- Department of Medicine, Section of Emergency Medicine at The University of ChicagoUniversity of ChicagoUnited States
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology, University of ChicagoChicagoUnited States
- The University of Chicago Neuroscience Institute, The University of ChicagoChicagoUnited States
- Department of Medicine, Section of Emergency Medicine at The University of ChicagoUniversity of ChicagoUnited States
| | - Alfredo J Garcia
- Institute for Integrative Physiology, University of ChicagoChicagoUnited States
- The University of Chicago Neuroscience Institute, The University of ChicagoChicagoUnited States
- Department of Medicine, Section of Emergency Medicine at The University of ChicagoUniversity of ChicagoUnited States
| |
Collapse
|
12
|
Mediation of Sinusoidal Network Oscillations in the Locus Coeruleus of Newborn Rat Slices by Pharmacologically Distinct AMPA and KA Receptors. Brain Sci 2022; 12:brainsci12070945. [PMID: 35884751 PMCID: PMC9321180 DOI: 10.3390/brainsci12070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
Brain control by locus coeruleus (LC) neurons involves afferent glutamate (Glu) inputs. In newborns, LC Glu receptors and responses may be sparse due to immaturity of the brain circuits providing such input. However, we reported, using newborn rat brain slices, that Glu and its ionotropic receptor (iGluR) agonist NMDA transform spontaneous local field potential (LFP) rhythm. Here, we studied whether α-amino-3-hydroxy-5-methyl-4-isoxazole propionic-acid (AMPA) and kainate (KA) iGluR subtypes also transform the LFP pattern. AMPA (0.25–0.5 µM) and KA (0.5–2.5 µM) merged ~0.2 s-lasting bell-shaped LFP events occurring at ~1 Hz into ~40% shorter and ~4-fold faster spindle-shaped and more regular sinusoidal oscillations. The AMPA/KA effects were associated with a 3.1/4.3-fold accelerated phase-locked single neuron spiking due to 4.0/4.2 mV depolarization while spike jitter decreased to 64/42% of the control, respectively. Raising extracellular K+ from 3 to 9 mM increased the LFP rate 1.4-fold or elicited slower multipeak events. A blockade of Cl−-mediated inhibition with gabazine (5 μM) plus strychnine (10 μM) affected neither the control rhythm nor AMPA/KA oscillations. GYKI-53655 (25 μM) blocked AMPA (but not KA) oscillations whereas UBP-302 (25 μM) blocked KA (but not AMPA) oscillations. Our findings revealed that AMPA and KA evoke a similar novel neural network discharge pattern transformation type by acting on pharmacologically distinct AMPAR and KA receptors. This shows that already the neonatal LC can generate oscillatory network behaviors that may be important, for example, for responses to opioids.
Collapse
|
13
|
Rawal B, Rancic V, Ballanyi K. NMDA Enhances and Glutamate Attenuates Synchrony of Spontaneous Phase-Locked Locus Coeruleus Network Rhythm in Newborn Rat Brain Slices. Brain Sci 2022; 12:brainsci12050651. [PMID: 35625039 PMCID: PMC9140167 DOI: 10.3390/brainsci12050651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Locus coeruleus (LC) neurons are controlled by glutamatergic inputs. Here, we studied in brain slices of neonatal rats NMDA and glutamate effects on phase-locked LC neuron spiking at ~1 Hz summating to ~0.2 s-lasting bell-shaped local field potential (LFP). NMDA: 10 μM accelerated LFP 1.7-fold, whereas 25 and 50 μM, respectively, increased its rate 3.2- and 4.6-fold while merging discrete events into 43 and 56% shorter oscillations. After 4–6 min, LFP oscillations stopped every 6 s for 1 s, resulting in ‘oscillation trains’. A dose of 32 μM depolarized neurons by 8.4 mV to cause 7.2-fold accelerated spiking at reduced jitter and enhanced synchrony with the LFP, as evident from cross-correlation. Glutamate: 25–50 μM made rhythm more irregular and the LFP pattern could transform into 2.7-fold longer-lasting multipeak discharge. In 100 μM, LFP amplitude and duration declined. In 25–50 μM, neurons depolarized by 5 mV to cause 3.7-fold acceleration of spiking that was less synchronized with LFP. Both agents: evoked ‘post-agonist depression’ of LFP that correlated with the amplitude and kinetics of Vm hyperpolarization. The findings show that accelerated spiking during NMDA and glutamate is associated with enhanced or attenuated LC synchrony, respectively, causing distinct LFP pattern transformations. Shaping of LC population discharge dynamics by ionotropic glutamate receptors potentially fine-tunes its influence on brain functions.
