1
|
Nakamura M, Huang GN. Why some hearts heal and others don't: The phylogenetic landscape of cardiac regenerative capacity. Semin Cell Dev Biol 2025; 170:103609. [PMID: 40220599 DOI: 10.1016/j.semcdb.2025.103609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
The limited ability of adult humans to replenish lost heart muscle cells after a heart attack has attracted scientists to explore natural heart regeneration capabilities in the animal kingdom. In particular, research has accelerated since the landmark discovery more than twenty years ago that zebrafish can completely regrow myocardial tissue. In this review, we survey heart regeneration studies in diverse model and non-model animals, aiming to gain insights into both the evolutionary trends in cardiac regenerative potential and the variations among closely related species. Differences in cardiomyogenesis, vasculature formation, and the communication between cardiovascular cells and other players have been investigated to understand the cellular basis, although the precise molecular and genetic causes underlying the stark differences in cardiac regenerative potential among certain close cousins remain largely unknown. By studying cardiovascular regeneration and repair in diverse organisms, we may uncover distinct mechanisms, offering new perspectives for advancing regenerative medicine.
Collapse
Affiliation(s)
- Makoto Nakamura
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Amanollahi R, Holman SL, Bertossa MR, Meakin AS, Clifton VL, Thornburg KL, McMillen IC, Wiese MD, Lock MC, Morrison JL. Elevated cortisol concentration in preterm sheep fetuses impacts heart development. Exp Physiol 2025. [PMID: 40296367 DOI: 10.1113/ep092506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/20/2025] [Indexed: 04/30/2025]
Abstract
The prepartum rise in cortisol promotes cardiac development and maturation. Here, we investigated the impact of elevated circulating cortisol during mid-late gestation on cardiac growth and metabolism in fetal sheep. Saline or cortisol (2-3 mg in 4.4 mL/24 h) was infused into the fetal jugular vein from 109 to 116 days gestation (dG, term = 150 dG), and fetal heart tissue was collected at 116 dG. Glucocorticoid concentrations, gene and protein expression were measured in fetal left ventricle (LV) tissue. Intrafetal cortisol infusion increased cardiac cortisol concentration but downregulated the protein abundance of glucocorticoid receptor (GR) isoforms (GRα-A, GR-P, GR-A, GRα-D2 and GRα-D3). The gene and protein expression of markers of cardiac hyperplastic growth (IGF1, IGF-1R, TGFβ and AGT) were downregulated, while a protein marker of DNA replication (proliferating cell nuclear antigen) was upregulated by cortisol infusion. Cardiac protein and/or gene expression of complex I of the electron transport chain, SOD2, GLUT-4 (gene and protein), and phosphorylated IRS-1, were upregulated in response to elevated fetal cortisol concentration. Intrafetal cortisol infusion downregulated gene expression of PDK4, which mediates the metabolic switch from glucose to fatty acid metabolism. Cardiac expression of molecular markers involved in cardiovascular protection (SIRT-1, HO1, LAMP1 and SK1) were also downregulated in the cortisol group. In conclusion, these findings suggest that chronic cortisol exposure in preterm fetuses alters heart development, promoting cardiac maturation and potentially increasing the risk of cardiovascular disease later in life if these changes persist into adulthood.
Collapse
Affiliation(s)
- Reza Amanollahi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation; UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation; UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Melanie R Bertossa
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation; UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ashley S Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation; UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Vicki L Clifton
- Pregnancy and Development Group, Mater Research Institute, University of Queensland, South Brisbane, Queensland, Australia
| | - Kent L Thornburg
- Department of Medicine, Center for Developmental Health, Knight Cardiovascular Institute, Bob and Charlee Moore Institute of Nutrition and Wellness, Oregon Health & Science University, Portland, Oregon, USA
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation; UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Michael D Wiese
- Centre for Pharmaceutical Innovation, Clinical & Health Sciences University of South Australia, Adelaide, South Australia, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation; UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation; UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Roff AJ, Davies AN, Clifton VL, Stark MJ, Tai A, Robinson JL, Hammond SJ, Darby JRT, Meakin AS, Lock MC, Wiese MD, Sharkey DJ, Bischof RJ, Morrison JL, Gatford KL. Pregnancy does not affect progression of mild experimental asthma in sheep. J Physiol 2025; 603:1241-1261. [PMID: 39915955 PMCID: PMC11870047 DOI: 10.1113/jp287583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/15/2025] [Indexed: 03/01/2025] Open
Abstract
Asthma is the most common respiratory condition during pregnancy and increases the risks of adverse pregnancy and perinatal outcomes. Asthma symptoms change in ∼60% of pregnancies, but whether this is due to pregnancy itself is unclear. We tested the hypothesis that physiological changes during pregnancy worsen asthma severity in an ovine experimental model of allergic asthma. Three-year-old Merino ewes were randomly allocated to either control or allergic asthma groups. Asthma was induced through sensitisation and repeated airway challenge with house dust mite allergen. We compared airway function, circulating cytokine profile and airway immune response to allergen challenge throughout the study and airway structure between groups, in non-pregnant (control n = 8, asthma n = 9), singleton-pregnant (control n = 5, asthma n = 8) and twin-pregnant ewes (control n = 6, asthma n = 9). Within non-pregnant animals, transpulmonary pressure at Day 132 of the study was 37% higher in asthmatic than control ewes (P = 0.031), but not different between treatments in singleton-pregnant (P = 0.594) or twin-pregnant (P = 0.074) ewes. Between premating and Day 132, dynamic compliance decreased more in asthmatic than control ewes (P = 0.040), and this change did not differ between litter sizes (P = 0.096). Neither asthma nor pregnancy affected eosinophils in bronchoalveolar lavage or lung tissue. There was no evidence of lung airway remodelling in the cohort. The results of this study suggest that pregnancy does not increase asthma symptoms or severity of mild asthma. KEY POINTS: Asthma severity changes in ∼60% of pregnancies, but whether this is due to pregnancy itself is unclear. Using a sheep model of allergic asthma, we tested the hypothesis that physiological changes during pregnancy worsen asthma severity. Dynamic compliance decreased to a greater extent in asthmatic than control ewes over the course of the study, indicating the development of a mild asthma phenotype, and this decrease was similar in non-pregnant, singleton-pregnant and twin-pregnant ewes. Eosinophil proportions in bronchoalveolar lavage and lung tissue were not affected by either asthma or pregnancy, nor was there evidence of lung airway remodelling in this cohort. Our findings suggest that pregnancy does not increase asthma symptoms or severity of mild asthma.
