1
|
Moo EK, Joumaa V, Herzog W. Effect of pre-activation force on active force generation in skeletal muscle. J Biomech 2025; 186:112744. [PMID: 40344920 DOI: 10.1016/j.jbiomech.2025.112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Cross bridges play a central role in skeletal muscle force generation. The level of force per cross bridge and the number of attached cross bridges are thought to determine muscle performance. Recent studies propose the so-called myosin-activation hypothesis, which suggests that stress exerted on myosin filaments increases the number of attached cross bridges and, hence, active force. This study was aimed at investigating the influence of passive stress magnitude exerted at the onset of activation on active force in a whole muscle preparation. The tibialis anterior (TA) muscle-tendon unit (MTU) of mice (N = 8) was stretched uniaxially in situ to long lengths where substantial viscoelastic passive force relaxation occurs. Muscle stress upon activation was varied by activating the TA either immediately at the end of the passive stretch (high passive force), or following nearly complete passive force relaxation (low passive force). Total forces with and without activation were measured from every MTU. Active forces were calculated by subtracting the passive force relaxation curve from the total force measured over a 1.13-s activation. We found that active force generated by the TA at low passive stress was 5-13 % higher than that at high passive stress. While the results seem contradictory to the myosin-activation hypothesis, we speculate that the results arose either from length adjustments between muscle and tendon during passive force relaxation, from excessive lattice spacing compression, or from unfavourable alterations of myosin conformation by high passive stress. Further research is required to improve our understanding of active force generation under the influence of viscoelasticity of muscle and tendon.
Collapse
Affiliation(s)
- Eng Kuan Moo
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.
| | - Venus Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.
| |
Collapse
|
2
|
Fassbender A, Karamanidis K, Potthast W. Regional differences in amplitude and spatial homogeneity of muscle activity in the biceps femoris long head. Eur J Appl Physiol 2025:10.1007/s00421-025-05783-5. [PMID: 40244425 DOI: 10.1007/s00421-025-05783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
PURPOSE Hamstring injuries, particularly in the proximal Biceps femoris long head (BFlh), remain frequent in sports involving sprints and accelerations despite extensive research. Non-uniform muscle activity may contribute to these injuries by causing uneven load distribution. This study examines spatial homogeneity of muscle activity and amplitude in the proximal and distal BFlh at different knee flexion torque levels and muscle-tendon unit (MTU) lengths under controlled isometric conditions. METHODS Fifteen male recreational athletes performed unilateral isometric knee flexion contractions at three MTU lengths (0°, 45°, 90° hip flexion) and torque levels (30% MVC90, 60% MVC90, 90%MVC90) with high-density surface electromyography (HDsEMG) assessing proximal and distal activity. RESULTS The proximal BFlh exhibited lower spatial homogeneity and amplitude compared to the distal region across all conditions, with the largest homogeneity differences at lower torques and longer MTU lengths. Proximal homogeneity increased with torque and decreased with MTU length, while the distal region remained consistent. Amplitudes were lower proximally and decreased with MTU length in both regions. CONCLUSION The proximal-distal differences in spatial homogeneity and amplitude within the BFlh reflect non-uniform activation patterns along the BFlh and the proximal regions lower spatial homogeneity and amplitude of activation reflect non-uniform patterns, possibly contributing to injury risk.
Collapse
Affiliation(s)
- Alexander Fassbender
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany.
| | - Kiros Karamanidis
- School of Applied and Health Sciences, London South Bank University, London, UK
- Department of Sport Science, Faculty of Mathematics and Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Wolfgang Potthast
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
3
|
Sampaio de Oliveira ML, Uchida TK. Phenomenological Muscle Constitutive Model With Actin-Titin Binding for Simulating Active Stretching. J Biomech Eng 2025; 147:011002. [PMID: 39269663 DOI: 10.1115/1.4066564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
The force produced by a muscle depends on its contractile history, yet human movement simulations typically employ muscle models that define the force-length relationship from measurements of fiber force during isometric contractions. In these muscle models, the total force-length curve can have a negative slope at fiber lengths greater than the fiber length at which peak isometric force is produced. This region of negative stiffness can cause numerical instability in simulations. Experiments have found that the steady-state force in a muscle fiber following active stretching is greater than the force produced during a purely isometric contraction. This behavior is called residual force enhancement. We present a constitutive model that exhibits force enhancement, implemented as a hyperelastic material in the febio finite element software. There is no consensus on the mechanisms responsible for force enhancement; we adopt the assumption that the passive fiber force depends on the sarcomere length at the instant that the muscle is activated above a threshold. We demonstrate the numerical stability of our model using an eigenvalue analysis and by simulating a muscle whose fibers are of different lengths. We then use a three-dimensional muscle geometry to verify the effect of force enhancement on the development of stress and the distribution of fiber lengths. Our proposed muscle material model is one of the few models available that exhibits force enhancement and is suitable for simulations of active lengthening. We provide our implementation in febio so that others can reproduce and extend our results.
Collapse
Affiliation(s)
| | - Thomas K Uchida
- Department of Mechanical Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
4
|
Noonan AM, Malakoutian M, Dehghan-Hamani I, Lewis S, Street J, Oxland TR, Brown SHM. Paraspinal muscle fibre structural and contractile characteristics demonstrate distinct irregularities in patients with spinal degeneration and deformity. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4605-4618. [PMID: 39397176 DOI: 10.1007/s00586-024-08509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Paraspinal and spinopelvic muscular dysfunction are hypothesized to be a causative factor for spinal degeneration and deformity; however, our fundamental understanding of paraspinal muscle (dys)function remains limited. METHODS Twelve surgical patients with spinal degeneration were recruited and categorized into group DEG (four patients) with no sagittal imbalance and no usage of compensatory mechanisms; group DEG-COMP (four patients) with no sagittal imbalance through use of compensatory mechanisms; and group DEG-COMP-UNBAL (four patients) with sagittal imbalance despite use of compensatory mechanisms. From each patient, four biopsies were collected from right and left multifidus (MULT) and longissimus (LONG) for single fibre contractile and structural measurements. RESULTS Eight of 48 (17%) biopsies did not exhibit any contractile properties. Specific force was not different between groups for the MULT (p = 0.47) but was greater in group DEG compared to group DEG-COMP-UNBAL for the LONG (p = 0.02). Force sarcomere-length properties were unusually variable both within and amongst patients in all groups. Thin filament (actin) lengths were in general shorter and more variable than published norms for human muscle. CONCLUSION This study is the first to show a heightened intrinsic contractile muscle disorder (i.e. impaired specific force generation) in patients with spinal degeneration who are sagittally imbalanced (compared to patients without deformity). Additionally, there are clear indications that patients with spinal degeneration (all groups) have intrinsic force sarcomere-length properties that are dysregulated. This provides important insight into the pathophysiology of muscle weakness in this patient group.
Collapse
Affiliation(s)
- Alex M Noonan
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Masoud Malakoutian
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
- ICORD, University of British Columbia, Vancouver, Canada
| | - Iraj Dehghan-Hamani
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
- ICORD, University of British Columbia, Vancouver, Canada
| | - Stephen Lewis
- Divisions of Neurosurgery and Orthopedic Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - John Street
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| | - Thomas R Oxland
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
- ICORD, University of British Columbia, Vancouver, Canada
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
5
|
de Brito Fontana H, Herzog W. Massive sarcomerogenesis in human skeletal muscle following long-term eccentric exercise intervention. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:101003. [PMID: 39490652 PMCID: PMC11863339 DOI: 10.1016/j.jshs.2024.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Heiliane de Brito Fontana
- Department of Morphological Sciences, School of Biological Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
6
|
Kobirumaki-Shimozawa F, Oyama K, Nakanishi T, Ishiwata S, Fukuda N. Asynchronous movement of sarcomeres in myocardium under living conditions: role of titin. Front Physiol 2024; 15:1426545. [PMID: 39156829 PMCID: PMC11327019 DOI: 10.3389/fphys.2024.1426545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Affiliation(s)
| | - Kotaro Oyama
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology, Takasaki-shi, Gunma, Japan
| | - Tomohiro Nakanishi
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Department of Anesthesiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Shin’ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|
7
|
Assila N, Begon M, Duprey S. Finite Element Model of the Shoulder with Active Rotator Cuff Muscles: Application to Wheelchair Propulsion. Ann Biomed Eng 2024; 52:1240-1254. [PMID: 38376768 DOI: 10.1007/s10439-024-03449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
The rotator cuff is prone to injury, remarkably so for manual wheelchair users. To understand its pathomechanisms, finite element models incorporating three-dimensional activated muscles are needed to predict soft tissue strains during given tasks. This study aimed to develop such a model to understand pathomechanisms associated with wheelchair propulsion. We developed an active muscle model associating a passive fiber-reinforced isotropic matrix with an activation law linking calcium ion concentration to tissue tension. This model was first evaluated against known physiological muscle behavior; then used to activate the rotator cuff during a wheelchair propulsion cycle. Here, experimental kinematics and electromyography data was used to drive a shoulder finite element model. Finally, we evaluated the importance of muscle activation by comparing the results of activated and non-activated rotator cuff muscles during both propulsion and isometric contractions. Qualitatively, the muscle constitutive law reasonably reproduced the classical Hill model force-length curve and the behavior of a transversally loaded muscle. During wheelchair propulsion, the deformation and fiber stretch of the supraspinatus muscle-tendon unit pointed towards the possibility for this tendon to develop tendinosis due to the multiaxial loading imposed by the kinematics of propulsion. Finally, differences in local stretch and positions of the lines of action between activated and non-activated models were only observed at activation levels higher than 30%. Our novel finite element model with active muscles is a promising tool for understanding the pathomechanisms of the rotator cuff for various dynamic tasks, especially those with high muscle activation levels.