Collapse
|
14
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Huff A, Burgraff N. Breathing disturbances in Rett syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:139-151. [PMID: 36031301 PMCID: PMC10029146 DOI: 10.1016/b978-0-323-91532-8.00018-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rett Syndrome is an X-linked neurological disorder characterized by behavioral and neurological regression, seizures, motor deficits, and dysautonomia. A particularly prominent presentation includes breathing abnormalities characterized by breathing irregularities, hyperventilation, repetitive breathholding during wakefulness, obstructive and central apneas during sleep, and abnormal responses to hypoxia and hypercapnia. The condition and pathology of the respiratory system is further complicated by dysfunctions of breathing-motor coordination, which is reflected in dysphagia. The discovery of the X-linked mutations in the MECP2 gene has transformed our understanding of the cellular and molecular mechanisms that are at the root of various clinical phenotypes. However, the genotype-phenotype relationship is complicated by various factors which include not only X-inactivation but also consequences of the intermittent hypoxia and oxidative stress associated with the breathing abnormalities.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States.
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
15
|
Baertsch NA, Bush NE, Burgraff NJ, Ramirez JM. Dual mechanisms of opioid-induced respiratory depression in the inspiratory rhythm-generating network. eLife 2021; 10:e67523. [PMID: 34402425 PMCID: PMC8390004 DOI: 10.7554/elife.67523] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022] Open
Abstract
The analgesic utility of opioid-based drugs is limited by the life-threatening risk of respiratory depression. Opioid-induced respiratory depression (OIRD), mediated by the μ-opioid receptor (MOR), is characterized by a pronounced decrease in the frequency and regularity of the inspiratory rhythm, which originates from the medullary preBötzinger Complex (preBötC). To unravel the cellular- and network-level consequences of MOR activation in the preBötC, MOR-expressing neurons were optogenetically identified and manipulated in transgenic mice in vitro and in vivo. Based on these results, a model of OIRD was developed in silico. We conclude that hyperpolarization of MOR-expressing preBötC neurons alone does not phenocopy OIRD. Instead, the effects of MOR activation are twofold: (1) pre-inspiratory spiking is reduced and (2) excitatory synaptic transmission is suppressed, thereby disrupting network-driven rhythmogenesis. These dual mechanisms of opioid action act synergistically to make the normally robust inspiratory rhythm-generating network particularly prone to collapse when challenged with exogenous opioids.
Collapse
Affiliation(s)
- Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Nicholas J Burgraff
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
- Department Neurological Surgery, University of WashingtonSeattleUnited States
| |
Collapse
|
16
|
Ramirez JM, Burgraff NJ, Wei AD, Baertsch NA, Varga AG, Baghdoyan HA, Lydic R, Morris KF, Bolser DC, Levitt ES. Neuronal mechanisms underlying opioid-induced respiratory depression: our current understanding. J Neurophysiol 2021; 125:1899-1919. [PMID: 33826874 DOI: 10.1152/jn.00017.2021] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Opioid-induced respiratory depression (OIRD) represents the primary cause of death associated with therapeutic and recreational opioid use. Within the United States, the rate of death from opioid abuse since the early 1990s has grown disproportionally, prompting the classification as a nationwide "epidemic." Since this time, we have begun to unravel many fundamental cellular and systems-level mechanisms associated with opioid-related death. However, factors such as individual vulnerability, neuromodulatory compensation, and redundancy of opioid effects across central and peripheral nervous systems have created a barrier to a concise, integrative view of OIRD. Within this review, we bring together multiple perspectives in the field of OIRD to create an overarching viewpoint of what we know, and where we view this essential topic of research going forward into the future.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Nicholas J Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Aguan D Wei
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Adrienn G Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida.,Center for Respiratory Research and Rehabilitation, Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Helen A Baghdoyan
- Department of Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Ralph Lydic
- Department of Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida.,Center for Respiratory Research and Rehabilitation, Department of Physical Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
17
|
Juárez-Vidales JDJ, Pérez-Ortega J, Lorea-Hernández JJ, Méndez-Salcido F, Peña-Ortega F. Configuration and dynamics of dominant inspiratory multineuronal activity patterns during eupnea and gasping generation in vitro. J Neurophysiol 2021; 125:1289-1306. [PMID: 33502956 DOI: 10.1152/jn.00563.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pre-Bötzinger complex (preBötC), located within the ventral respiratory column, produces inspiratory bursts in varying degrees of synchronization/amplitude. This wide range of population burst patterns reflects the flexibility of the preBötC neurons, which is expressed in variations in the onset/offset times of their activations and their activity during the population bursts, with respiratory neurons exhibiting a large cycle-to-cycle timing jitter both at the population activity onset and at the population activity peak, suggesting that respiratory neurons are stochastically activated before and during the inspiratory bursts. However, it is still unknown whether this stochasticity is maintained while evaluating the coactivity of respiratory neuronal ensembles. Moreover, the preBötC topology also remains unknown. In this study, by simultaneously recording tens of preBötC neurons and using coactivation analysis during the inspiratory periods, we found that the preBötC has a scale-free configuration (mixture of not many highly connected nodes, hubs, with abundant poorly connected elements) exhibiting the rich-club phenomenon (hubs more likely interconnected with each other). PreBötC neurons also produce multineuronal activity patterns (MAPs) that are highly stable and change during the hypoxia-induced reconfiguration. Moreover, preBötC contains a coactivating core network shared by all its MAPs. Finally, we found a distinctive pattern of sequential coactivation of core network neurons at the beginning of the inspiratory periods, indicating that, when evaluated at the multicellular level, the coactivation of respiratory neurons seems not to be stochastic.NEW & NOTEWORTHY By means of multielectrode recordings of preBötC neurons, we evaluated their configuration in normoxia and hypoxia, finding that the preBötC exhibits a scale-free configuration with a rich-club phenomenon. preBötC neurons produce multineuronal activity patterns that are highly stable but change during hypoxia. The preBötC contains a coactivating core network that exhibit a distinctive pattern of coactivation at the beginning of inspirations. These results reveal some network basis of inspiratory rhythm generation and its reconfiguration during hypoxia.