Collapse
Affiliation(s)
- Andrea J. Roff
- Robinson Research InstituteUniversity of AdelaideAdelaideSAAustralia
- School of BiomedicineUniversity of AdelaideAdelaideSAAustralia
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideAustralia
| | - Andrew N. Davies
- Biomedicine Discovery InstituteMonash UniversityFrankstonVICAustralia
| | - Vicki L. Clifton
- Mater Medical Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Michael J. Stark
- Robinson Research InstituteUniversity of AdelaideAdelaideSAAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - Andrew Tai
- Robinson Research InstituteUniversity of AdelaideAdelaideSAAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
- Women's & Children's HospitalNorth AdelaideSAAustralia
| | - Joshua L. Robinson
- Robinson Research InstituteUniversity of AdelaideAdelaideSAAustralia
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - Sarah J. Hammond
- Robinson Research InstituteUniversity of AdelaideAdelaideSAAustralia
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideAustralia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideAustralia
| | - Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideAustralia
| | - Mitchell C. Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideAustralia
| | - Michael D. Wiese
- Centre for Pharmaceutical Innovation, Clinical & Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - David J. Sharkey
- Robinson Research InstituteUniversity of AdelaideAdelaideSAAustralia
- School of BiomedicineUniversity of AdelaideAdelaideSAAustralia
| | - Robert J. Bischof
- Institute of Innovation, Science and SustainabilityFederation University AustraliaBerwickVICAustralia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideAustralia
| | - Kathryn L. Gatford
- Robinson Research InstituteUniversity of AdelaideAdelaideSAAustralia
- School of BiomedicineUniversity of AdelaideAdelaideSAAustralia
| |
Collapse
|
4
|
Amanollahi R, Holman SL, Bertossa MR, Meakin AS, Thornburg KL, McMillen IC, Wiese MD, Lock MC, Morrison JL. Ontogeny of Fetal Cardiometabolic Pathways: The Potential Role of Cortisol and Thyroid Hormones in Driving the Transition from Preterm to Near-Term Heart Development in Sheep. J Cardiovasc Dev Dis 2025; 12:36. [PMID: 39997470 PMCID: PMC11856455 DOI: 10.3390/jcdd12020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
Understanding hormonal and molecular changes during the transition from preterm to near-term gestation is essential for investigating how pregnancy complications impact fetal heart development and contribute to long-term cardiovascular risks for offspring. This study examines these cardiac changes in fetal sheep, focusing on the changes between 116 days (preterm) and 140 days (near term) of gestation (dG, term = 150) using Western blotting, LC-MS/MS, and histological techniques. We observed a strong correlation between cortisol and T3 (Triiodothyronine) in heart tissue in near-term fetuses, highlighting the role of glucocorticoid signalling in fetal heart maturation. Protein expression patterns in the heart revealed a decrease in multiple glucocorticoid receptor isoforms (GRα-A, GR-P, GR-A, GRα-D2, and GRα-D3), alongside a decrease in IGF-1R (a marker of cardiac proliferative capacity) and p-FOXO1(Thr24) but an increase in PCNA (a marker of DNA replication), indicating a shift towards cardiomyocyte maturation from preterm to near term. The increased expression of proteins regulating mitochondrial biogenesis and OXPHOS complex 4 reflects the known transition from glycolysis to oxidative phosphorylation, essential for meeting the energy demands of the postnatal heart. We also found altered glucose transporter expression, with increased pIRS-1(ser789) and GLUT-4 but decreased GLUT-1 expression, suggesting improved insulin responsiveness as the heart approaches term. Notably, the reduced protein abundance of SIRT-1 and SERCA2, along with increased phosphorylation of cardiac Troponin I(Ser23/24), indicates adaptations for more energy-efficient contraction in the near-term heart. In conclusion, these findings show the complex interplay of hormonal, metabolic, and growth changes that regulate fetal heart development, providing new insights into heart development that are crucial for understanding pathological conditions at birth and throughout life.
Collapse
Affiliation(s)
- Reza Amanollahi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (R.A.); (S.L.H.); (M.R.B.); (A.S.M.); (I.C.M.)
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (R.A.); (S.L.H.); (M.R.B.); (A.S.M.); (I.C.M.)
| | - Melanie R. Bertossa
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (R.A.); (S.L.H.); (M.R.B.); (A.S.M.); (I.C.M.)
| | - Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (R.A.); (S.L.H.); (M.R.B.); (A.S.M.); (I.C.M.)
| | - Kent L. Thornburg
- Department of Medicine, Center for Developmental Health, Knight Cardiovascular Institute, Bob and Charlee Moore Institute of Nutrition and Wellness, Oregon Health & Science University, Portland, OR 97239, USA;
| | - I. Caroline McMillen
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (R.A.); (S.L.H.); (M.R.B.); (A.S.M.); (I.C.M.)
| | - Michael D. Wiese
- Centre for Pharmaceutical Innovation, Clinical & Health Sciences University of South Australia, Adelaide, SA 5001, Australia;
| | - Mitchell C. Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (R.A.); (S.L.H.); (M.R.B.); (A.S.M.); (I.C.M.)
