1
|
Liu G, Luo L, Yao L, Wang C, Sun X, Du C. Examining Carotenoid Metabolism Regulation and Its Role in Flower Color Variation in Brassica rapa L. Int J Mol Sci 2024; 25:11164. [PMID: 39456950 PMCID: PMC11508860 DOI: 10.3390/ijms252011164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Carotenoids are vital organic pigments that determine the color of flowers, roots, and fruits in plants, imparting them yellow, orange, and red hues. This study comprehensively analyzes carotenoid accumulation in different tissues of the Brassica rapa mutant "YB1", which exhibits altered flower and root colors. Integrating physiological and biochemical assessments, transcriptome profiling, and quantitative metabolomics, we examined carotenoid accumulation in the flowers, roots, stems, and seeds of YB1 throughout its growth and development. The results indicated that carotenoids continued to accumulate in the roots and stems of YBI, especially in its cortex, throughout plant growth and development; however, the carotenoid levels in the petals decreased with progression of the flowering stage. In total, 54 carotenoid compounds were identified across tissues, with 30 being unique metabolites. Their levels correlated with the expression pattern of 22 differentially expressed genes related to carotenoid biosynthesis and degradation. Tissue-specific genes, including CCD8 and NCED in flowers and ZEP in the roots and stems, were identified as key regulators of color variations in different plant parts. Additionally, we identified genes in the seeds that regulated the conversion of carotenoids to abscisic acid. In conclusion, this study offers valuable insights into the regulation of carotenoid metabolism in B. rapa, which can guide the selection and breeding of carotenoid-rich varieties.
Collapse
Affiliation(s)
- Guomei Liu
- Agricultural College, Shanxi Agricultural University, Jinzhong 030801, China;
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China; (L.L.); (L.Y.); (C.W.); (X.S.)
| | - Liuyan Luo
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China; (L.L.); (L.Y.); (C.W.); (X.S.)
| | - Lin Yao
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China; (L.L.); (L.Y.); (C.W.); (X.S.)
| | - Chen Wang
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China; (L.L.); (L.Y.); (C.W.); (X.S.)
| | - Xuan Sun
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China; (L.L.); (L.Y.); (C.W.); (X.S.)
| | - Chunfang Du
- Agricultural College, Shanxi Agricultural University, Jinzhong 030801, China;
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China; (L.L.); (L.Y.); (C.W.); (X.S.)
| |
Collapse
|
2
|
Liu C, Xu Q, Liu Y, Song M, Cao X, Du X, Yan H. Metabolomic Analysis of Carotenoids Biosynthesis by Sphingopyxis sp. USTB-05. Molecules 2024; 29:4235. [PMID: 39275082 PMCID: PMC11397044 DOI: 10.3390/molecules29174235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Carotenoids belonging to the class of tetraterpenoids have extensive applications in medicine, food, nutrition, cosmetics, and feed. Among them, lutein and zeaxanthin can prevent macular degeneration in the elderly, which is very important for protecting vision. Here, we introduce the first metabolomic analysis of Sphingopyxis sp. USTB-05, aiming to shed light on the biosynthesis of carotenoids. Sphingopyxis sp. USTB-05 has the complete methylerythritol 4-phosphate (MEP) pathway and carotenoid biosynthesis pathway, especially involved in the bioconversion of zeaxanthin, violaxanthin, and astaxanthin. Metabolomic profiling identified seven carotenes and six xanthophylls synthesized by Sphingopyxis sp. USTB-05. Zeaxanthin, in particular, was found to be the most abundant, with a content of 37.1 µg/g dry cells. Collectively, the results presented herein greatly enhance our understanding of Sphingopyxis sp. USTB-05 in carotenoids biosynthesis, and thus further accelerate its fundamental molecular investigations and biotechnological applications.
Collapse
Affiliation(s)
- Chao Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qianqian Xu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Meijie Song
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoyu Cao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinyue Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Juteršek M, Gerasymenko IM, Petek M, Haumann E, Vacas S, Kallam K, Gianoglio S, Navarro-Llopis V, Heethoff M, Fuertes IN, Patron N, Orzáez D, Gruden K, Warzecha H, Baebler Š. Transcriptome-informed identification and characterization of Planococcus citri cis- and trans-isoprenyl diphosphate synthase genes. iScience 2024; 27:109441. [PMID: 38523795 PMCID: PMC10960109 DOI: 10.1016/j.isci.2024.109441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Insect physiology and reproduction depend on several terpenoid compounds, whose biosynthesis is mainly unknown. One enigmatic group of insect monoterpenoids are mealybug sex pheromones, presumably resulting from the irregular coupling activity of unidentified isoprenyl diphosphate synthases (IDSs). Here, we performed a comprehensive search for IDS coding sequences of the pest mealybug Planococcus citri. We queried the available genomic and newly generated short- and long-read P. citri transcriptomic data and identified 18 putative IDS genes, whose phylogenetic analysis indicates several gene family expansion events. In vitro testing confirmed regular short-chain coupling activity with five gene products. With the candidate with highest IDS activity, we also detected low amounts of irregular coupling products, and determined amino acid residues important for chain-length preference and irregular coupling activity. This work therefore provides an important foundation for deciphering terpenoid biosynthesis in mealybugs, including the sex pheromone biosynthesis in P. citri.