Collapse
Affiliation(s)
- Josué de Jesús Juárez-Vidales
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Jesús Pérez-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Jonathan Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Felipe Méndez-Salcido
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| |
Collapse
|
18
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Bush NE, Carroll MS, Weese-Mayer DE, Huff A. The Pathophysiology of Rett Syndrome With a Focus on Breathing Dysfunctions. Physiology (Bethesda) 2020; 35:375-390. [PMID: 33052774 PMCID: PMC7864239 DOI: 10.1152/physiol.00008.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT), an X-chromosome-linked neurological disorder, is characterized by serious pathophysiology, including breathing and feeding dysfunctions, and alteration of cardiorespiratory coupling, a consequence of multiple interrelated disturbances in the genetic and homeostatic regulation of central and peripheral neuronal networks, redox state, and control of inflammation. Characteristic breath-holds, obstructive sleep apnea, and aerophagia result in intermittent hypoxia, which, combined with mitochondrial dysfunction, causes oxidative stress-an important driver of the clinical presentation of RTT.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
19
|
Kang JJ, Fung ML, Zhang K, Lam CS, Wu SX, Huang XF, Yang SJ, Wong-Riley MTT, Liu YY. Chronic intermittent hypoxia alters the dendritic mitochondrial structure and activity in the pre-Bötzinger complex of rats. FASEB J 2020; 34:14588-14601. [PMID: 32910512 DOI: 10.1096/fj.201902141r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 11/11/2022]
Abstract
Mitochondrial bioenergetics is dynamically coupled with neuronal activities, which are altered by hypoxia-induced respiratory neuroplasticity. Here we report structural features of postsynaptic mitochondria in the pre-Bötzinger complex (pre-BötC) of rats treated with chronic intermittent hypoxia (CIH) simulating a severe condition of obstructive sleep apnea. The subcellular changes in dendritic mitochondria and histochemistry of cytochrome c oxidase (CO) activity were examined in pre-BötC neurons localized by immunoreactivity of neurokinin 1 receptors. Assays of mitochondrial electron transport chain (ETC) complex I, IV, V activities, and membrane potential were performed in the ventrolateral medulla containing the pre-BötC region. We found significant decreases in the mean length and area of dendritic mitochondria in the pre-BötC of CIH rats, when compared to the normoxic control and hypoxic group with daily acute intermittent hypoxia (dAIH) that evokes robust synaptic plasticity. Notably, these morphological alterations were mainly observed in the mitochondria in close proximity to the synapses. In addition, the proportion of mitochondria presented with enlarged compartments and filamentous cytoskeletal elements in the CIH group was less than the control and dAIH groups. Intriguingly, these distinct characteristics of structural adaptability were observed in the mitochondria within spatially restricted dendritic spines. Furthermore, the proportion of moderately to darkly CO-reactive mitochondria was reduced in the CIH group, indicating reduced mitochondrial activity. Consistently, mitochondrial ETC enzyme activities and membrane potential were lowered in the CIH group. These findings suggest that hypoxia-induced respiratory plasticity was characterized by spatially confined mitochondrial alterations within postsynaptic spines in the pre-BötC neurons. In contrast to the robust plasticity evoked by dAIH preconditioning, a severe CIH challenge may weaken the local mitochondrial bioenergetics that the fuel postsynaptic activities of the respiratory motor drive.