Collapse
Affiliation(s)
- Najoua Assila
- School of Kinesiology and Exercise Sciences, Faculty of Medicine, University of Montréal, Montréal, QC, Canada.
- Research Center of the Sainte-Justine University Hospital Center, Montréal, QC, Canada.
- Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR T_9406, 69622, Lyon, France.
| | - Mickaël Begon
- School of Kinesiology and Exercise Sciences, Faculty of Medicine, University of Montréal, Montréal, QC, Canada
- Research Center of the Sainte-Justine University Hospital Center, Montréal, QC, Canada
| | - Sonia Duprey
- Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR T_9406, 69622, Lyon, France
| |
Collapse
|
8
|
Shelley SP, James RS, Tallis J. The effects of muscle starting length on work loop power output of isolated mouse soleus and extensor digitorum longus muscle. J Exp Biol 2024; 227:jeb247158. [PMID: 38584504 DOI: 10.1242/jeb.247158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Force-length relationships derived from isometric activations may not directly apply to muscle force production during dynamic contractions. As such, different muscle starting lengths between isometric and dynamic conditions could be required to achieve maximal force and power. Therefore, this study examined the effects of starting length [±5-10% of length corresponding to maximal twitch force (L0)] on work loop (WL) power output (PO), across a range of cycle frequencies, of the soleus (SOL) and extensor digitorum longus muscle (EDL; N=8-10) isolated from ∼8 week old C57 mice. Furthermore, passive work was examined at a fixed cycle frequency to determine the association of passive work and active net work. Starting length affected maximal WL PO of the SOL and EDL across evaluated cycle frequencies (P<0.030, ηp2>0.494). For the SOL, PO produced at -5% L0 was greater than that at most starting lengths (P<0.015, Cohen's d>0.6), except -10% L0 (P=0.135, d<0.4). However, PO produced at -10% L0 versus L0 did not differ (P=0.138, d=0.35-0.49), indicating -5% L0 is optimal for maximal SOL WL PO. For the EDL, WL PO produced at -10% L0 was lower than that at most starting lengths (P<0.032, d>1.08), except versus -5% L0 (P=0.124, d<0.97). PO produced at other starting lengths did not differ (P>0.163, d<1.04). For the SOL, higher passive work was associated with reduced PO (Spearman's r=0.709, P<0.001), but no relationship was observed between passive work and PO of the EDL (Pearson's r=0.191, r2=0.04, P=0.184). This study suggests that starting length should be optimised for both static and dynamic contractions and confirms that the force-length curve during dynamic contractions is muscle specific.
Collapse
Affiliation(s)
- Sharn P Shelley
- Research Centre for Physical Activity, Sport and Exercise Science, Coventry University, Coventry, CV1 5FB, UK
| | - Rob S James
- Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Jason Tallis
- Research Centre for Physical Activity, Sport and Exercise Science, Coventry University, Coventry, CV1 5FB, UK
| |
Collapse
|
9
|
Li M, Leonard TR, Han SW, Moo EK, Herzog W. Gaining new understanding of sarcomere length non-uniformities in skeletal muscles. Front Physiol 2024; 14:1242177. [PMID: 38274042 PMCID: PMC10808998 DOI: 10.3389/fphys.2023.1242177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Sarcomere lengths are non-uniform on all structural levels of mammalian skeletal muscle. These non-uniformities have been associated with a variety of mechanical properties, including residual force enhancement and depression, creep, increased force capacity, and extension of the plateau of the force-length relationship. However, the nature of sarcomere length non-uniformities has not been explored systematically. The purpose of this study was to determine the properties of sarcomere length non-uniformities in active and passive muscle. Single myofibrils of rabbit psoas (n = 20; with 412 individual sarcomeres) were subjected to three activation/deactivation cycles and individual sarcomere lengths were measured at 4 passive and 3 active points during the activation/deactivation cycles. The myofibrils were divided into three groups based on their initial average sarcomere lengths: short, intermediate, and long average sarcomere lengths of 2.7, 3.2, and 3.6 µm. The primary results were that sarcomere length non-uniformities did not occur randomly but were governed by some structural and/or contractile properties of the sarcomeres and that sarcomere length non-uniformities increased when myofibrils went from the passive to the active state. We propose that the mechanisms that govern the systematic sarcomere lengths non-uniformities observed in active and passive myofibrils may be associated with the variable number of contractile proteins and the variable number and the adjustable stiffness of titin filaments in individual sarcomeres.
Collapse
Affiliation(s)
- Meng Li
- Human Performance Lab, University of Calgary, Calgary, AB, Canada
| | - T. R. Leonard
- Human Performance Lab, University of Calgary, Calgary, AB, Canada
| | - S. W. Han
- Institute of Physiology II, University of Münster, Münster, Germany
| | - E. K. Moo
- Human Performance Lab, University of Calgary, Calgary, AB, Canada
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada
| | - W. Herzog
- Human Performance Lab, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Kalkhoven JT, Lukauskis-Carvajal M, Sides DL, McLean BD, Watsford ML. A Conceptual Exploration of Hamstring Muscle-Tendon Functioning during the Late-Swing Phase of Sprinting: The Importance of Evidence-Based Hamstring Training Frameworks. Sports Med 2023; 53:2321-2346. [PMID: 37668895 PMCID: PMC10687166 DOI: 10.1007/s40279-023-01904-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/06/2023]
Abstract
An eccentrically lengthening, energy-absorbing, brake-driven model of hamstring function during the late-swing phase of sprinting has been widely touted within the existing literature. In contrast, an isometrically contracting, spring-driven model of hamstring function has recently been proposed. This theory has gained substantial traction within the applied sporting world, influencing understandings of hamstring function while sprinting, as well as the development and adoption of certain types of hamstring-specific exercises. Across the animal kingdom, both spring- and motor-driven muscle-tendon unit (MTU) functioning are frequently observed, with both models of locomotive functioning commonly utilising some degree of active muscle lengthening to draw upon force enhancement mechanisms. However, a method to accurately assess hamstring muscle-tendon functioning when sprinting does not exist. Accordingly, the aims of this review article are three-fold: (1) to comprehensively explore current terminology, theories and models surrounding muscle-tendon functioning during locomotion, (2) to relate these models to potential hamstring function when sprinting by examining a variety of hamstring-specific research and (3) to highlight the importance of developing and utilising evidence-based frameworks to guide hamstring training in athletes required to sprint. Due to the intensity of movement, large musculotendinous stretches and high mechanical loads experienced in the hamstrings when sprinting, it is anticipated that the hamstring MTUs adopt a model of functioning that has some reliance upon active muscle lengthening and muscle actuators during this particular task. However, each individual hamstring MTU is expected to adopt various combinations of spring-, brake- and motor-driven functioning when sprinting, in accordance with their architectural arrangement and activation patterns. Muscle function is intricate and dependent upon complex interactions between musculoskeletal kinematics and kinetics, muscle activation patterns and the neuromechanical regulation of tensions and stiffness, and loads applied by the environment, among other important variables. Accordingly, hamstring function when sprinting is anticipated to be unique to this particular activity. It is therefore proposed that the adoption of hamstring-specific exercises should not be founded on unvalidated claims of replicating hamstring function when sprinting, as has been suggested in the literature. Adaptive benefits may potentially be derived from a range of hamstring-specific exercises that vary in the stimuli they provide. Therefore, a more rigorous approach is to select hamstring-specific exercises based on thoroughly constructed evidence-based frameworks surrounding the specific stimulus provided by the exercise, the accompanying adaptations elicited by the exercise, and the effects of these adaptations on hamstring functioning and injury risk mitigation when sprinting.
Collapse
Affiliation(s)
- Judd T Kalkhoven
- Sport & Exercise Science Discipline Group, Faculty of Health, Human Performance Research Centre, University of Technology Sydney, Moore Park Precinct, PO Box 123, Broadway, NSW, 2007, Australia.
| | - Mathias Lukauskis-Carvajal
- Sport & Exercise Science Discipline Group, Faculty of Health, Human Performance Research Centre, University of Technology Sydney, Moore Park Precinct, PO Box 123, Broadway, NSW, 2007, Australia
- SpeedLab, Cali, Colombia
| | - Deborah L Sides
- UK Sports Institute, Manchester Institute of Health and Performance, Manchester, UK
| | - Blake D McLean
- Sport & Exercise Science Discipline Group, Faculty of Health, Human Performance Research Centre, University of Technology Sydney, Moore Park Precinct, PO Box 123, Broadway, NSW, 2007, Australia
| | - Mark L Watsford
- Sport & Exercise Science Discipline Group, Faculty of Health, Human Performance Research Centre, University of Technology Sydney, Moore Park Precinct, PO Box 123, Broadway, NSW, 2007, Australia
| |
Collapse
|
11
|
Lookin O, Boulali N, Cazorla O, de Tombe P. Impact of stretch on sarcomere length variability in isolated fully relaxed rat cardiac myocytes. Pflugers Arch 2023; 475:1203-1210. [PMID: 37603101 DOI: 10.1007/s00424-023-02848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
The contractility of cardiac muscle is greatly affected by preload via the Frank-Starling mechanism (FSM). It is based on preload-dependent activation of sarcomeres-the elementary contractile units in muscle cells. Recent findings show a natural variability in sarcomere length (SL) in resting cardiomyocytes that, moreover, is altered in an actively contracting myocyte. SL variability may contribute to the FSM, but it remains unresolved whether the change in the SL variability is regulated by activation process per se or simply by changes in cell stretch, i.e., average SL. To separate the roles of activation and SL, we characterized SL variability in isolated, fully relaxed rat ventricular cardiomyocytes (n = 12) subjected to a longitudinal stretch with the carbon fiber (CF) technique. Each cell was tested in three states: without CF attachment (control, no preload), with CF attachment without stretch, and with CF attachment and ~ 10% stretch of initial SL. The cells were imaged by transmitted light microscopy to retrieve and analyze individual SL and SL variability off-line by multiple quantitative measures such as coefficient of variation or median absolute deviation. We found that CF attachment without stretch did not affect the extent of SL variability nor average SL. In stretched myocytes, the averaged SL significantly increased, while the SL variability remained unchanged. This result clearly indicates that the non-uniformity of individual SL is not sensitive to the average SL itself in fully relaxed myocytes. We conclude that SL variability per se does not contribute to the FSM in the heart.