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (R.A.); (S.L.H.); (M.R.B.); (A.S.M.); (I.C.M.)
| |
Collapse
|
5
|
Hassannejad Z, Fendereski K, Daryabari SS, Tanourlouee SB, Dehnavi M, Kajbafzadeh AM. Advancing Myocardial Infarction Treatment: Harnessing Multi-Layered Recellularized Cardiac Patches with Fetal Myocardial Scaffolds and Acellular Amniotic Membrane. Cardiovasc Eng Technol 2024; 15:679-690. [PMID: 39133349 DOI: 10.1007/s13239-024-00744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE Myocardial infarction (MI) is a leading cause of irreversible functional cardiac tissue loss, requiring novel regenerative strategies. This study assessed the potential therapeutic efficacy of recellularized cardiac patches, incorporating fetal myocardial scaffolds with rat fetal cardiomyocytes and acellular human amniotic membrane, in adult Wistar rat models of MI. METHODS Decellularized myocardial tissue was obtained from 14 to 16 week-old human fetuses that had been aborted. Chemical detergents (0.1% EDTA and 0.2% sodium dodecyl sulfate) were used to prepare the fetal extracellular matrix (ECM), which was characterized for bio-scaffold microstructure and biocompatibility via scanning electron microscopy (SEM) and MTT assay, respectively. Neonatal cardiomyocytes were extracted from the ventricles of one-day-old Wistar rats' littermates and characterized through immunostaining against Connexin-43 and α-smooth muscle actin. The isolated cells were seeded onto decellularized tissues and covered with decellularized amniotic membrane. Sixteen healthy adult Wistar rats were systematically allocated to control and MI groups. MI was induced via arterial ligation. Fourteen days post-operation, the MI group was received the engineered patches. Following a two-week post-implantation period, the animals were euthanized, and the hearts were harvested for the graft evaluation. RESULTS Histological analysis, DAPI staining, and ultra-structural examination corroborated the successful depletion of cellular elements, while maintaining the integrity of the fetal ECM and architecture. Subsequent histological and immunohistochemichal (IHC) evaluations confirmed effective cardiomyocyte seeding on the scaffolds. The application of these engineered patches in MI models resulted in increased angiogenesis, reduced fibrosis, and restricted scar tissue formation, with the implanted cardiomyocytes remaining viable at graft sites, indicating prospective in vivo cell viability. CONCLUSIONS This study suggests that multi-layered recellularized cardiac patches are a promising surgical intervention for myocardial infarction, showcasing significant potential by promoting angiogenesis, mitigating fibrosis, and minimizing scar tissue formation in MI models. These features are pivotal for enhancing the therapeutic outcomes in MI patients, focusing on the restoration of the myocardial structure and function post-infarction.
Collapse
Affiliation(s)
- Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran.
| | - Kiarad Fendereski
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Seyedeh Sima Daryabari
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Saman Behboodi Tanourlouee
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Mehrshad Dehnavi
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran.
| |
Collapse
|
6
|
Fiorino E, Rossin D, Vanni R, Aubry M, Giachino C, Rastaldo R. Recent Insights into Endogenous Mammalian Cardiac Regeneration Post-Myocardial Infarction. Int J Mol Sci 2024; 25:11747. [PMID: 39519298 PMCID: PMC11546116 DOI: 10.3390/ijms252111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a critical global health issue and a leading cause of heart failure. Indeed, while neonatal mammals can regenerate cardiac tissue mainly through cardiomyocyte proliferation, this ability is lost shortly after birth, resulting in the adult heart's inability to regenerate after injury effectively. In adult mammals, the adverse cardiac remodelling, which compensates for the loss of cardiac cells, impairs cardiac function due to the non-contractile nature of fibrotic tissue. Moreover, the neovascularisation after MI is inadequate to restore blood flow to the infarcted myocardium. This review aims to synthesise the most recent insights into the molecular and cellular players involved in endogenous myocardial and vascular regeneration, facilitating the identification of mechanisms that could be targeted to trigger cardiac regeneration, reduce fibrosis, and improve functional recovery post-MI. Reprogramming adult cardiomyocytes to regain their proliferative potential, along with the modulation of target cells responsible for neovascularisation, represents promising therapeutic strategies. An updated overview of endogenous mechanisms that regulate both myocardial and coronary vasculature regeneration-including stem and progenitor cells, growth factors, cell cycle regulators, and key signalling pathways-could help identify new critical intervention points for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (E.F.); (D.R.); (R.V.); (M.A.); (C.G.)
| |
Collapse
|
7
|
Zhang S, Lock MC, Tie M, McMillen IC, Botting KJ, Morrison JL. Cardiac programming in the placentally restricted sheep fetus in early gestation. J Physiol 2024; 602:3815-3832. [PMID: 38975864 DOI: 10.1113/jp286702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024] Open
Abstract
Fetal growth restriction (FGR) occurs in 8% of human pregnancies, and the growth restricted newborn is at a greater risk of developing heart disease in later adult life. In sheep, experimental restriction of placental growth (PR) from conception results in FGR, a decrease in cardiomyocyte endowment and an upregulation of pathological hypertrophic signalling in the fetal heart in late gestation. However, there is no change in the expression of markers of cellular proliferation nor in the level of cardiomyocyte apoptosis in the heart of the PR fetus in late gestation. This suggests that FGR arises early in gestation and programs a decrease in cardiomyocyte endowment in early, rather than late, gestation. Here, control and PR fetal sheep were humanely killed at 55 days' gestation (term, 150 days). Fetal body and heart weight were lower in PR compared with control fetuses and there was evidence of sparing of fetal brain growth. While there was no change in the proportion of cardiomyocytes that were proliferating in the early gestation PR heart, there was an increase in measures of apoptosis, and markers of autophagy and pathological hypertrophy in the PR fetal heart. These changes in early gestation highlight that FGR is associated with evidence of early cell death and compensatory hypertrophic responses of cardiomyocytes in the fetal heart. The data suggest that early placental restriction results in a decrease in the pool of proliferative cardiomyocytes in early gestation, which would limit cardiomyocyte endowment in the heart of the PR fetus in late gestation. KEY POINTS: Placental restriction leading to fetal growth restriction (FGR) and chronic fetal hypoxaemia in sheep results in a decrease in cardiomyocyte endowment in late gestation. FGR did not change cardiomyocyte proliferation during early gestation but did result in increased apoptosis and markers of autophagy in the fetal heart, which may result in the decreased endowment of cardiomyocytes observed in late gestation. FGR in early gestation also results in increased hypoxia inducible factor signalling in the fetal heart, which in turn may result in the altered expression of epigenetic regulators, increased expression of insulin-like growth factor 2 and cardiomyocyte hypertrophy during late gestation and after birth.