Collapse
Affiliation(s)
- Jun-Jun Kang
- Department of Neurobiology, The Fourth Military Medical University, Xi'an, China
| | - Man-Lung Fung
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Kun Zhang
- Department of Neurobiology, The Fourth Military Medical University, Xi'an, China
| | - Chun-Sing Lam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Sheng-Xi Wu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Feng Huang
- Department of Pathology and Pathophysiology, The Fourth Military Medical University, Xi'an, China
| | - Shou-Jing Yang
- Department of Pathology and Pathophysiology, The Fourth Military Medical University, Xi'an, China
| | - Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ying-Ying Liu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
20
|
O'Connor KM, Lucking EF, Bastiaanssen TFS, Peterson VL, Crispie F, Cotter PD, Clarke G, Cryan JF, O'Halloran KD. Prebiotic administration modulates gut microbiota and faecal short-chain fatty acid concentrations but does not prevent chronic intermittent hypoxia-induced apnoea and hypertension in adult rats. EBioMedicine 2020; 59:102968. [PMID: 32861200 PMCID: PMC7475129 DOI: 10.1016/j.ebiom.2020.102968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/22/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Evidence is accruing to suggest that microbiota-gut-brain signalling plays a regulatory role in cardiorespiratory physiology. Chronic intermittent hypoxia (CIH), modelling human sleep apnoea, affects gut microbiota composition and elicits cardiorespiratory morbidity. We investigated if treatment with prebiotics ameliorates cardiorespiratory dysfunction in CIH-exposed rats. METHODS Adult male rats were exposed to CIH (96 cycles/day, 6.0% O2 at nadir) for 14 consecutive days with and without prebiotic supplementation (fructo- and galacto-oligosaccharides) beginning two weeks prior to gas exposures. FINDINGS CIH increased apnoea index and caused hypertension. CIH exposure had modest effects on the gut microbiota, decreasing the relative abundance of Lactobacilli species, but had no effect on microbial functional characteristics. Faecal short-chain fatty acid (SCFA) concentrations, plasma and brainstem pro-inflammatory cytokine concentrations and brainstem neurochemistry were unaffected by exposure to CIH. Prebiotic administration modulated gut microbiota composition and diversity, altering gut-metabolic (GMMs) and gut-brain (GBMs) modules and increased faecal acetic and propionic acid concentrations, but did not prevent adverse CIH-induced cardiorespiratory phenotypes. INTERPRETATION CIH-induced cardiorespiratory dysfunction is not dependant upon changes in microbial functional characteristics and decreased faecal SCFA concentrations. Prebiotic-related modulation of microbial function and resultant increases in faecal SCFAs were not sufficient to prevent CIH-induced apnoea and hypertension in our model. Our results do not exclude the potential for microbiota-gut-brain axis involvement in OSA-related cardiorespiratory morbidity, but they demonstrate that in a relatively mild model of CIH, sufficient to evoke classic cardiorespiratory dysfunction, such changes are not obligatory for the development of morbidity, but may become relevant in the elaboration and maintenance of cardiorespiratory morbidity with progressive disease. FUNDING Department of Physiology and APC Microbiome Ireland, University College Cork, Ireland. APC Microbiome Ireland is funded by Science Foundation Ireland, through the Government's National Development Plan.
Collapse
Affiliation(s)
- Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
21
|
Alzate-Correa D, Mei-Ling Liu J, Jones M, Silva TM, Alves MJ, Burke E, Zuñiga J, Kaya B, Zaza G, Aslan MT, Blackburn J, Shimada MY, Fernandes-Junior SA, Baer LA, Stanford KI, Kempton A, Smith S, Szujewski CC, Silbaugh A, Viemari JC, Takakura AC, Garcia AJ, Moreira TS, Czeisler CM, Otero JJ. Neonatal apneic phenotype in a murine congenital central hypoventilation syndrome model is induced through non-cell autonomous developmental mechanisms. Brain Pathol 2020; 31:84-102. [PMID: 32654284 PMCID: PMC7881415 DOI: 10.1111/bpa.12877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/10/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Congenital central hypoventilation syndrome (CCHS) represents a rare genetic disorder usually caused by mutations in the homeodomain transcription factor PHOX2B. Some CCHS patients suffer mainly from deficiencies in CO2 and/or O2 respiratory chemoreflex, whereas other patients present with full apnea shortly after birth. Our goal was to identify the neuropathological mechanisms of apneic presentations in CCHS. In the developing murine neuroepithelium, Phox2b is expressed in three discrete progenitor domains across the dorsal-ventral axis, with different domains responsible for producing unique autonomic or visceral motor neurons. Restricting the expression of mutant Phox2b to the ventral visceral motor neuron domain induces marked newborn apnea together with a significant loss of visceral motor neurons, RTN ablation, and preBötzinger complex dysfunction. This finding suggests that the observed apnea develops through non-cell autonomous developmental mechanisms. Mutant Phox2b expression in dorsal rhombencephalic neurons did not generate significant respiratory dysfunction, but did result in subtle metabolic thermoregulatory deficiencies. We confirm the expression of a novel murine Phox2b splice variant which shares exons 1 and 2 with the more widely studied Phox2b splice variant, but which differs in exon 3 where most CCHS mutations occur. We also show that mutant Phox2b expression in the visceral motor neuron progenitor domain increases cell proliferation at the expense of visceral motor neuron development. We propose that visceral motor neurons may function as organizers of brainstem respiratory neuron development, and that disruptions in their development result in secondary/non-cell autonomous maldevelopment of key brainstem respiratory neurons.