Collapse
Affiliation(s)
| | - Najlae Boulali
- Laboratoire "Physiologie Et Médecine Expérimentale du Coeur Et Des Muscles," Phymedexp, INSERM, CNRS, Montpellier University, CHU Arnaud de Villeneuve, 34295, Montpellier, France
| | - Olivier Cazorla
- Laboratoire "Physiologie Et Médecine Expérimentale du Coeur Et Des Muscles," Phymedexp, INSERM, CNRS, Montpellier University, CHU Arnaud de Villeneuve, 34295, Montpellier, France
| | - Pieter de Tombe
- Laboratoire "Physiologie Et Médecine Expérimentale du Coeur Et Des Muscles," Phymedexp, INSERM, CNRS, Montpellier University, CHU Arnaud de Villeneuve, 34295, Montpellier, France.
- Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
12
|
Lookin O, Boulali N, Cazorla O, Tombe P. Impact of stretch on sarcomere length variability in isolated fully relaxed rat cardiac myocytes. RESEARCH SQUARE 2023:rs.3.rs-3043911. [PMID: 37398289 PMCID: PMC10312908 DOI: 10.21203/rs.3.rs-3043911/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The contractility of cardiac muscle is greatly affected by preload via the Frank-Starling Mechanism (FSM). It is based on the preload-dependent activation of sarcomeres - the elementary contractile units in muscle cells. Recent findings show a natural variability in sarcomere length (SL) in resting cardiomyocytes that, moreover, is altered in an actively contracting myocyte. SL variability may contribute to the FSM but it remains unresolved whether the change in the SL variability is regulated by activation process per se or simply by changes in cell stretch, i.e. average SL. To separate the roles of activation and SL, we characterized SL variability in isolated fully relaxed rat ventricular cardiomyocytes ( n = 12) subjected to a longitudinal stretch with the carbon fiber (CF) technique. Each cell was tested in three states: without CF attachment (control, no preload), with CF attachment without stretch, and with CF attachment and ~ 10% stretch of initial SL. The cells were imaged by transmitted light microscopy to retrieve and analyze individual SL and SL variability off-line by multiple quantitative measures like coefficient of variation or median absolute deviation. We found that CF attachment without stretch did not affect the extent of SL variability and averaged SL. In stretched myocytes, the averaged SL significantly increased while the SL variability remained unchanged. This result clearly indicates that the non-uniformity of individual SL is not sensitive to the average SL itself in fully relaxed myocytes. We conclude that SL variability per se does not contribute to the FSM in the heart.
Collapse
Affiliation(s)
| | - Najlae Boulali
- Université de Montpellier, INSERM, CNRS, CHU Arnaud de Villeneuve
| | - Olivier Cazorla
- Université de Montpellier, INSERM, CNRS, CHU Arnaud de Villeneuve
| | - Pieter Tombe
- Université de Montpellier, INSERM, CNRS, CHU Arnaud de Villeneuve
| |
Collapse
|
13
|
Han SW, Boldt K, Joumaa V, Herzog W. Characterizing residual and passive force enhancements in cardiac myofibrils. Biophys J 2023; 122:1538-1547. [PMID: 36932677 PMCID: PMC10147830 DOI: 10.1016/j.bpj.2023.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/07/2022] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Residual force enhancement (RFE), an increase in isometric force after active stretching of a muscle compared with the purely isometric force at the corresponding length, has been consistently observed throughout the structural hierarchy of skeletal muscle. Similar to RFE, passive force enhancement (PFE) is also observable in skeletal muscle and is defined as an increase in passive force when a muscle is deactivated after it has been actively stretched compared with the passive force following deactivation of a purely isometric contraction. These history-dependent properties have been investigated abundantly in skeletal muscle, but their presence in cardiac muscle remains unresolved and controversial. The purpose of this study was to investigate whether RFE and PFE exist in cardiac myofibrils and whether the magnitudes of RFE and PFE increase with increasing stretch magnitudes. Cardiac myofibrils were prepared from the left ventricles of New Zealand White rabbits, and the history-dependent properties were tested at three different final average sarcomere lengths (n = 8 for each), 1.8, 2, and 2.2 μm, while the stretch magnitude was kept at 0.2 μm/sarcomere. The same experiment was repeated with a final average sarcomere length of 2.2 μm and a stretching magnitude of 0.4 μm/sarcomere (n = 8). All 32 cardiac myofibrils exhibited increased forces after active stretching compared with the corresponding purely isometric reference conditions (p < 0.05). Furthermore, the magnitude of RFE was greater when myofibrils were stretched by 0.4 compared with 0.2 μm/sarcomere (p < 0.05). We conclude that, like in skeletal muscle, RFE and PFE are properties of cardiac myofibrils and are dependent on stretch magnitude.
Collapse
Affiliation(s)
- Seong-Won Han
- Institute of Physiology II, Faculty of Medicine, University of Münster, Münster, Germany; Faculty of Kinesiology, University of Calgary, Calgary, Canada.
| | - Kevin Boldt
- Faculty of Kinesiology, University of Calgary, Calgary, Canada; Kinesiology Program, Trent University, Peterborough, ON, Canada; Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada
| | - Venus Joumaa
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Walter Herzog
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| |
Collapse
|
14
|
Lookin O, de Tombe P, Boulali N, Gergely C, Cloitre T, Cazorla O. Cardiomyocyte sarcomere length variability: Membrane fluorescence versus second harmonic generation myosin imaging. J Gen Physiol 2023; 155:213827. [PMID: 36695814 PMCID: PMC9930136 DOI: 10.1085/jgp.202213289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Sarcomere length (SL) and its variation along the myofibril strongly regulate integrated coordinated myocyte contraction. It is therefore important to obtain individual SL properties. Optical imaging by confocal fluorescence (for example, using ANEPPS) or transmitted light microscopy is often used for this purpose. However, this allows for the visualization of structures related to Z-disks only. In contrast, second-harmonic generation (SHG) microscopy visualizes A-band sarcomeric structures directly. Here, we compared averaged SL and its variability in isolated relaxed rat cardiomyocytes by imaging with ANEPPS and SHG. We found that SL variability, evaluated by several absolute and relative measures, is two times smaller using SHG vs. ANEPPS, while both optical methods give the same average (median) SL. We conclude that optical methods with similar optical spatial resolution provide valid estimations of average SL, but the use of SHG microscopy for visualization of sarcomeric A-bands may be the "gold standard" for evaluation of SL variability due to the absence of optical interference between the sarcomere center and non-sarcomeric structures. This contrasts with sarcomere edges where t-tubules may not consistently colocalize to Z-disks. The use of SHG microscopy instead of fluorescent imaging can be a prospective tool to map sarcomere variability both in vitro and in vivo conditions and to reveal its role in the functional behavior of living myocardium.
Collapse
Affiliation(s)
- Oleg Lookin
- Institute of Immunology and Physiology , Ural Branch of Russian Academy of Sciences , Yekaterinburg, Russia
| | - Pieter de Tombe
- Laboratory "Physiologie et Médecine Expérimentale du Coeur et des Muscles", Phymedexp, INSERM, CNRS, Montpellier University , Montpellier, France.,Physiology and Biophysics, University of Illinois at Chicago , Chicago, IL, USA
| | - Najlae Boulali
- Laboratory "Physiologie et Médecine Expérimentale du Coeur et des Muscles", Phymedexp, INSERM, CNRS, Montpellier University , Montpellier, France
| | - Csilla Gergely
- L2C, University of Montpellier , CNRS , Montpellier, France
| | | | - Olivier Cazorla
- Laboratory "Physiologie et Médecine Expérimentale du Coeur et des Muscles", Phymedexp, INSERM, CNRS, Montpellier University , Montpellier, France
| |
Collapse
|
15
|
Werkhausen A, Gløersen Ø, Nordez A, Paulsen G, Bojsen-Møller J, Seynnes OR. Linking muscle architecture and function in vivo: conceptual or methodological limitations? PeerJ 2023; 11:e15194. [PMID: 37077309 PMCID: PMC10108853 DOI: 10.7717/peerj.15194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/15/2023] [Indexed: 04/21/2023] Open
Abstract
Background Despite the clear theoretical link between sarcomere arrangement and force production, the relationship between muscle architecture and function remain ambiguous in vivo. Methods We used two frequently used ultrasound-based approaches to assess the relationships between vastus lateralis architecture parameters obtained in three common conditions of muscle lengths and contractile states, and the mechanical output of the muscle in twenty-one healthy subjects. The relationship between outcomes obtained in different conditions were also examined. Muscle architecture was analysed in panoramic ultrasound scans at rest with the knee fully extended and in regular scans at an angle close to maximum force (60°), at rest and under maximum contraction. Isokinetic and isometric strength tests were used to estimate muscle force production at various fascicle velocities. Results Measurements of fascicle length, pennation angle and thickness obtained under different experimental conditions correlated moderately with each other (r = 0.40-.74). Fascicle length measured at 60° at rest correlated with force during high-velocity knee extension (r = 0.46 at 400° s-1) and joint work during isokinetic knee extension (r = 0.44 at 200° s-1 and r = 0.57 at 100° s-1). Muscle thickness was related to maximum force for all measurement methods (r = 0.44-0.73). However, we found no significant correlations between fascicle length or pennation angle and any measures of muscle force or work. Most correlations between architecture and force were stronger when architecture was measured at rest close to optimal length. Conclusion These findings reflect methodological limitations of current approaches to measure fascicle length and pennation angle in vivo. They also highlight the limited value of static architecture measurements when reported in isolation or without direct experimental context.