Collapse
Affiliation(s)
- Song Zhang
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Michelle Tie
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
8
|
Nguyen T, Rosa-Garrido M, Sadek H, Garry DJ, Zhang JJ. Promoting cardiomyocyte proliferation for myocardial regeneration in large mammals. J Mol Cell Cardiol 2024; 188:52-60. [PMID: 38340541 PMCID: PMC11018144 DOI: 10.1016/j.yjmcc.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
From molecular and cellular perspectives, heart failure is caused by the loss of cardiomyocytes-the fundamental contractile units of the heart. Because mammalian cardiomyocytes exit the cell cycle shortly after birth, the cardiomyocyte damage induced by myocardial infarction (MI) typically leads to dilatation of the left ventricle (LV) and often progresses to heart failure. However, recent findings indicate that the hearts of neonatal pigs completely regenerated the cardiomyocytes that were lost to MI when the injury occurred on postnatal day 1 (P1). This recovery was accompanied by increases in the expression of markers for cell-cycle activity in cardiomyocytes. These results suggest that the repair process was driven by cardiomyocyte proliferation. This review summarizes findings from recent studies that found evidence of cardiomyocyte proliferation in 1) the uninjured hearts of newborn pigs on P1, 2) neonatal pig hearts after myocardial injury on P1, and 3) the hearts of pigs that underwent apical resection surgery (AR) on P1 followed by MI on postnatal day 28 (P28). Analyses of cardiomyocyte single-nucleus RNA sequencing data collected from the hearts of animals in these three experimental groups, their corresponding control groups, and fetal pigs suggested that although the check-point regulators and other molecules that direct cardiomyocyte cell-cycle progression and proliferation in fetal, newborn, and postnatal pigs were identical, the mechanisms that activated cardiomyocyte proliferation in response to injury may differ from those that regulate cardiomyocyte proliferation during development.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Hesham Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel J Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jianyi Jay Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Department of Medicine, Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
9
|
Huang H, Huang GN, Payumo AY. Two decades of heart regeneration research: Cardiomyocyte proliferation and beyond. WIREs Mech Dis 2024; 16:e1629. [PMID: 37700522 PMCID: PMC10840678 DOI: 10.1002/wsbm.1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023]
Abstract
Interest in vertebrate cardiac regeneration has exploded over the past two decades since the discovery that adult zebrafish are capable of complete heart regeneration, contrasting the limited regenerative potential typically observed in adult mammalian hearts. Undercovering the mechanisms that both support and limit cardiac regeneration across the animal kingdom may provide unique insights in how we may unlock this capacity in adult humans. In this review, we discuss key discoveries in the heart regeneration field over the last 20 years. Initially, seminal findings revealed that pre-existing cardiomyocytes are the major source of regenerated cardiac muscle, drawing interest into the intrinsic mechanisms regulating cardiomyocyte proliferation. Moreover, recent studies have identified the importance of intercellular interactions and physiological adaptations, which highlight the vast complexity of the cardiac regenerative process. Finally, we compare strategies that have been tested to increase the regenerative capacity of the adult mammalian heart. This article is categorized under: Cardiovascular Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Herman Huang
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Guo N. Huang
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Alexander Y. Payumo
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| |
Collapse
|
10
|
Padhee M, Lock MC, McMillen IC, Zhang S, Botting KJ, Nyengaard JR, MacLaughlin SM, Kleemann DO, Walker SK, Kelly JM, Rudiger SR, Morrison JL. Sex-specific effects of in vitro culture and embryo transfer on cardiac growth in sheep offspring. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 5:100039. [PMID: 39802173 PMCID: PMC11708372 DOI: 10.1016/j.jmccpl.2023.100039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 01/16/2025]
Abstract
Embryo culture with and without human serum supplementation, previously common practice in assisted reproductive technologies (ARTs), have been associated with increased heart weight in early and late gestation in the sheep fetus. The present study aimed to determine whether the effects of embryo culture and transfer on cardiac growth and associated signalling pathways persist after birth. Embryos were either transferred to an intermediate ewe (ET) or cultured in vitro in the absence (IVC) or presence of human serum (IVCHS) and with methionine supplementation (IVCHS+M) for 6 days after mating. Naturally mated (NM) ewes were used as controls. There was an increase in the number of cardiomyocytes in the left ventricle of IVC and IVCHS+M compared to IVCHS lambs, but only in males. There were no differences in birth weight, body weight, relative heart weight, left ventricular weight, signalling molecules involved in hypertrophy, apoptosis or fibrosis at 6 months of age between the treatment groups. However, there was increased protein abundance of signalling molecules involved in ribosomal biogenesis, in male offspring from the IVC and IVCHS+M groups compared to the IVCHS group. In conclusion, the composition of the culture media used for in vitro embryo culture altered the abundance of proteins involved in ribosomal biogenesis as well as cardiomyocyte endowment in a sex specific manner. Our data suggest that male embryos cultured in the presence of human serum leads to molecular and structural changes that may detrimentally impact cardiovascular health across the life-course.