Collapse
Affiliation(s)
- Diego Alzate-Correa
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jillian Mei-Ling Liu
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mikayla Jones
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Talita M Silva
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Michele Joana Alves
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elizabeth Burke
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jessica Zuñiga
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Behiye Kaya
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Giuliana Zaza
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mehmet Tahir Aslan
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jessica Blackburn
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Marina Y Shimada
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Silvio A Fernandes-Junior
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lisa A Baer
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Amber Kempton
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Sakima Smith
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Caroline C Szujewski
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Abby Silbaugh
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Jean-Charles Viemari
- P3M Team, Institut de Neurosciences de la Timone, UMR 7289 AMU-CNRS, Marseille, France
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Alfredo J Garcia
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Catherine M Czeisler
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - José J Otero
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
22
|
Garcia AJ, Viemari JC, Khuu MA. Respiratory rhythm generation, hypoxia, and oxidative stress-Implications for development. Respir Physiol Neurobiol 2019; 270:103259. [PMID: 31369874 DOI: 10.1016/j.resp.2019.103259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Encountered in a number of clinical conditions, repeated hypoxia/reoxygenation during the neonatal period can pose both a threat to immediate survival as well as a diminished quality of living later in life. This review focuses on our current understanding of central respiratory rhythm generation and the role that hypoxia and reoxygenation play in influencing rhythmogenesis. Here, we examine the stereotypical response of the inspiratory rhythm from the preBötzinger complex (preBötC), basic neuronal mechanisms that support rhythm generation during the peri-hypoxic interval, and the physiological consequences of inspiratory network responsivity to hypoxia and reoxygenation, acute and chronic intermittent hypoxia, and oxidative stress. These topics are examined in the context of Sudden Infant Death Syndrome, apneas of prematurity, and neonatal abstinence syndrome.
Collapse
Affiliation(s)
- Alfredo J Garcia
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, Chicago, 60637, IL, United States
| | - Jean Charles Viemari
- Institut de Neurosciences de la Timone, P3M team, UMR7289 CNRS & AMU, Faculté de Médecine de la Timone, 27 Bd Jean Moulin, Marseille, 13005, France
| | - Maggie A Khuu
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, Chicago, 60637, IL, United States
| |
Collapse
|
23
|
Souza GMPR, Barnett WH, Amorim MR, Lima-Silveira L, Moraes DJA, Molkov YI, Machado BH. Pre- and post-inspiratory neurons change their firing properties in female rats exposed to chronic intermittent hypoxia. Neuroscience 2019; 406:467-486. [PMID: 30930131 DOI: 10.1016/j.neuroscience.2019.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022]
Abstract
Obstructive sleep apnea patients face episodes of chronic intermittent hypoxia (CIH), which has been suggested as a causative factor for increased sympathetic activity (SNA) and hypertension. Female rats exposed to CIH develop hypertension and exhibit changes in respiratory-sympathetic coupling, marked by an increase in the inspiratory modulation of SNA. We tested the hypothesis that enhanced inspiratory-modulation of SNA is dependent on carotid bodies (CBs) and are associated with changes in respiratory network activity. For this, in CIH-female rats we evaluated the effect of CBs ablation on respiratory-sympathetic coupling, recorded from respiratory neurons in the working heart-brainstem preparation and from NTS neurons in brainstem slices. CIH-female rats had an increase in peripheral chemoreflex response and in spontaneous excitatory neurotransmission in NTS. CBs ablation prevents the increase in inspiratory modulation of SNA in CIH-female rats. Pre-inspiratory/inspiratory (Pre-I/I) neurons of CIH-female rats have a reduced firing frequency. Post-inspiratory neurons are active for a longer period during expiration in CIH-female rats. Further, using the computational model of a brainstem respiratory-sympathetic network, we demonstrate that a reduction in Pre-I/I neuron firing frequency simulates the enhanced inspiratory SNA modulation in CIH-female rats. We conclude that changes in respiratory-sympathetic coupling in CIH-female rats is dependent on CBs and it is associated with changes in firing properties of specific respiratory neurons types.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - William H Barnett
- Department of Mathematics and Statistics & Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America
| | - Mateus R Amorim
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ludmila Lima-Silveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Yaroslav I Molkov
- Department of Mathematics and Statistics & Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
24
|
Guyenet PG, Stornetta RL, Holloway BB, Souza GMPR, Abbott SBG. Rostral Ventrolateral Medulla and Hypertension. Hypertension 2019; 72:559-566. [PMID: 30354763 DOI: 10.1161/hypertensionaha.118.10921] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Patrice G Guyenet
- From the Department of Pharmacology, University of Virginia, Charlottesville
| | - Ruth L Stornetta
- From the Department of Pharmacology, University of Virginia, Charlottesville
| | - Benjamin B Holloway
- From the Department of Pharmacology, University of Virginia, Charlottesville
| | - George M P R Souza
- From the Department of Pharmacology, University of Virginia, Charlottesville
| | - Stephen B G Abbott
- From the Department of Pharmacology, University of Virginia, Charlottesville
| |
Collapse
|
25
|
Lindsey BG, Nuding SC, Segers LS, Morris KF. Carotid Bodies and the Integrated Cardiorespiratory Response to Hypoxia. Physiology (Bethesda) 2019; 33:281-297. [PMID: 29897299 DOI: 10.1152/physiol.00014.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Advances in our understanding of brain mechanisms for the hypoxic ventilatory response, coordinated changes in blood pressure, and the long-term consequences of chronic intermittent hypoxia as in sleep apnea, such as hypertension and heart failure, are giving impetus to the search for therapies to "erase" dysfunctional memories distributed in the carotid bodies and central nervous system. We review current network models, open questions, sex differences, and implications for translational research.