Collapse
Affiliation(s)
- Amelie Werkhausen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Øyvind Gløersen
- Smart Sensors and Microsystems, SINTEF Digital, Oslo, Norway
| | - Antoine Nordez
- Movement - Interactions - Performance, MIP, Nantes Université, Nantes, France
- Institut Universitaire de France, IUF, France
| | - Gøran Paulsen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jens Bojsen-Møller
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Olivier R. Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
16
|
Hessel AL, Ma W, Mazara N, Rice PE, Nissen D, Gong H, Kuehn M, Irving T, Linke WA. Titin force in muscle cells alters lattice order, thick and thin filament protein formation. Proc Natl Acad Sci U S A 2022; 119:e2209441119. [PMID: 36409887 PMCID: PMC9860331 DOI: 10.1073/pnas.2209441119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle force production is increased at longer compared to shorter muscle lengths because of length-dependent priming of thick filament proteins in the contractile unit before contraction. Using small-angle X-ray diffraction in combination with a mouse model that specifically cleaves the stretch-sensitive titin protein, we found that titin cleavage diminished the length-dependent priming of the thick filament. Strikingly, a titin-sensitive, length-dependent priming was also present in thin filaments, which seems only possible via bridge proteins between thick and thin filaments in resting muscle, potentially myosin-binding protein C. We further show that these bridges can be forcibly ruptured via high-speed stretches. Our results advance a paradigm shift to the fundamental regulation of length-dependent priming, with titin as the key driver.
Collapse
Affiliation(s)
- Anthony L. Hessel
- Institute of Physiology II, University of Muenster, Muenster, 48149Germany
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Nicole Mazara
- School of Kinesiology, University of British Columbia, Vancouver, CanadaV6T 1Z1
| | - Paige E. Rice
- Department of Biological Sciences, Northern Arizona University, FlagstaffAZ 86011
| | - Devin Nissen
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Henry Gong
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Michel Kuehn
- Institute of Physiology II, University of Muenster, Muenster, 48149Germany
| | - Thomas Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Muenster, Muenster, 48149Germany
| |
Collapse
|
17
|
Lookin O, Khokhlova A, Myachina T, Butova X, Cazorla O, de Tombe P. Contractile State Dependent Sarcomere Length Variability in Isolated Guinea-Pig Cardiomyocytes. Front Physiol 2022; 13:857471. [PMID: 35444559 PMCID: PMC9013801 DOI: 10.3389/fphys.2022.857471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiomyocytes contract keeping their sarcomere length (SL) close to optimal values for force generation. Transmural heterogeneity in SL across the ventricular wall coordinates the contractility of the whole-ventricle. SL heterogeneity (variability) exists not only at the tissue (macroscale) level, but also presents at the level of a single cardiomyocyte (microscale level). However, transmural differences in intracellular SL variability and its possible dependence on the state of contraction (e.g. end-diastole or end-systole) have not been previously reported. In the present study, we studied three aspects of sarcomere-to-sarcomere variability in intact cardiomyocytes isolated from the left ventricle of healthy guinea-pig: 1) transmural differences in SL distribution between subepi- (EPI) and subendocardial (ENDO) cardiomyocytes; 2) the dependence of intracellular variability in SL upon the state of contraction; 3) local differences in SL variability, comparing SL distributions between central and peripheral regions within the cardiomyocyte. To characterize the intracellular variability of SL, we used different normality tests for the assessment of SL distributions, as well as nonparametric coefficients to quantify the variability. We found that individual SL values in the end-systolic state of contraction followed a normal distribution to a lesser extent as compared to the end-diastolic state of contraction (∼1.3-fold and ∼1.6-fold in ENDO and EPI, respectively). The relative and absolute coefficients of sarcomere-to-sarcomere variability in end-systolic SL were significantly greater (∼1.3-fold) as compared to end-diastolic SL. This was independent of both the transmural region across the left ventricle and the intracellular region within the cardiomyocyte. We conclude that the intracellular variability in SL, which exists in normal intact guinea-pig cardiomyocytes, is affected by the contractile state of the myocyte. This phenomenon may play a role in inter-sarcomere communication in the beating heart.
Collapse
Affiliation(s)
- Oleg Lookin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
- *Correspondence: Oleg Lookin,
| | - Anastasia Khokhlova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
| | - Xenia Butova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
| | - Olivier Cazorla
- Laboratoire “Physiologie et Médecine Expérimentale du Coeur et des Muscles”, Phymedexp, INSERM—CNRS - Montpellier University, Montpellier, France
| | - Pieter de Tombe
- Laboratoire “Physiologie et Médecine Expérimentale du Coeur et des Muscles”, Phymedexp, INSERM—CNRS - Montpellier University, Montpellier, France
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Jacob CDS, Barbosa GK, Rodrigues MP, Pimentel Neto J, Rocha-Braga LC, de Oliveira CG, Chacur M, Ciena AP. Ultrastructural and Molecular Development of the Myotendinous Junction Triggered by Stretching Prior to Resistance Exercise. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-6. [PMID: 35258447 DOI: 10.1017/s1431927622000186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The myotendinous junction (MTJ) is a highly specialized region of the locomotor apparatus. Here, we investigated the ultrastructural and molecular effects in the MTJ region after static stretching prior to the ladder-based resistance training. Thirty-two male, 60-day old Wistar rats were divided into four groups: Sedentary, Resistance Training, Stretching, and Stretching-Resistance Training. The gastrocnemius muscle was processed for transmission electron microscopy techniques and Western blot assay. We observed that the static stretching prior to the ladder-based resistance training increased the MTJ components, the fibroblast growth factor (FGF)-2 and FGF-6 protein expression. Also, we demonstrated the lower transforming growth factor expression and no difference in the lysyl oxidase expression after combined training. The MTJ alterations in response to combined training demonstrate adaptive mechanisms which can be used for the prescription or development of methods to reduce or prevent injuries in humans and promote the myotendinous interface benefit.
Collapse
Affiliation(s)
- Carolina Dos S Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Gabriela K Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Mariana P Rodrigues
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Lara C Rocha-Braga
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Camilla G de Oliveira
- Laboratory of Functional Neuroanatomy of Pain (LAND), Department of Anatomy, Universidade de Sao Paulo (USP), São Paulo, SP, Brazil
| | - Marucia Chacur
- Laboratory of Functional Neuroanatomy of Pain (LAND), Department of Anatomy, Universidade de Sao Paulo (USP), São Paulo, SP, Brazil
| | - Adriano P Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| |
Collapse
|
19
|
Adkins AN, Fong RM, Dewald JPA, Murray WM. Variability of in vivo Sarcomere Length Measures in the Upper Limb Obtained With Second Harmonic Generation Microendoscopy. Front Physiol 2022; 12:817334. [PMID: 35211028 PMCID: PMC8861439 DOI: 10.3389/fphys.2021.817334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
The lengths of a muscle’s sarcomeres are a primary determinant of its ability to contract and produce force. In addition, sarcomere length is a critical parameter that is required to make meaningful comparisons of both the force-generating and excursion capacities of different muscles. Until recently, in vivo sarcomere length data have been limited to invasive or intraoperative measurement techniques. With the advent of second harmonic generation microendoscopy, minimally invasive measures of sarcomere length can be made for the first time. This imaging technique expands our ability to study muscle adaptation due to changes in stimulus, use, or disease. However, due to past inability to measure sarcomeres outside of surgery or biopsy, little is known about the natural, anatomical variability in sarcomere length in living human subjects. To develop robust experimental protocols that ensure data provide accurate representations of a muscle’s sarcomere lengths, we sought to quantify experimental uncertainty associated with in vivo measures of sarcomere lengths. Specifically, we assessed the variability in sarcomere length measured (1) within a single image, along a muscle fiber, (2) across images captured within a single trial, across trials, and across days, as well as (3) across locations in the muscle using second harmonic generation in two upper limb muscles with different muscle architectures, functions, and sizes. Across all of our measures of variability we estimate that the magnitude of the uncertainty for in vivo sarcomere length is on the order of ∼0.25 μm. In the two upper limb muscles studied we found larger variability in sarcomere lengths within a single insertion than across locations. We also developed custom code to make measures of sarcomere length variability across a single fiber and determined that this codes’ accuracy is an order of magnitude smaller than our measurement uncertainty due to sarcomere variability. Together, our findings provide guidance for the development of robust experimental design and analysis of in vivo sarcomere lengths in the upper limb.