Collapse
Affiliation(s)
- Monalisa Padhee
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mitchell C. Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - I. Caroline McMillen
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Song Zhang
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Kimberley J. Botting
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jens R. Nyengaard
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Severence M. MacLaughlin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - David O. Kleemann
- South Australian Research and Development Institute, Turretfield, South Australia, Australia
| | - Simon K. Walker
- South Australian Research and Development Institute, Turretfield, South Australia, Australia
| | - Jennifer M. Kelly
- South Australian Research and Development Institute, Turretfield, South Australia, Australia
| | - Skye R. Rudiger
- South Australian Research and Development Institute, Turretfield, South Australia, Australia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Kühle H, Cho SKS, Barber N, Goolaub DS, Darby JRT, Morrison JL, Haller C, Sun L, Seed M. Advanced imaging of fetal cardiac function. Front Cardiovasc Med 2023; 10:1206138. [PMID: 37288263 PMCID: PMC10242056 DOI: 10.3389/fcvm.2023.1206138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Over recent decades, a variety of advanced imaging techniques for assessing cardiovascular physiology and cardiac function in adults and children have been applied in the fetus. In many cases, technical development has been required to allow feasibility in the fetus, while an appreciation of the unique physiology of the fetal circulation is required for proper interpretation of the findings. This review will focus on recent advances in fetal echocardiography and cardiovascular magnetic resonance (CMR), providing examples of their application in research and clinical settings. We will also consider future directions for these technologies, including their ongoing technical development and potential clinical value.
Collapse
Affiliation(s)
- Henriette Kühle
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Cardiac and Thoracic Surgery, University Hospital Magdeburg, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Division of Cardiac Surgery, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Steven K. S. Cho
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Nathaniel Barber
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Datta Singh Goolaub
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Janna L. Morrison
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Christoph Haller
- Division of Cardiac Surgery, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Mike Seed
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Dimasi CG, Darby JRT, Morrison JL. A change of heart: understanding the mechanisms regulating cardiac proliferation and metabolism before and after birth. J Physiol 2023; 601:1319-1341. [PMID: 36872609 PMCID: PMC10952280 DOI: 10.1113/jp284137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
Mammalian cardiomyocytes undergo major maturational changes in preparation for birth and postnatal life. Immature cardiomyocytes contribute to cardiac growth via proliferation and thus the heart has the capacity to regenerate. To prepare for postnatal life, structural and metabolic changes associated with increased cardiac output and function must occur. This includes exit from the cell cycle, hypertrophic growth, mitochondrial maturation and sarcomeric protein isoform switching. However, these changes come at a price: the loss of cardiac regenerative capacity such that damage to the heart in postnatal life is permanent. This is a significant barrier to the development of new treatments for cardiac repair and contributes to heart failure. The transitional period of cardiomyocyte growth is a complex and multifaceted event. In this review, we focus on studies that have investigated this critical transition period as well as novel factors that may regulate and drive this process. We also discuss the potential use of new biomarkers for the detection of myocardial infarction and, in the broader sense, cardiovascular disease.
Collapse
Affiliation(s)
- Catherine G. Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| |
Collapse
|
13
|
Basara G, Bahcecioglu G, Ozcebe SG, Ellis BW, Ronan G, Zorlutuna P. Myocardial infarction from a tissue engineering and regenerative medicine point of view: A comprehensive review on models and treatments. BIOPHYSICS REVIEWS 2022; 3:031305. [PMID: 36091931 PMCID: PMC9447372 DOI: 10.1063/5.0093399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 05/12/2023]
Abstract
In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S. Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Present address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556. Author to whom correspondence should be addressed:. Tel.: +1 574 631 8543. Fax: +1 574 631 8341
| |
Collapse
|
14
|
Bae J, Paltzer WG, Mahmoud AI. The Role of Metabolism in Heart Failure and Regeneration. Front Cardiovasc Med 2021; 8:702920. [PMID: 34336958 PMCID: PMC8322239 DOI: 10.3389/fcvm.2021.702920] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Heart failure is the leading cause of death worldwide. The inability of the adult mammalian heart to regenerate following injury results in the development of systolic heart failure. Thus, identifying novel approaches toward regenerating the adult heart has enormous therapeutic potential for adult heart failure. Mitochondrial metabolism is an essential homeostatic process for maintaining growth and survival. The emerging role of mitochondrial metabolism in controlling cell fate and function is beginning to be appreciated. Recent evidence suggests that metabolism controls biological processes including cell proliferation and differentiation, which has profound implications during development and regeneration. The regenerative potential of the mammalian heart is lost by the first week of postnatal development when cardiomyocytes exit the cell cycle and become terminally differentiated. This inability to regenerate following injury is correlated with the metabolic shift from glycolysis to fatty acid oxidation that occurs during heart maturation in the postnatal heart. Thus, understanding the mechanisms that regulate cardiac metabolism is key to unlocking metabolic interventions during development, disease, and regeneration. In this review, we will focus on the emerging role of metabolism in cardiac development and regeneration and discuss the potential of targeting metabolism for treatment of heart failure.
Collapse
Affiliation(s)
- Jiyoung Bae
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Wyatt G Paltzer
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Ahmed I Mahmoud
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
15
|
Hodges MM, Zgheib C, Liechty KW. A Large Mammalian Model of Myocardial Regeneration After Myocardial Infarction in Fetal Sheep. Adv Wound Care (New Rochelle) 2021; 10:174-190. [PMID: 32496979 DOI: 10.1089/wound.2018.0894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Ischemic heart disease accounts for over 20% of all deaths worldwide. As the global population faces a rising burden of chronic diseases, such as hypertension, hyperlipidemia, and diabetes, the prevalence of heart failure due to ischemic heart disease is estimated to increase. We sought to develop a model that may more accurately identify therapeutic targets to mitigate the development of heart failure following myocardial infarction (MI). Approach: Having utilized fetal large mammalian models of scarless wound healing, we proposed a fetal ovine model of myocardial regeneration after MI. Results: Use of this model has identified critical pathways in the mammalian response to MI, which are differentially activated in the regenerative, fetal mammalian response to MI when compared to the reparative, scar-forming, adult mammalian response to MI. Innovation: While the foundation of myocardial regeneration research has been built on zebrafish and rodent models, effective therapies derived from these disease models have been lacking; therefore, we sought to develop a more representative ovine model of myocardial regeneration after MI to improve the identification of therapeutic targets designed to mitigate the development of heart failure following MI. Conclusions: To develop therapies aimed at mitigating this rising burden of disease, it is critical that the animal models we utilize closely reflect the physiology and pathology we observe in human disease. We encourage use of this ovine large mammalian model to facilitate identification of therapies designed to mitigate the growing burden of heart failure.