Collapse
Affiliation(s)
- Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Sarah C Nuding
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Lauren S Segers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
26
|
TARP mediation of accelerated and more regular locus coeruleus network bursting in neonatal rat brain slices. Neuropharmacology 2019; 148:169-177. [PMID: 30629989 DOI: 10.1016/j.neuropharm.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
Transmembrane AMPA receptor (AMPAR) regulatory proteins (TARP) increase neuronal excitability. However, it is unknown how TARP affect rhythmic neural network activity. Here we studied TARP effects on local field potential (LFP) bursting, membrane potential and cytosolic Ca2+ (Cai) in locus coeruleus neurons of newborn rat brain slices. LFP bursting was not affected by the unselective competitive ionotropic glutamate receptor antagonist kynurenic acid (2.5 mM). TARP-AMPAR complex activation with 25 μM CNQX accelerated LFP rhythm 2.2-fold and decreased its irregularity score from 63 to 9. Neuronal spiking was correspondingly 2.3-fold accelerated in association with a 2-5 mV depolarization and a modest Cai rise whereas Cai was unchanged in neighboring astrocytes. After blocking rhythmic activities with tetrodotoxin (1 μM), CNQX caused a 5-8 mV depolarization and also the Cai rise persisted. In tetrodotoxin, both responses were abolished by the non-competitive AMPAR antagonist GYKI 53655 (25 μM) which also reversed stimulatory CNQX effects in control solution. The CNQX-evoked Cai rise was blocked by the L-type voltage-activated Ca2+ channel inhibitor nifedipine (100 μM). The findings show that ionotropic glutamate receptor-independent neonatal locus coeruleus network bursting is accelerated and becomes more regular by activating a TARP-AMPAR complex. The associated depolarization-evoked L-type Ca2+ channel-mediated neuronal Cai rise may be pivotal to regulate locus coeruleus activity in cooperation with SK-type K+ channels. In summary, this is the first demonstration of TARP-mediated stimulation of neural network bursting. We hypothesize that TARP-AMPAR stimulation of rhythmic locus coeruleus output serves to fine-tune its control of multiple brain functions thus comprising a target for drug discovery.
Collapse
|
27
|
Kang JJ, Guo B, Liang WH, Lam CS, Wu SX, Huang XF, Wong-Riley MTT, Fung ML, Liu YY. Daily acute intermittent hypoxia induced dynamic changes in dendritic mitochondrial ultrastructure and cytochrome oxidase activity in the pre-Bötzinger complex of rats. Exp Neurol 2018; 313:124-134. [PMID: 30586594 DOI: 10.1016/j.expneurol.2018.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/18/2018] [Indexed: 12/29/2022]
Abstract
Mitochondria, as primary energy generators and Ca2+ biosensor, are dynamically coupled to neuronal activities, and thus play a role in neuroplasticity. Here we report that respiratory neuroplasticity induced by daily acute intermittent hypoxia (dAIH) evoked adaptive changes in the ultrastructure and postsynaptic distribution of mitochondria in the pre-Bötzinger complex (pre-BötC). The metabolic marker of neuronal activity, cytochrome c oxidase (CO), and dendritic mitochondria were examined in pre-BötC neurons of adult Sprague-Dawley rats preconditioned with dAIH, which is known to induce long-term facilitation (LTF) in respiratory neural activities. We performed neurokinin 1 receptor (NK1R) pre-embedding immunocytochemistry to define pre-BötC neurons, in combination with CO histochemistry, to depict ultrastructural alterations and CO activity in dendritic mitochondria. We found that the dAIH challenge significantly increased CO activity in pre-BötC neurons. Darkly CO-reactive mitochondria at postsynaptic sites in the dAIH group were much more prevalent than those in the normoxic control. In addition, the length and area of mitochondria were significantly increased in the dAIH group, implying a larger surface area of cristae for ATP generation. There was a fine, structural remodeling, notably enlarged and branching mitochondria or tapered mitochondria extending into dendritic spines. Mitochondrial cristae were mainly in parallel-lamellar arrangement, indicating a high efficiency of energy generation. Moreover, flocculent or filament-like elements were noted between the mitochondria and the postsynaptic membrane. These morphological evidences, together with increased CO activity, demonstrate that dendritic mitochondria in the pre-BötC responded dynamically to respiratory plasticity. Hence, plastic neuronal changes are closely coupled to active mitochondrial bioenergetics, leading to enhanced energy production and Ca2+ buffering that may drive the LTF expression.