Collapse
Affiliation(s)
- Amy N Adkins
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Shirley Ryan AbilityLab, Chicago, IL, United States.,Edward Hines, Jr. VA Hospital, Hines, IL, United States
| | - Ryan M Fong
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Wendy M Murray
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Shirley Ryan AbilityLab, Chicago, IL, United States.,Edward Hines, Jr. VA Hospital, Hines, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
20
|
Kobirumaki-Shimozawa F, Shimozawa T, Oyama K, Baba S, Li J, Nakanishi T, Terui T, Louch WE, Ishiwata S, Fukuda N. Synchrony of sarcomeric movement regulates left ventricular pump function in the in vivo beating mouse heart. J Gen Physiol 2021; 153:212675. [PMID: 34605861 PMCID: PMC8493835 DOI: 10.1085/jgp.202012860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
Sarcomeric contraction in cardiomyocytes serves as the basis for the heart's pump functions. It has generally been considered that in cardiac muscle as well as in skeletal muscle, sarcomeres equally contribute to myofibrillar dynamics in myocytes at varying loads by producing similar levels of active and passive force. In the present study, we expressed α-actinin-AcGFP in Z-disks to analyze dynamic behaviors of sequentially connected individual sarcomeres along a myofibril in a left ventricular (LV) myocyte of the in vivo beating mouse heart. To quantify the magnitude of the contribution of individual sarcomeres to myofibrillar dynamics, we introduced the novel parameter "contribution index" (CI) to measure the synchrony in movements between a sarcomere and a myofibril (from -1 [complete asynchrony] to 1 [complete synchrony]). First, CI varied markedly between sarcomeres, with an average value of ∼0.3 during normal systole. Second, when the movements between adjacent sarcomeres were asynchronous (CI < 0), a sarcomere and the ones next to the adjacent sarcomeres and farther away moved in synchrony (CI > 0) along a myofibril. Third, when difference in LV pressure in diastole and systole (ΔLVP) was lowered to <10 mm Hg, diastolic sarcomere length increased. Under depressed conditions, the movements between adjacent sarcomeres were in marked asynchrony (CI, -0.3 to -0.4), and, as a result, average CI was linearly decreased in association with a decrease in ΔLVP. These findings suggest that in the left ventricle of the in vivo beating mouse heart, (1) sarcomeres heterogeneously contribute to myofibrillar dynamics due to an imbalance of active and passive force between neighboring sarcomeres, (2) the force imbalance is pronounced under depressed conditions coupled with a marked increase in passive force and the ensuing tug-of-war between sarcomeres, and (3) sarcomere synchrony via the distal intersarcomere interaction regulates the heart's pump function in coordination with myofibrillar contractility.
Collapse
Affiliation(s)
| | - Togo Shimozawa
- Technical Division, School of Science, The University of Tokyo, Tokyo, Japan
| | - Kotaro Oyama
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.,Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Shunsuke Baba
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tomohiro Nakanishi
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takako Terui
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Monti E, Waldvogel J, Ritzmann R, Freyler K, Albracht K, Helm M, De Cesare N, Pavan P, Reggiani C, Gollhofer A, Narici MV. Muscle in Variable Gravity: "I Do Not Know Where I Am, But I Know What to Do". Front Physiol 2021; 12:714655. [PMID: 34421657 PMCID: PMC8371909 DOI: 10.3389/fphys.2021.714655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose: Fascicle and sarcomere lengths are important predictors of muscle mechanical performance. However, their regulation during stretch-shortening cycle (SSC) activities in usual and challenging conditions is poorly understood. In this study, we aimed to investigate muscle fascicle and sarcomere behavior during drop jumps (a common SSC activity) in conditions of variable gravity. Methods: Fifteen volunteers performed repeated drop jumps in 1 g, hypo-gravity (0 to 1 g), and hyper-gravity (1 to 2 g) during a parabolic flight. Gastrocnemius medialis (GM) electromyographic activity and fascicle length (Lf) were measured at drop-off, ground contact (GC), minimum ankle joint angle (MAJ), and push-off. GM sarcomere number was estimated by dividing Lf, measured by ultrasound at rest, by published data on GM sarcomere length, and measured in vivo at the same joint angle. Changes in sarcomere length were estimated by dividing GM Lf in each jump phase by sarcomere number calculated individually. The sarcomere force-generating capacity in each jump phase was estimated from the sarcomere length-tension relationship previously reported in the literature. Results: The results showed that, regardless of the gravity level, GM sarcomeres operated in the ascending portion of their length-tension relationship in all the jump phases. Interestingly, although in hypo-gravity and hyper-gravity during the braking phase (GC-MAJ) GM fascicles and sarcomeres experienced a stretch (as opposed to the quasi-isometric behavior in 1 g), at MAJ they reached similar lengths as in 1 g, allowing sarcomeres to develop about the 70% of their maximum force. Conclusion: The observed fascicle behavior during drop jumping seems useful for anchoring the tendon, enabling storage of elastic energy and its release in the subsequent push-off phase for effectively re-bouncing in all gravity levels, suggesting that an innate neuromuscular wisdom enables to perform SSC movements also in challenging conditions.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Janice Waldvogel
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Ramona Ritzmann
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany.,Department of Biomechanics, Rennbahnklinik, Muttenz, Switzerland
| | - Kathrin Freyler
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Kirsten Albracht
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany.,Department of Medical Engineering and Technomathematics, Aachen University of Applied Sciences, Aachen, Germany
| | - Michael Helm
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Niccolò De Cesare
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Piero Pavan
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
22
|
Quinlan JI, Franchi MV, Gharahdaghi N, Badiali F, Francis S, Hale A, Phillips BE, Szewczyk N, Greenhaff PL, Smith K, Maganaris C, Atherton PJ, Narici MV. Muscle and tendon adaptations to moderate load eccentric vs. concentric resistance exercise in young and older males. GeroScience 2021; 43:1567-1584. [PMID: 34196903 PMCID: PMC8492846 DOI: 10.1007/s11357-021-00396-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Resistance exercise training (RET) is well-known to counteract negative age-related changes in both muscle and tendon tissue. Traditional RET consists of both concentric (CON) and eccentric (ECC) contractions; nevertheless, isolated ECC contractions are metabolically less demanding and, thus, may be more suitable for older populations. However, whether submaximal (60% 1RM) CON or ECC contractions differ in their effectiveness is relatively unknown. Further, whether the time course of muscle and tendon adaptations differs to the above is also unknown. Therefore, this study aimed to establish the time course of muscle and tendon adaptations to submaximal CON and ECC RET. Twenty healthy young (24.5 ± 5.1 years) and 17 older males (68.1 ± 2.4 years) were randomly allocated to either isolated CON or ECC RET which took place 3/week for 8 weeks. Tendon biomechanical properties, muscle architecture and maximal voluntary contraction were assessed every 2 weeks and quadriceps muscle volume every 4 weeks. Positive changes in tendon Young's modulus were observed after 4 weeks in all groups after which adaptations in young males plateaued but continued to increase in older males, suggesting a dampened rate of adaptation with age. However, both CON and ECC resulted in similar overall changes in tendon Young's modulus, in all groups. Muscle hypertrophy and strength increases were similar between CON and ECC in all groups. However, pennation angle increases were greater in CON, and fascicle length changes were greater in ECC. Notably, muscle and tendon adaptations appeared to occur in synergy, presumably to maintain the efficacy of the muscle-tendon unit.
Collapse
Affiliation(s)
- Jonathan Iain Quinlan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,National Institute for Health Research, Birmingham Biomedical Research Centre At University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Martino Vladimiro Franchi
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nima Gharahdaghi
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Francesca Badiali
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Susan Francis
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Andrew Hale
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Bethan Eileen Phillips
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Nathaniel Szewczyk
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK.,Ohio Musculoskeletal and Neurological Institute (OMNI) and Department of Biomedical Sciences, Ohio University, Athens, OH, 43147, USA
| | - Paul Leonard Greenhaff
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Kenneth Smith
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | | | - Phillip James Atherton
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Marco Vincenzo Narici
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK. .,Department of Biomedical Sciences, University of Padova, Padova, Italy. .,CIR-MYO Myology Center, University of Padova, Padova, Italy.
| |
Collapse
|
23
|
Ross SA, Domínguez S, Nigam N, Wakeling JM. The Energy of Muscle Contraction. III. Kinetic Energy During Cyclic Contractions. Front Physiol 2021; 12:628819. [PMID: 33897449 PMCID: PMC8058367 DOI: 10.3389/fphys.2021.628819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
During muscle contraction, chemical energy is converted to mechanical energy when ATP is hydrolysed during cross-bridge cycling. This mechanical energy is then distributed and stored in the tissue as the muscle deforms or is used to perform external work. We previously showed how energy is distributed through contracting muscle during fixed-end contractions; however, it is not clear how the distribution of tissue energy is altered by the kinetic energy of muscle mass during dynamic contractions. In this study we conducted simulations of a 3D continuum muscle model that accounts for tissue mass, as well as force-velocity effects, in which the muscle underwent sinusoidal work-loop contractions coupled with bursts of excitation. We found that increasing muscle size, and therefore mass, increased the kinetic energy per unit volume of the muscle. In addition to greater relative kinetic energy per cycle, relatively more energy was also stored in the aponeurosis, and less was stored in the base material, which represented the intra and extracellular tissue components apart from the myofibrils. These energy changes in larger muscles due to greater mass were associated lower mass-specific mechanical work output per cycle, and this reduction in mass-specific work was greatest for smaller initial pennation angles. When we compared the effects of mass on the model tissue behaviour to that of in situ muscle with added mass during comparable work-loop trials, we found that greater mass led to lower maximum and higher minimum acceleration in the longitudinal (x) direction near the middle of the muscle compared to at the non-fixed end, which indicates that greater mass contributes to tissue non-uniformity in whole muscle. These comparable results for the simulated and in situ muscle also show that this modelling framework behaves in ways that are consistent with experimental muscle. Overall, the results of this study highlight that muscle mass is an important determinant of whole muscle behaviour.
Collapse
Affiliation(s)
- Stephanie A. Ross
- Neuromuscular Mechanics Laboratory, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Sebastián Domínguez
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
- Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nilima Nigam
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - James M. Wakeling
- Neuromuscular Mechanics Laboratory, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
24
|
Ando R, Taniguchi K, Kikuchi S, Mizoguchi S, Fujimiya M, Katayose M, Akima H. Sarcomere length of the vastus intermedius with the knee joint angle change. Physiol Rep 2021; 9:e14771. [PMID: 33650805 PMCID: PMC7923570 DOI: 10.14814/phy2.14771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
The force-length relation of the skeletal muscles is an important factor influencing the joint torque at a given joint angle. We aimed to clarify the relationship between the resting sarcomere length and knee joint angle in the vastus intermedius (VI) and to compare it with that of the vastus lateralis (VL). The left and right legs were fixed at knee joint angles of 0° and 90°, respectively, in seven cadavers (age at the time of death: 70-91 years). Muscle tissues were dissected by necropsy of the VL and the VI, and electron microscopy images were obtained to calculate the sarcomere length. At knee joint angles of 0° and 90°, the VL sarcomere length was 2.28 ± 0.49 μm and 2.30 ± 0.48 μm, respectively, and the VI sarcomere length was 2.19 ± 0.35 μm and 2.46 ± 0.53 μm, respectively, with a significant difference between the two (p = 0.028). The magnitude of sarcomere length changes with knee joint angle changes was significantly greater for the VI (0.27 ± 0.20 μm) than for the VL (0.02 ± 0.09 μm) (p = 0.009). Thus, knee joint angle changes may affect the passive and active tension produced by the VI more than those produced by the VL.