Collapse
Affiliation(s)
- Maggie M. Hodges
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Kenneth W. Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
16
|
Saini BS, Darby JRT, Marini D, Portnoy S, Lock MC, Yin Soo J, Holman SL, Perumal SR, Wald RM, Windrim R, Macgowan CK, Kingdom JC, Morrison JL, Seed M. An MRI approach to assess placental function in healthy humans and sheep. J Physiol 2021; 599:2573-2602. [PMID: 33675040 DOI: 10.1113/jp281002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/15/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Human placental function is evaluated using non-invasive Doppler ultrasound of umbilical and uterine artery pulsatility indices as measures of resistance in placental vascular beds, while measurement of placental oxygen consumption ( V O 2 ) is only possible during Caesarean delivery. This study shows the feasibility of using magnetic resonance imaging (MRI) in utero to measure blood flow and oxygen content in uterine and umbilical vessels to calculate oxygen delivery to and V O 2 by the gravid uterus, uteroplacenta and fetus. Normal late gestational human uteroplacental V O 2 by MRI was ∼4 ml min-1 kg-1 fetal weight, which was similar to our MRI measurements in sheep and to those previously measured using invasive techniques. Our MRI approach can quantify uteroplacental V O 2 , which involves the quantification of maternal- and fetal-placental blood flows, fetal oxygen delivery and V O 2 , and the oxygen gradient between uterine- and umbilical-venous blood, providing a comprehensive assessment of placental function with clinical potential. ABSTRACT It has not been feasible to perform routine clinical measurement of human placental oxygen consumption ( V O 2 ) and in vitro studies do not reflect true metabolism in utero. Here we propose an MRI method to non-invasively quantify in utero placental and fetal oxygen delivery ( D O 2 ) and V O 2 in healthy humans and sheep. Women (n = 20) and Merino sheep (n = 10; 23 sets of measurements) with singleton pregnancies underwent an MRI in late gestation (36 ± 2 weeks and 128 ± 9 days, respectively; mean ± SD). Blood flow (phase-contrast) and oxygen content (T1 and T2 relaxometry) were measured in the major uterine- and umbilical-placental vessels, allowing calculation of uteroplacental and fetal D O 2 and V O 2 . Maternal D O 2 (ml min-1 kg-1 fetus) to the gravid uterus was similar in humans and sheep (human = 54 ± 15, sheep = 53 ± 21, P = 0.854), while fetal D O 2 (human = 25 ± 4, sheep = 22 ± 5, P = 0.049) was slightly lower in sheep. Uteroplacental and fetal V O 2 (ml min-1 kg-1 fetus; uteroplacental: human = 4.1 ± 1.5, sheep = 3.5 ± 1.9, P = 0.281; fetus: human = 6.8 ± 1.3, sheep = 7.2 ± 1.7, P = 0.426) were similar between species. Late gestational uteroplacental:fetal V O 2 ratio did not change with age (human, P = 0.256; sheep, P = 0.121). Human umbilical blood flow (ml min-1 kg-1 fetus) decreased with advancing age (P = 0.008), while fetal V O 2 was preserved through an increase in oxygen extraction (P = 0.046). By contrast, sheep fetal V O 2 was preserved through stable umbilical flow (ml min-1 kg-1 ; P = 0.443) and oxygen extraction (P = 0.582). MRI derived measurements of uteroplacental and fetal V O 2 between humans and sheep were similar and in keeping with prior data obtained using invasive techniques. Taken together, these data confirm the reliability of our approach, which offers a novel clinical 'placental function test'.
Collapse
Affiliation(s)
- Brahmdeep S Saini
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Davide Marini
- Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Sharon Portnoy
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sunthara R Perumal
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5086, Australia
| | - Rachel M Wald
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, ON, M5G 2N2, Canada
| | - Rory Windrim
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada
| | - Christopher K Macgowan
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - John C Kingdom
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Mike Seed
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.,Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada
| |
Collapse
|
17
|
Comprehensive Characterisation of Left Ventricular Myocardial Function by Cardiac Magnetic Resonance Feature Tracking in an Adolescent Sheep Model of Myocardial Infarction. Heart Lung Circ 2021. [DOI: 10.1016/j.hlc.2021.06.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Lock MC, Tellam RL, Darby JRT, Soo JY, Brooks DA, Seed M, Selvanayagam JB, Morrison JL. Identification of Novel miRNAs Involved in Cardiac Repair Following Infarction in Fetal and Adolescent Sheep Hearts. Front Physiol 2020; 11:614. [PMID: 32587529 PMCID: PMC7298149 DOI: 10.3389/fphys.2020.00614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/15/2020] [Indexed: 01/14/2023] Open
Abstract
Aims Animal models have been used to show that there are critical molecular mechanisms that can be activated to induce myocardial repair at specific times in development. For example, specific miRNAs are critical for regulating the response to myocardial infarction (MI) and improving the response to injury. Manipulating these miRNAs in small animal models provides beneficial effects post-MI; however it is not known if these miRNAs are regulated similarly in large mammals. Studying a large animal where the timing of heart development in relation to birth is similar to humans may provide insights to better understand the capacity to repair a developing mammalian heart and its application to the adult heart. Methods We used a sheep model of MI that included permanent ligation of the left anterior descending (LAD) coronary artery. Surgery was performed on fetuses (at 105 days gestation when all cardiomyocytes are mononucleated and proliferative) and adolescent sheep (at 6 months of age when all cardiomyocytes contribute to heart growth by hypertrophy). A microarray was utilized to determine the expression of known miRNAs within the damaged and undamaged tissue regions in fetal and adolescent hearts after MI. Results 73 miRNAs were up-regulated and 58 miRNAs were down-regulated significantly within the fetal infarct compared to remote cardiac samples. From adolescent hearts 69 non-redundant miRNAs were up-regulated and 63 miRNAs were down-regulated significantly in the infarct area compared to remote samples. Opposite differential expression profiles of 10 miRNAs within tissue regions (Infarct area, Border zone and Remote area of the left ventricle) occurred between the fetuses and adolescent sheep. These included miR-558 and miR-1538, which when suppressed using LNA anti-miRNAs in cell culture, increased cardiomyoblast proliferation. Conclusion There were significant differences in miRNA responses in fetal and adolescent sheep hearts following a MI, suggesting that the modulation of novel miRNA expression may have therapeutic potential, by promoting proliferation or repair in a damaged heart.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Doug A Brooks