Collapse
Affiliation(s)
- Jun-Jun Kang
- Department of Neurobiology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Baolin Guo
- Department of Neurobiology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Wei-Hua Liang
- Department of Pathology and Pathophysiology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Chun-Sing Lam
- School of Biomedical Sciences, The University of Hong Kong, PR China
| | - Sheng-Xi Wu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Xiao-Feng Huang
- Department of Pathology and Pathophysiology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Man-Lung Fung
- School of Biomedical Sciences, The University of Hong Kong, PR China.
| | - Ying-Ying Liu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
28
|
Lucking EF, O'Connor KM, Strain CR, Fouhy F, Bastiaanssen TFS, Burns DP, Golubeva AV, Stanton C, Clarke G, Cryan JF, O'Halloran KD. Chronic intermittent hypoxia disrupts cardiorespiratory homeostasis and gut microbiota composition in adult male guinea-pigs. EBioMedicine 2018; 38:191-205. [PMID: 30446434 PMCID: PMC6306383 DOI: 10.1016/j.ebiom.2018.11.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Carotid body (peripheral oxygen sensor) sensitisation is pivotal in the development of chronic intermittent hypoxia (CIH)-induced hypertension. We sought to determine if exposure to CIH, modelling human sleep apnoea, adversely affects cardiorespiratory control in guinea-pigs, a species with hypoxia-insensitive carotid bodies. We reasoned that CIH-induced disruption of gut microbiota would evoke cardiorespiratory morbidity. METHODS Adult male guinea-pigs were exposed to CIH (6.5% O2 at nadir, 6 cycles.hour-1) for 8 h.day-1 for 12 consecutive days. FINDINGS CIH-exposed animals established reduced faecal microbiota species richness, with increased relative abundance of Bacteroidetes and reduced relative abundance of Firmicutes bacteria. Urinary corticosterone and noradrenaline levels were unchanged in CIH-exposed animals, but brainstem noradrenaline concentrations were lower compared with sham. Baseline ventilation was equivalent in CIH-exposed and sham animals; however, respiratory timing variability, sigh frequency and ventilation during hypoxic breathing were all lower in CIH-exposed animals. Baseline arterial blood pressure was unaffected by exposure to CIH, but β-adrenoceptor-dependent tachycardia and blunted bradycardia during phenylephrine-induced pressor responses was evident compared with sham controls. INTERPRETATION Increased carotid body chemo-afferent signalling appears obligatory for the development of CIH-induced hypertension and elevated chemoreflex control of breathing commonly reported in mammals, with hypoxia-sensitive carotid bodies. However, we reveal that exposure to modest CIH alters gut microbiota richness and composition, brainstem neurochemistry, and autonomic control of heart rate, independent of carotid body sensitisation, suggesting modulation of breathing and autonomic homeostasis via the microbiota-gut-brainstem axis. The findings have relevance to human sleep-disordered breathing. FUNDING The Department of Physiology, and APC Microbiome Ireland, UCC.