Collapse
Affiliation(s)
- Ryosuke Ando
- Department of Sports Research, Japan Institute of Sports Sciences (JISS), Tokyo, Japan
| | - Keigo Taniguchi
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Shin Kikuchi
- School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Shogo Mizoguchi
- School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Mineko Fujimiya
- School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Masaki Katayose
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Hiroshi Akima
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| |
Collapse
|
25
|
Morawetz D, Blank C, Koller A, Arvandi M, Siebert U, Schobersberger W. Sex-Related Differences After a Single Bout of Maximal Eccentric Exercise in Response to Acute Effects: A Systematic Review and Meta-analysis. J Strength Cond Res 2021; 34:2697-2707. [PMID: 30908366 DOI: 10.1519/jsc.0000000000002867] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Morawetz, D, Blank, C, Koller, A, Arvandi, M, Siebert, U, and Schobersberger, W. Sex-related differences after a single bout of maximal eccentric exercise in response to acute effects: a systematic review and meta-analysis. J Strength Cond Res 34(9): 2697-2707, 2020-The most prominent effects after unaccustomed eccentric exercise are muscle damage, muscle soreness, strength loss, and higher concentrations of muscle proteins in the plasma. The aim of this systematic review is to evaluate sex-related differences in these acute effects. A systematic literature search in MEDLINE following the PRISMA guidelines was performed. Inclusion criteria were the difference in absolute outcomes between sexes in eccentric muscle strength, strength loss after eccentric exercise, blood concentrations of creatine kinase (CK), and delayed onset muscle soreness (DOMS). Results for maximal eccentric torque and CK data were pooled using a random-effect meta-analysis. A meta-regression was conducted to explain heterogeneity. Based on the 23 included trials, men showed significantly higher absolute eccentric strength. No sex-related differences were detected when normalizing strength for body mass, cross-sectional area of the muscle, or fat-free mass. Women displayed a tendency toward greater relative strength loss immediately after exercise. The absolute CK concentrations of men were significantly higher after exercise-induced muscle damage. No significant difference was found between sexes in DOMS. Untrained men and women display similar responses in all measures of relative muscle strength and DOMS. Apart from the enzymatic activity after exercise and the levels of absolute eccentric torque, there is no evidence for sex-related differences immediately after eccentric exercise. Therefore, eccentric training might have the same impact on men and women. One potential sex difference with practical relevance would be the possible difference in fatigue pattern immediately after eccentric exercise.
Collapse
Affiliation(s)
- David Morawetz
- Institute for Sports Medicine, Alpine Medicine and Health Tourism, Tirol Kliniken GmbH Innsbruck, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Cornelia Blank
- Institute for Sports Medicine, Alpine Medicine and Health Tourism, Tirol Kliniken GmbH Innsbruck, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Arnold Koller
- Institute for Sports Medicine, Alpine Medicine and Health Tourism, Tirol Kliniken GmbH Innsbruck, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Marjan Arvandi
- Department of Public Health, Health Services Research and Health Technology Assessment, Institute for Public Health, Medical Decision Making and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Uwe Siebert
- Department of Public Health, Health Services Research and Health Technology Assessment, Institute for Public Health, Medical Decision Making and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria.,Department of Health Policy and Management, Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; and.,Program on Cardiovascular Research, Institute for Technology Assessment and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wolfgang Schobersberger
- Institute for Sports Medicine, Alpine Medicine and Health Tourism, Tirol Kliniken GmbH Innsbruck, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| |
Collapse
|
26
|
Peñailillo L, Aedo C, Cartagena M, Contreras A, Reyes A, Ramirez-Campillo R, Earp JE, Zbinden-Foncea H. Effects of Eccentric Cycling Performed at Long vs. Short Muscle Lengths on Heart Rate, Rate Perceived Effort, and Muscle Damage Markers. J Strength Cond Res 2020; 34:2895-2902. [DOI: 10.1519/jsc.0000000000002732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Monti E, Franchi MV, Badiali F, Quinlan JI, Longo S, Narici MV. The Time-Course of Changes in Muscle Mass, Architecture and Power During 6 Weeks of Plyometric Training. Front Physiol 2020; 11:946. [PMID: 32848873 PMCID: PMC7417646 DOI: 10.3389/fphys.2020.00946] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose To investigate the time-course of changes in knee-extensors muscle mass, architecture and function in response to plyometric training (PLT) performed on a novel training device, the Tramp-Trainer. This machine consists in a trampoline connected to an inclined sledge which allows the performance of repeated jumps while the subject is sitting on a chair. Methods Eight healthy males (173.6 ± 4.7 cm, 69.7 ± 13.5 kg, 25.3 ± 4.6 years) underwent 6 weeks of bilateral PLT on the tramp-trainer machine. Training was performed three times per week (between 120 and 150 bounces per session). Knee-extensor maximum voluntary torque (MVT) and power, quadriceps femoris (QF) volume (VOL), cross-sectional area from the 20% to the 60% of femur length and CSAmean, together with vastus lateralis (VL) architecture (fascicle length, Lf, and pennation angle, PA) were assessed after 2, 4, and 6 weeks of PLT. Results All results are presented as changes versus baseline values. MVT increased by 17.8% (week 2, p < 0.001) and 22.2% (week 4, p < 0.01), respectively, and declined to 13.3% (p < 0.05) at week 6 of PLT. Power increased by 18.2% (week 4, p < 0.05) and 19.7% (week 6, p < 0.05). QF VOL increased by 4.7% (week 4, p < 0.05) and 5.8% (week 6, p < 0.01); VL VOL increased by 5.2%, (p < 0.05), 8.2%, (p < 0.01), and 9.6% (p < 0.05) at weeks 2, 4, and 6, respectively. An increase in Lf was detected already at wk 2 (2.2%, p < 0.05), with further increase at 4 and 6 weeks of PLT (4 and 4.4%, respectively, p < 0.01). PA increased by 5.8% (p < 0.05) at week 6. Significant positive correlations were found between CSAmean and Power (R2 = 0.46, p < 0.001) and between QF VOL and Power (R2 = 0.44, p < 0.024). Conclusions PLT induced rapid increases in muscle volume, fascicle length, pennation angle, torque and power in healthy younger adults. Notably, changes in VL VOL and Lf were detectable already after 2 weeks, followed by increases in knee extensors VOL and power from week 4 of PLT. Since the increase in CSAmean and QF VOL cannot fully explain the increment in muscle power, it is likely that other factors (such as adaptations in neural drive or tendon mechanical properties) may have contributed to such fucntional changes.
Collapse
Affiliation(s)
- Elena Monti
- Institute of Physiology, Department of Biomedical Sciences, University of Padua, Padua, Italy.,MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, United Kingdom
| | - Martino V Franchi
- Institute of Physiology, Department of Biomedical Sciences, University of Padua, Padua, Italy.,MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, United Kingdom
| | - Francesca Badiali
- MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, United Kingdom
| | - Jonathan I Quinlan
- MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, United Kingdom.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham, NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| | - Stefano Longo
- MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, United Kingdom.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Marco V Narici
- Institute of Physiology, Department of Biomedical Sciences, University of Padua, Padua, Italy.,MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, United Kingdom.,CIR-Myo Myology Centre, Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
28
|
Moo EK, Herzog W. Sarcomere Lengths Become More Uniform Over Time in Intact Muscle-Tendon Unit During Isometric Contractions. Front Physiol 2020; 11:448. [PMID: 32477162 PMCID: PMC7235410 DOI: 10.3389/fphys.2020.00448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
The seemingly uniform striation pattern of skeletal muscles, quantified in terms of sarcomere lengths (SLs), is inherently non-uniform across all hierarchical levels. The SL non-uniformity theory has been used to explain the force creep in isometric contractions, force depression following shortening of activated muscle, and residual force enhancement following lengthening of activated muscle. Our understanding of sarcomere contraction dynamics has been derived primarily from in vitro experiments using regular bright-field light microscopy or laser diffraction techniques to measure striation/diffraction patterns in isolated muscle fibers or myofibrils. However, the collagenous extracellular matrices present around the muscle fibers, as well as the complex architecture in the whole muscles may lead to different contraction dynamics of sarcomeres than seen in the in vitro studies. Here, we used multi-photon excitation microscopy to visualize in situ individual sarcomeres in intact muscle tendon units (MTUs) of mouse tibialis anterior (TA), and quantified the temporal changes of SL distribution as a function of SLs in relaxed and maximally activated muscles for quasi-steady state, fixed-end isometric conditions. The corresponding muscle forces were simultaneously measured using a force transducer. We found that SL non-uniformity, quantified by the coefficient of variation (CV) of SLs, decreased at a rate of 1.9–3.1%/s in the activated muscles, but remained constant in the relaxed muscles. The force loss during the quasi-steady state likely did not play a role in the decrease of SL non-uniformity, as similar force losses were found in the activated and relaxed muscles, but the CV of SLs in the relaxed muscles underwent negligible change over time. We conclude that sarcomeres in the mid-belly of maximally contracting whole muscles constantly re-organize their lengths into a more uniform pattern over time. The molecular mechanisms accounting for SL non-uniformity appear to differ in active and passive muscles, and need further elucidation, as do the functional implications of the SL non-uniformity.