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.,Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mike Seed
- Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Joseph B Selvanayagam
- Cardiac Imaging Research, Department of Heart Health, South Australian Health & Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
19
|
Cho SKS, Darby JRT, Saini BS, Lock MC, Holman SL, Lim JM, Perumal SR, Macgowan CK, Morrison JL, Seed M. Feasibility of ventricular volumetry by cardiovascular MRI to assess cardiac function in the fetal sheep. J Physiol 2020; 598:2557-2573. [PMID: 32378201 DOI: 10.1113/jp279054] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS The application of fetal cardiovascular magnetic resonance imaging (CMR) to assess fetal cardiovascular physiology and cardiac function through the quantification of ventricular volumes has previously been investigated, but the approach has not yet been fully validated. Ventricular output measurements calculated from heart rate and stroke volumes (SV) of the right and left ventricles measured by ventricular volumetry (VV) exhibited a high level of agreement with phase-contrast (PC) blood flow measurements in the main pulmonary artery and ascending aorta, respectively. Ejection fraction of the right ventricle, which is lower than that of the left ventricle in postnatal subjects, was similar to the left ventricular ejection fraction in the fetus; probably due to the different loading conditions present in the fetal circulation. This study provides evidence to support the reliability of VV in the sheep fetus, providing evidence for its use in animal models of human diseases affecting the fetal circulation. ABSTRACT The application of ventricular volumetry (VV) by cardiovascular magnetic resonance imaging (CMR) in the fetus remains challenging due to the small size of the fetal heart and high heart rate. The reliability of this technique in utero has not yet been established. The aim of this study was to assess the feasibility and reliability of VV in a fetal sheep model of human pregnancy. Right and left ventricular outputs by stroke volume (SV) measured using VV were compared with 2D phase-contrast (PC) CMR measurements of blood flow in the main pulmonary artery (MPA) and ascending aorta (AAo). At 124-140 days (d) gestation, singleton bearing Merino ewes underwent CMR under general anaesthesia using fetal femoral artery catheters, implanted at 109-117d, to trigger cine steady state free precession acquisitions of ventricular short-axis stacks. The short-axis cine stacks were segmented at end-systole and end-diastole, yielding right and left ventricular SV, ejection fraction, and cardiac outputs (SV × heart rate). PC cine acquisitions of MPA and AAo were analysed to measure blood flow, which served as comparators for the right and left cardiac outputs by VV. There was good correlation and agreement between VV and PC measures of ventricular outputs with no significant bias (r2 = 0.926; P < 0.0001; Bias = -4.7 ± 10.5 ml min-1 kg-1 ; 95% limits of agreement: -15.9 to 25.2 ml min-1 kg-1 ). This study validates fetal VV by CMR in a large animal model of human pregnancy and provides preliminary reference values of fetal sheep right and left ventricles in late gestation.
Collapse
Affiliation(s)
- Steven K S Cho
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia.,Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Brahmdeep S Saini
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Jessie Mei Lim
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Sunthara Rajan Perumal
- Preclinical, Imaging & Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Christopher K Macgowan
- Translational Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Mike Seed
- Division of Cardiology, Hospital for Sick Children, Toronto, Canada.,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Saini BS, Darby JRT, Portnoy S, Sun L, van Amerom J, Lock MC, Soo JY, Holman SL, Perumal SR, Kingdom JC, Sled JG, Macgowan CK, Morrison JL, Seed M. Normal human and sheep fetal vessel oxygen saturations by T2 magnetic resonance imaging. J Physiol 2020; 598:3259-3281. [PMID: 32372463 DOI: 10.1113/jp279725] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Human fetal Doppler ultrasound and invasive blood gas measurements obtained by cordocentesis or at the time of delivery reveal similarities with sheep (an extensively used model for human fetal cardiovascular physiology). Oxygen saturation (SO2 ) measurements in human fetuses have been limited to the umbilical and scalp vessels, providing little information about normal regional SO2 differences in the fetus. Blood T2 MRI relaxometry presents a non-invasive measure of SO2 in the major fetal vessels. This study presents the first in vivo validation of fetal vessel T2 oximetry against the in vitro T2-SO2 relationship using catheterized sheep fetuses and compares the normal SO2 in the major vessels between the human and sheep fetal circulations. Human fetal vessel SO2 by T2 MRI confirms many similarities with the sheep fetal circulation and is able to demonstrate regional differences in SO2 ; in particular the significantly higher SO2 in the left versus right heart. ABSTRACT Blood T2 magnetic resonance imaging (MRI) relaxometry non-invasively measures oxygen saturation (SO2 ) in major vessels but has not been validated in fetuses in vivo. We compared the blood T2-SO2 relationship in vitro (tubes) and in vivo (vessels) in sheep, and measured SO2 across the normal human and sheep fetal circulations by T2. Singleton pregnant ewes underwent surgery to implant vascular catheters. In vitro and in vivo sheep blood T2 measurements were related to corresponding SO2 measured using a blood gas analyser, as well as relating T2 and SO2 of human fetal blood in vitro. MRI oximetry was performed in the major vessels of 30 human fetuses at 36 weeks (term, 40 weeks) and 10 fetal sheep (125 days; term, 150 days). The fidelity of in vivo fetal T2 oximetry was confirmed through comparison of in vitro and in vivo sheep blood T2-SO2 relationships (P = 0.1). SO2 was similar between human and sheep fetuses, as was the fetal oxygen extraction fraction (human, 33 ± 11%; sheep, 34 ± 7%; P = 0.798). The presence of streaming in the human fetal circulation was demonstrated by the SO2 gradient between the ascending aorta (68 ± 10%) and the main pulmonary artery (49 ± 9%; P < 0.001). Human and sheep fetal vessel MRI oximetry based on T2 is a validated approach that confirms the presence of streaming of umbilical venous blood towards the heart and brain. Streaming is important in ensuring oxygen delivery to these organs and its disruption may have important implications for organ development, especially in conditions such as congenital heart disease and fetal growth restriction.