Collapse
Affiliation(s)
- Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Conall R Strain
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Fiona Fouhy
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Anna V Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
29
|
Ramirez JM, Baertsch N. Defining the Rhythmogenic Elements of Mammalian Breathing. Physiology (Bethesda) 2018; 33:302-316. [PMID: 30109823 PMCID: PMC6230551 DOI: 10.1152/physiol.00025.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023] Open
Abstract
Breathing's remarkable ability to adapt to changes in metabolic, environmental, and behavioral demands stems from a complex integration of its rhythm-generating network within the wider nervous system. Yet, this integration complicates identification of its specific rhythmogenic elements. Based on principles learned from smaller rhythmic networks of invertebrates, we define criteria that identify rhythmogenic elements of the mammalian breathing network and discuss how they interact to produce robust, dynamic breathing.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine , Seattle, Washington
| | - Nathan Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine , Seattle, Washington
| |
Collapse
|
30
|
Ramirez JM, Severs LJ, Ramirez SC, Agosto‐Marlin IM. Advances in cellular and integrative control of oxygen homeostasis within the central nervous system. J Physiol 2018; 596:3043-3065. [PMID: 29742297 PMCID: PMC6068258 DOI: 10.1113/jp275890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Mammals must continuously regulate the levels of O2 and CO2 , which is particularly important for the brain. Failure to maintain adequate O2 /CO2 homeostasis has been associated with numerous disorders including sleep apnoea, Rett syndrome and sudden infant death syndrome. But, O2 /CO2 homeostasis poses major regulatory challenges, even in the healthy brain. Neuronal activities change in a differentiated, spatially and temporally complex manner, which is reflected in equally complex changes in O2 demand. This raises important questions: is oxygen sensing an emergent property, locally generated within all active neuronal networks, and/or the property of specialized O2 -sensitive CNS regions? Increasing evidence suggests that the regulation of the brain's redox state involves properties that are intrinsic to many networks, but that specialized regions in the brainstem orchestrate the integrated control of respiratory and cardiovascular functions. Although the levels of O2 in arterial blood and the CNS are very different, neuro-glial interactions and purinergic signalling are critical for both peripheral and CNS chemosensation. Indeed, the specificity of neuroglial interactions seems to determine the differential responses to O2 , CO2 and the changes in pH.
Collapse
Affiliation(s)
- Jan Marino Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Liza J. Severs
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Sanja C. Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| | - Ibis M. Agosto‐Marlin
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
31
|
Abstract
Rhythmicity is a universal timing mechanism in the brain, and the rhythmogenic mechanisms are generally dynamic. This is illustrated for the neuronal control of breathing, a behavior that occurs as a one-, two-, or three-phase rhythm. Each breath is assembled stochastically, and increasing evidence suggests that each phase can be generated independently by a dedicated excitatory microcircuit. Within each microcircuit, rhythmicity emerges through three entangled mechanisms: ( a) glutamatergic transmission, which is amplified by ( b) intrinsic bursting and opposed by ( c) concurrent inhibition. This rhythmogenic triangle is dynamically tuned by neuromodulators and other network interactions. The ability of coupled oscillators to reconfigure and recombine may allow breathing to remain robust yet plastic enough to conform to nonventilatory behaviors such as vocalization, swallowing, and coughing. Lessons learned from the respiratory network may translate to other highly dynamic and integrated rhythmic systems, if approached one breath at a time.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98101, USA;
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98101, USA;
| |
Collapse
|
32
|
Guyenet PG, Bayliss DA, Stornetta RL, Kanbar R, Shi Y, Holloway BB, Souza GMPR, Basting TM, Abbott SBG, Wenker IC. Interdependent feedback regulation of breathing by the carotid bodies and the retrotrapezoid nucleus. J Physiol 2017; 596:3029-3042. [PMID: 29168167 DOI: 10.1113/jp274357] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022] Open
Abstract
The retrotrapezoid nucleus (RTN) regulates breathing in a CO2 - and state-dependent manner. RTN neurons are glutamatergic and innervate principally the respiratory pattern generator; they regulate multiple aspects of breathing, including active expiration, and maintain breathing automaticity during non-REM sleep. RTN neurons encode arterial PCO2 /pH via cell-autonomous and paracrine mechanisms, and via input from other CO2 -responsive neurons. In short, RTN neurons are a pivotal structure for breathing automaticity and arterial PCO2 homeostasis. The carotid bodies stimulate the respiratory pattern generator directly and indirectly by activating RTN via a neuronal projection originating within the solitary tract nucleus. The indirect pathway operates under normo- or hypercapnic conditions; under respiratory alkalosis (e.g. hypoxia) RTN neurons are silent and the excitatory input from the carotid bodies is suppressed. Also, silencing RTN neurons optogenetically quickly triggers a compensatory increase in carotid body activity. Thus, in conscious mammals, breathing is subject to a dual and interdependent feedback regulation by chemoreceptors. Depending on the circumstance, the activity of the carotid bodies and that of RTN vary in the same or the opposite directions, producing additive or countervailing effects on breathing. These interactions are mediated either via changes in blood gases or by brainstem neuronal connections, but their ultimate effect is invariably to minimize arterial PCO2 fluctuations. We discuss the potential relevance of this dual chemoreceptor feedback to cardiorespiratory abnormalities present in diseases in which the carotid bodies are hyperactive at rest, e.g. essential hypertension, obstructive sleep apnoea and heart failure.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Roy Kanbar
- Department of Pharmaceutical Sciences, Lebanese American University, Beyrouth, Lebanon
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Benjamin B Holloway
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Tyler M Basting
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University, New Orleans, Louisiana 70112, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Ian C Wenker
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|