Collapse
Affiliation(s)
- Eng Kuan Moo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
29
|
Moo EK, Leonard TR, Herzog W. The sarcomere force-length relationship in an intact muscle-tendon unit. J Exp Biol 2020; 223:jeb215020. [PMID: 32098882 DOI: 10.1242/jeb.215020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/18/2020] [Indexed: 08/26/2023]
Abstract
The periodic striation pattern in skeletal muscle reflects the length of the basic contractile unit: the sarcomere. More than half a century ago, Gordon, Huxley and Julian provided strong support for the 'sliding filament' theory through experiments with single muscle fibres. The sarcomere force-length (FL) relationship has since been extrapolated to whole muscles in an attempt to unravel in vivo muscle function. However, these extrapolations were frequently associated with non-trivial assumptions, such as muscle length changes corresponding linearly to SL changes. Here, we determined the in situ sarcomere FL relationship in a whole muscle preparation by simultaneously measuring muscle force and individual SLs in an intact muscle-tendon unit (MTU) using state-of-the-art multi-photon excitation microscopy. We found that despite great SL non-uniformity, the mean value of SLs measured from a minute volume of the mid-belly, equivalent to about 5×10-6% of the total muscle volume, agrees well with the theoretically predicted FL relationship, but only if the precise contractile filament lengths are known, and if passive forces from parallel elastic components and activation-associated sarcomere shortening are considered properly. As SLs are not uniformly distributed across the whole muscle and changes in SL with muscle length are location dependent, our results may not be valid for the proximal or distal parts of the muscle. The approach described here, and our findings, may encourage future studies to determine the role of SL non-uniformity in influencing sarcomere FL properties in different muscles and for different locations within single muscles.
Collapse
Affiliation(s)
- Eng Kuan Moo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Timothy R Leonard
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
30
|
Fukutani A, Herzog W. Current Understanding of Residual Force Enhancement: Cross-Bridge Component and Non-Cross-Bridge Component. Int J Mol Sci 2019; 20:ijms20215479. [PMID: 31689920 PMCID: PMC6862632 DOI: 10.3390/ijms20215479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Muscle contraction is initiated by the interaction between actin and myosin filaments. The sliding of actin filaments relative to myosin filaments is produced by cross-bridge cycling, which is governed by the theoretical framework of the cross-bridge theory. The cross-bridge theory explains well a number of mechanical responses, such as isometric and concentric contractions. However, some experimental observations cannot be explained with the cross-bridge theory; for example, the increased isometric force after eccentric contractions. The steady-state, isometric force after an eccentric contraction is greater than that attained in a purely isometric contraction at the same muscle length and same activation level. This well-acknowledged and universally observed property is referred to as residual force enhancement (rFE). Since rFE cannot be explained by the cross-bridge theory, alternative mechanisms for explaining this force response have been proposed. In this review, we introduce the basic concepts of sarcomere length non-uniformity and titin elasticity, which are the primary candidates that have been used for explaining rFE, and discuss unresolved problems regarding these mechanisms, and how to proceed with future experiments in this exciting area of research.
Collapse
Affiliation(s)
- Atsuki Fukutani
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan.
| | - Walter Herzog
- Faculty of Kinesiology, The University of Calgary, 2500 University Drive, NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
31
|
Alcazar J, Csapo R, Ara I, Alegre LM. On the Shape of the Force-Velocity Relationship in Skeletal Muscles: The Linear, the Hyperbolic, and the Double-Hyperbolic. Front Physiol 2019; 10:769. [PMID: 31275173 PMCID: PMC6593051 DOI: 10.3389/fphys.2019.00769] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/03/2019] [Indexed: 11/13/2022] Open
Abstract
The shape of the force-velocity (F-V) relationship has important implications for different aspects of muscle physiology, such as muscle efficiency and fatigue, the understanding of the pathophysiology of several myopathies or the mechanisms of muscle contraction per se, and may be of relevance for other fields, such as the development of robotics and prosthetic applications featuring natural muscle-like properties. However, different opinions regarding the shape of the F-V relationship and the underlying mechanisms exist in the literature. In this review, we summarize relevant evidence on the shape of the F-V relationship obtained over the last century. Studies performed at multiple scales ranging from the sarcomere to the organism level have described the concentric F-V relationship as linear, hyperbolic or double-hyperbolic. While the F-V relationship has most frequently been described as a rectangular hyperbola, a large number of studies have found deviations from the hyperbolic function at both ends of the F-V relation. Indeed, current evidence suggests that the F-V relation in skeletal muscles follows a double-hyperbolic pattern, with a breakpoint located at very high forces/low velocities, which may be a direct consequence of the kinetic properties of myofilament cross-bridge formation. Deviations at low forces/high velocities, by contrast, may be related to a recently discovered, calcium-independent regulatory mechanism of muscle contraction, which may also explain the low metabolic cost of very fast muscle shortening contractions. Controversial results have also been reported regarding the eccentric F-V relationship, with studies in prepared muscle specimens suggesting that maximum eccentric force is substantially greater than isometric force, whereas in vivo studies in humans show only a modest increase, no change, or even a decrease in force in lengthening contractions. This review discusses possible reasons reported in the literature for these discrepant findings, including the testing procedures (familiarization, pre-load condition, and temperature) and a potential neural inhibition at higher lengthening velocities. Finally, some unresolved questions and recommendations for F-V testing in humans are reported at the end of this document.
Collapse
Affiliation(s)
- Julian Alcazar
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Robert Csapo
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, ISAG, University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Luis M Alegre
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
32
|
Franchi MV, Monti E, Carter A, Quinlan JI, Herrod PJJ, Reeves ND, Narici MV. Bouncing Back! Counteracting Muscle Aging With Plyometric Muscle Loading. Front Physiol 2019; 10:178. [PMID: 30890953 PMCID: PMC6411845 DOI: 10.3389/fphys.2019.00178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
The preservation of muscle power is crucial in aging for maintaining mobility and performing daily tasks. Resistance training involving high movement velocities represents a valid strategy to slow down the rate of sarcopenia, counteracting the loss of muscle mass and muscle power. Plyometric exercise may represent an effective training modality for increasing muscle power; however, its application in older populations has been sparingly investigated, as the high impact actions involved may reduce its feasibility for older individuals. By adopting a safer modality of plyometric training, we investigated if a 6-week plyometric training intervention could increase knee extensor muscle size, architecture, force and power in 14 young (YM, age = 25.4 ± 3.5 y; means ± SD) and nine older males (OM, age = 69.7 ± 3.4 y). Volunteers trained 3 times/week using a device similar to a leg press machine where the user was required to bounce against his body mass on a trampoline. Pre-to-post training changes in isometric maximum voluntary torque (MVT), leg extension power and vastus lateralis (VL) architecture were assessed. Muscle power increased in both groups (+27% OM -P < 0.001, 20% YM -P < 0.001), although the total external work performed during the training period was significantly lower for OM (i.e., ~-47%). Both groups showed significant increases in muscle thickness (MT) (+5.8 OM -P < 0.01 vs. +3.8% YM -P < 0.01), fascicle length (Lf) (+8% OM -P < 0.001 vs. +6% YM -P < 0.001), and pennation angle (PA) (+7.5% OM -P < 0.001 vs. +4.1% YM -P < 0.001). The current study shows that trampoline-based plyometric training is an effective intervention producing a rapid increase in muscle mass and power in both young and older individuals. The training modality used in this study seems to particularly benefit the older population, targeting the morphological and functional effects of sarcopenia in human muscle.
Collapse
Affiliation(s)
- Martino V Franchi
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Sports Medicine Research Group, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Elena Monti
- Department of Biomedical Sciences, Institute of Physiology, University of Padua, Padua, Italy
| | - Austin Carter
- MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, United Kingdom
| | - Jonathan I Quinlan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Philip J J Herrod
- MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, United Kingdom
| | - Neil D Reeves
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Marco V Narici
- Department of Biomedical Sciences, Institute of Physiology, University of Padua, Padua, Italy
| |
Collapse
|
33
|
Ahn AN, Konow N, Tijs C, Biewener AA. Different Segments within Vertebrate Muscles Can Operate on Different Regions of Their Force-Length Relationships. Integr Comp Biol 2019; 58:219-231. [PMID: 29889253 DOI: 10.1093/icb/icy040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To relate in vivo behavior of fascicle segments within a muscle to their in vitro force-length relationships, we examined the strain behavior of paired segments within each of three vertebrate muscles. After determining in vivo muscle activity patterns and length changes of in-series segments within the semimembranosus muscle (SM) in the American Toad (Bufo americanus) during hopping and within the sternohyoid (SH) muscle in the rat (Rattus rattus) during swallowing, and of spatially separated fascicles within the medial gastrocnemius (MG) muscle in the rat during trotting, we measured their corresponding in vitro (toad) or in situ (rat) force-length relationships (FLRs). For all three muscles, in vivo strain heterogeneity lasted for about 36-57% of the behavior cycle, during which one segment or fascicle shortened while the other segment or fascicle simultaneously lengthened. In the toad SM, the proximal segment shortened from the descending limb across the plateau of its FLR from 1.12 to 0.91 of its optimal length (Lo), while the distal segment lengthened (by 0.04 ± 0.04 Lo) before shortening down the ascending limb from 0.94 to 0.83 Lo. In the rat SH muscle, the proximal segment tended to shorten on its ascending limb from 0.90 to 0.85 Lo while the distal segment tended to lengthen across Lo (0.96-1.12 Lo). In the rat MG muscle, in vivo strains of proximal fascicles ranged from 0.72 to 1.02 Lo, while the distal fascicles ranged from 0.88 to 1.11 Lo. Even though the timing of muscle activation patterns were similar between segments, the heterogeneous strain patterns of fascicle segments measured in vivo coincided with different operating ranges across their FLRs simultaneously, implying differences in force-velocity behavior as well. The three vertebrate skeletal muscles represent a diversity of fiber architectures and functions and suggest that patterns of in vivo contractile strain and the operating range over the FLR in one muscle region does not necessarily represent other regions within the same muscle.