Collapse
Affiliation(s)
- Brahmdeep S Saini
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sharon Portnoy
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Liqun Sun
- Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Joshua van Amerom
- Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sunthara R Perumal
- Preclinical Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5086, Australia
| | - John C Kingdom
- Department of Obstetrics and Gynaecology, Maternal-Fetal Medicine, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, M5G 1E2, Canada
| | - John G Sled
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Christopher K Macgowan
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Mike Seed
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, M5G 1E2, Canada
| |
Collapse
|
21
|
Lock MC, Tellam RL, Darby JRT, Soo JY, Brooks DA, Macgowan CK, Selvanayagam JB, Porrello ER, Seed M, Keller-Wood M, Morrison JL. Differential gene responses 3 days following infarction in the fetal and adolescent sheep heart. Physiol Genomics 2020; 52:143-159. [PMID: 31961761 DOI: 10.1152/physiolgenomics.00092.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
There are critical molecular mechanisms that can be activated to induce myocardial repair, and in humans this is most efficient during fetal development. The timing of heart development in relation to birth and the size/electrophysiology of the heart are similar in humans and sheep, providing a model to investigate the repair capacity of the mammalian heart and how this can be applied to adult heart repair. Myocardial infarction was induced by ligation of the left anterior descending coronary artery in fetal (105 days gestation when cardiomyocytes are proliferative) and adolescent sheep (6 mo of age when all cardiomyocytes have switched to an adult phenotype). An ovine gene microarray was used to compare gene expression in sham and infarcted (remote, border and infarct areas) cardiac tissue from fetal and adolescent hearts. The gene response to myocardial infarction was less pronounced in fetal compared with adolescent sheep hearts and there were unique gene responses at each age. There were also region-specific changes in gene expression between each age, in the infarct tissue, tissue bordering the infarct, and tissue remote from the infarction. In total, there were 880 genes that responded to MI uniquely in the adolescent samples compared with 170 genes in the fetal response, as well as 742 overlap genes that showed concordant direction of change responses to infarction at both ages. In response to myocardial infarction, there were specific changes in genes within pathways of mitochondrial oxidation, muscle contraction, and hematopoietic cell lineages, suggesting that the control of energy utilization and immune function are critical for effective heart repair. The more restricted gene response in the fetus may be an important factor in its enhanced capacity for cardiac repair.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | - Joseph B Selvanayagam
- Cardiac Imaging Research Group, Department of Heart Health, South Australian Health & Medical Research Institute, and Flinders University, Adelaide, South Australia, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mike Seed
- Hospital for Sick Children, Division of Cardiology, Toronto, Ontario, Canada
| | | | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
22
|
Duan AQ, Darby JRT, Soo JY, Lock MC, Zhu MY, Flynn LV, Perumal SR, Macgowan CK, Selvanayagam JB, Morrison JL, Seed M. Feasibility of phase-contrast cine magnetic resonance imaging for measuring blood flow in the sheep fetus. Am J Physiol Regul Integr Comp Physiol 2017; 317:R780-R792. [PMID: 29351431 DOI: 10.1152/ajpregu.00273.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phase-contrast cine MRI (PC-MRI) is the gold-standard noninvasive technique for measuring vessel blood flow and has previously been applied in the human fetal circulation. We aimed to assess the feasibility of using PC-MRI to define the distribution of the fetal circulation in sheep. Fetuses were catheterized at 119-120 days of gestation (term, 150 days) and underwent MRI at ∼123 days of gestation under isoflurane anesthesia, ventilated at a FIO2 of 1.0. PC-MRI was performed using a fetal arterial blood pressure catheter signal for cardiac triggering. Blood flows were measured in the major fetal vessels, including the main pulmonary artery, ascending and descending aorta, superior vena cava, ductus arteriosus, left and right pulmonary arteries, umbilical vein, ductus venosus, and common carotid artery and were indexed to estimated fetal weight. The combined ventricular output, pulmonary blood flow, and flow across the foramen ovale were calculated from vessel flows. Intraobserver and interobserver agreement and reproducibility was assessed. Blood flow measurements were successfully obtained in 61 out of 74 vessels (82.4%) interrogated in 9 fetuses. There was good intraobserver [R = 0.998, P < 0.0001; intraclass correlation (ICC) = 0.997] and interobserver agreement (R = 0.996, P < 0.0001; ICC = 0.996). Repeated MRI measurements showed good reproducibility (R = 0.989, P = 0.0002; ICC = 0.990). We conclude that PC-MRI using fetal catheters for gating triggers is feasible in the major vessels of late gestation fetal sheep. This approach may provide a useful new tool for assessing the circulatory characteristics of fetal sheep models of human disease, including fetal growth restriction and congenital heart disease.
Collapse
Affiliation(s)
- An Qi Duan
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Meng Yuan Zhu
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lucy V Flynn
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Sunthara Rajan Perumal
- Preclinical, Imaging, and Research Laboratories, South Australian Health and Medical Research Institute, Gilles Plains, Adelaide, Australia
| | - Christopher K Macgowan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Division of Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Mike Seed
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|