Collapse
Affiliation(s)
- A N Ahn
- Concord Field Station, MCZ, Harvard University, 100 Old Causeway Road, Bedford, MA 01730, USA.,Department of Biology, Harvey Mudd College, 301 Platt Blvd, Claremont, CA 91711, USA
| | - N Konow
- Concord Field Station, MCZ, Harvard University, 100 Old Causeway Road, Bedford, MA 01730, USA.,Department of Biological Sciences, UMass Lowell, Lowell, MA 01854, USA
| | - C Tijs
- Concord Field Station, MCZ, Harvard University, 100 Old Causeway Road, Bedford, MA 01730, USA
| | - A A Biewener
- Concord Field Station, MCZ, Harvard University, 100 Old Causeway Road, Bedford, MA 01730, USA
| |
Collapse
|
34
|
Johnston K, Moo EK, Jinha A, Herzog W. On sarcomere length stability during isometric and post-active-stretch isometric contractions. J Exp Biol 2019; 222:jeb.209924. [DOI: 10.1242/jeb.209924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/31/2019] [Indexed: 01/18/2023]
Abstract
Sarcomere length (SL) instability and SL non-uniformity have been used to explain fundamental properties of skeletal muscles, such as creep, force depression following active muscle shortening, and residual force enhancement following active stretching of muscles. Regarding residual force enhancement, it has been argued that active muscle stretching causes SL instability, thereby increasing SL non-uniformity. However, we recently showed that SL non-uniformity is not increased by active muscle stretching, but it remains unclear if SL stability is affected by active stretching. Here, we used single myofibrils of rabbit psoas and measured SL non-uniformity and SL instability during isometric contractions and for isometric contractions following active stretching at average SLs corresponding to the descending limb of the force-length relationship. We defined isometric contractions as contractions during which mean SL remained constant. SL instability was quantified by the rate of change of individual SLs over the course of steady state, isometric force; and SL non-uniformity was defined as deviations of SLs from the mean SL at an instant of time. We found that while the mean SL remained constant during isometric contraction, by definition, individual SLs did not. SLs were more stable in the force-enhanced, isometric state following active stretching compared to the isometric reference state. We also found that SL instability was not correlated with the rate of change of SL non-uniformity. Also, SL non-uniformity was not different in the isometric and the post-stretch isometric contractions. We conclude that since SL is more stable but similarly non-uniform in the force-enhanced compared to the corresponding isometric reference contraction, it appears unlikely that either SL instability or SL non-uniformity contribute to the residual force enhancement property of skeletal muscle.
Collapse
Affiliation(s)
- Kaleena Johnston
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Eng Kuan Moo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Azim Jinha
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
35
|
Moo EK, Herzog W. Single sarcomere contraction dynamics in a whole muscle. Sci Rep 2018; 8:15235. [PMID: 30323321 PMCID: PMC6189036 DOI: 10.1038/s41598-018-33658-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/25/2018] [Indexed: 12/25/2022] Open
Abstract
The instantaneous sarcomere length (SL) is regarded as an important indicator of the functional properties of striated muscle. Previously, we found greater sarcomere elongations at the distal end compared to the mid-portion in the mouse tibialis anterior (TA) when the muscle was stretched passively. Here, we wanted to see if SL dispersions increase with activation, as has been observed in single myofibrils, and if SL dispersions differ for different locations in a muscle. Sarcomere lengths were measured at a mid- and a distal location of the TA in live mice using second harmonic generation imaging. Muscle force was measured using a tendon force transducer. We found that SL dispersions increased substantially from the passive to the active state, and were the same for the mid- and distal portions of TA. Sarcomere length non-uniformities within a segment of ~30 serial sarcomeres were up to 1.0 µm. We conclude from these findings that passive, mean SLs obtained from a single location are not necessarily representative of the distribution of SL in active muscle, and thus may be misinterpreted when deriving muscle mechanical properties, such as the force-length relationship. In view of these findings, it seems crucial to determine how SL distributions within a muscle relate to the most fundamental properties of muscle, such as the maximal isometric force.
Collapse
Affiliation(s)
- Eng Kuan Moo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
36
|
Carmona G, Mendiguchía J, Alomar X, Padullés JM, Serrano D, Nescolarde L, Rodas G, Cussó R, Balius R, Cadefau JA. Time Course and Association of Functional and Biochemical Markers in Severe Semitendinosus Damage Following Intensive Eccentric Leg Curls: Differences between and within Subjects. Front Physiol 2018; 9:54. [PMID: 29467666 PMCID: PMC5807877 DOI: 10.3389/fphys.2018.00054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/16/2018] [Indexed: 01/04/2023] Open
Abstract
Purpose: To investigate the extent and evolution of hamstring muscle damage caused by an intensive bout of eccentric leg curls (ELCs) by (1) assessing the time course and association of different indirect markers of muscle damage such as changes in the force-generating capacity (FGC), functional magnetic resonance (fMRI), and serum muscle enzyme levels and (2) analyzing differences in the degree of hamstring muscle damage between and within subjects (limb-to-limb comparison). Methods: Thirteen male participants performed six sets of 10 repetitions of an ELC with each leg. Before and at regular intervals over 7 days after the exercise, FGC was measured with maximal isometric voluntary contraction (MVC). Serum enzyme levels, fMRI transverse relaxation time (T2) and perceived muscle soreness were also assessed and compared against the FGC. Results: Two groups of subjects were identified according to the extent of hamstring muscle damage based on decreased FGC and increased serum enzyme levels: high responders (n = 10, severe muscle damage) and moderate responders (n = 3, moderate muscle damage). In the high responders, fMRI T2 analysis revealed that the semitendinosus (ST) muscle suffered severe damage in the three regions measured (proximal, middle, and distal). The biceps femoris short head (BFsh) muscle was also damaged and there were significant differences in the FGC within subjects in the high responders. Conclusion: FGC and serum enzyme levels measured in 10 of the subjects from the sample were consistent with severe muscle damage. However, the results showed a wide range of peak MVC reductions, reflecting different degrees of damage between subjects (high and moderate responders). fMRI analysis confirmed that the ST was the hamstring muscle most damaged by ELCs, with uniform T2 changes across all the measured sections of this muscle. During intensive ELCs, the ST muscle could suffer an anomalous recruitment pattern due to fatigue and damage, placing an excessive load on the BFsh and causing it to perform a synergistic compensation that leads to structural damage. Finally, T2 and MVC values did not correlate for the leg with the smaller FGC decrease in the hamstring muscles, suggesting that long-lasting increases in T2 signals after FGC markers have returned to baseline values might indicate an adaptive process rather than damage.
Collapse
Affiliation(s)
- Gerard Carmona
- Escola Superior de Ciències de la Salut, Pompeu Fabra University, Mataró, Spain.,Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona, Barcelona, Spain
| | - Jurdan Mendiguchía
- Department of Physical Therapy, Zentrum Rehab and Performance Center, Barañain, Spain
| | - Xavier Alomar
- Department of Radiology, Clínica Creu Blanca, Barcelona, Spain
| | - Josep M Padullés
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona, Barcelona, Spain
| | - David Serrano
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona, Barcelona, Spain
| | - Lexa Nescolarde
- Department of Electronic, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Gil Rodas
- Futbol Club Barcelona, Barcelona, Spain
| | - Roser Cussó
- Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | | | - Joan A Cadefau
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona, Barcelona, Spain.,Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Schneidereit D, Nübler S, Prölß G, Reischl B, Schürmann S, Müller OJ, Friedrich O. Optical prediction of single muscle fiber force production using a combined biomechatronics and second harmonic generation imaging approach. LIGHT, SCIENCE & APPLICATIONS 2018; 7:79. [PMID: 30374401 PMCID: PMC6199289 DOI: 10.1038/s41377-018-0080-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 05/22/2023]
Abstract
Skeletal muscle is an archetypal organ whose structure is tuned to match function. The magnitude of order in muscle fibers and myofibrils containing motor protein polymers determines the directed force output of the summed force vectors and, therefore, the muscle's power performance on the structural level. Structure and function can change dramatically during disease states involving chronic remodeling. Cellular remodeling of the cytoarchitecture has been pursued using noninvasive and label-free multiphoton second harmonic generation (SHG) microscopy. Hereby, structure parameters can be extracted as a measure of myofibrillar order and thus are suggestive of the force output that a remodeled structure can still achieve. However, to date, the parameters have only been an indirect measure, and a precise calibration of optical SHG assessment for an exerted force has been elusive as no technology in existence correlates these factors. We engineered a novel, automated, high-precision biomechatronics system into a multiphoton microscope allows simultaneous isometric Ca2+-graded force or passive viscoelasticity measurements and SHG recordings. Using this MechaMorph system, we studied force and SHG in single EDL muscle fibers from wt and mdx mice; the latter serves as a model for compromised force and abnormal myofibrillar structure. We present Ca2+-graded isometric force, pCa-force curves, passive viscoelastic parameters and 3D structure in the same fiber for the first time. Furthermore, we provide a direct calibration of isometric force to morphology, which allows noninvasive prediction of the force output of single fibers from only multiphoton images, suggesting a potential application in the diagnosis of myopathies.
Collapse
Affiliation(s)
- Dominik Schneidereit
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany
| | - Stefanie Nübler
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany
| | - Gerhard Prölß
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Barbara Reischl
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Sebastian Schürmann
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|