Collapse
Affiliation(s)
- Mojca Juteršek
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Iryna M. Gerasymenko
- Plant Biotechnology and Metabolic Engineering, Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | - Marko Petek
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Elisabeth Haumann
- Plant Biotechnology and Metabolic Engineering, Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | - Sandra Vacas
- Instituto Agroforestal del Mediterráneo-CEQA, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain
| | - Kalyani Kallam
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk NR4 7UZ, UK
| | - Silvia Gianoglio
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València (UPV), Valencia, Spain
| | - Vicente Navarro-Llopis
- Instituto Agroforestal del Mediterráneo-CEQA, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain
| | - Michael Heethoff
- Animal Evolutionary Ecology, Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | | | - Nicola Patron
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk NR4 7UZ, UK
| | - Diego Orzáez
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València (UPV), Valencia, Spain
| | - Kristina Gruden
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Heribert Warzecha
- Plant Biotechnology and Metabolic Engineering, Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | - Špela Baebler
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Katsavou E, Sarafoglou C, Balabanidou V, Skoufa E, Nauen R, Linka M, Geibel S, Denecke S, Vontas J. Characterisation of lepidopteran geranylgeranyl diphosphate synthase as a putative pesticide target. INSECT MOLECULAR BIOLOGY 2024; 33:147-156. [PMID: 37962063 DOI: 10.1111/imb.12885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023]
Abstract
Geranylgeranyl pyrophosphate (diphosphate) synthase (GGPPS) plays an important role in various physiological processes in insects, such as isoprenoid biosynthesis and protein prenylation. Here, we functionally characterised the GGPPS from the major agricultural lepidopteran pests Spodoptera frugiperda and Helicoverpa armigera. Partial disruption of GGPPS by CRISPR in S. frugiperda decreased embryo hatching rate and larval survival, suggesting that this gene is essential. Functional expression in vitro of Helicoverpa armigera GGPPS in Escherichia coli revealed a catalytically active enzyme. Next, we developed and optimised an enzyme assay to screen for potential inhibitors, such as the zoledronate and the minodronate, which showed a dose-dependent inhibition. Phylogenetic analysis of GGPPS across insects showed that GGPPS is highly conserved but also revealed several residues likely to be involved in substrate binding, which were substantially different in bee pollinator and human GGPPS. Considering the essentiality of GGPPS and its putative binding residue variability qualifies a GGPPS as a novel pesticide target. The developed assay may contribute to the identification of novel insecticide leads.
Collapse
Affiliation(s)
- Evangelia Katsavou
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Chara Sarafoglou
- Department of Biology, University of Crete, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Evangelia Skoufa
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Ralf Nauen
- R&D Pest Control, Crop Science Division, Bayer AG, Monheim am Rhein, Germany
| | - Marc Linka
- R&D Pest Control, Crop Science Division, Bayer AG, Monheim am Rhein, Germany
| | - Sven Geibel
- R&D Pest Control, Crop Science Division, Bayer AG, Monheim am Rhein, Germany
| | - Shane Denecke
- Department of Biology, University of Crete, Crete, Greece
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Vontas
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
- Department of Biology, University of Crete, Crete, Greece
| |
Collapse
|
5
|
Yu H, Chen B, Li J, Dong N, Chang X, Wang J, Peng H, Zha L, Gui S. Identification and functional characterization of two trans-isopentenyl diphosphate synthases and one squalene synthase involved in triterpenoid biosynthesis in Platycodon grandiflorus. PLANTA 2023; 258:115. [PMID: 37943378 DOI: 10.1007/s00425-023-04273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
MAIN CONCLUSION Two trans-isopentenyl diphosphate synthase and one squalene synthase genes were identified and proved to be involved in the triterpenoid biosynthesis in Platycodon grandiflorus. Platycodon grandiflorus is a commonly used traditional Chinese medicine. The main bioactive compounds of P. grandiflorus are triterpenoid saponins. The biosynthetic pathway of triterpenoid saponins in P. grandiflorus has been preliminarily explored. However, limited functional information on related genes has been reported. A total of three trans-isopentenyl diphosphate synthases (trans-IDSs) genes (PgFPPS, PgGGPPS1 and PgGGPPS2) and one squalene synthase (SQS) gene (PgSQS) in P. grandiflorus were screened and identified from transcriptome dataset. Subcellular localization of the proteins was defined based on the analysis of GFP-tagged. The activity of genes was verified in Escherichia coli, demonstrating that recombinant PgFPPS catalysed the production of farnesyl diphosphate. PgGGPPS1 produced geranylgeranyl diphosphate, whereas PgGGPPS2 did not exhibit catalytic activity. By structural identification of encoding genes, a transmembrane region was found at the C-terminus of the PgSQS gene, which produced an insoluble protein when expressed in E. coli but showed no apparent effect on the enzyme function. Furthermore, some triterpenoid saponin synthesis-related genes were discovered by combining the component content and the gene expression assays at the five growth stages of P. grandiflorus seedlings. The accumulation of active components in P. grandiflorus was closely associated with the expression level of genes related to the synthesis pathway.
Collapse
Affiliation(s)
- Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Bowen Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Nan Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Huasheng Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU057), National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China.
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Anhui University of Chinese Medicine, Hefei, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China.
| |
Collapse
|
6
|
Ducker C, French S, Pathak M, Taylor H, Sainter A, Askem W, Dreveny I, Santana AEG, Pickett JA, Oldham NJ. Characterisation of geranylgeranyl diphosphate synthase from the sandfly Lutzomyia longipalpis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 161:104001. [PMID: 37619821 DOI: 10.1016/j.ibmb.2023.104001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/02/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Leishmaniasis is a debilitating and often fatal neglected tropical disease. Males from sub-populations of the Leishmania-harbouring sandfly, Lutzomyia longipalpis, produce the diterpene sex and aggregation pheromone, sobralene, for which geranylgeranyl diphosphate (GGPP) is the likely isoprenoid precursor. We have identified a GGPP synthase (lzGGPPS) from L. longipalpis, which was recombinantly expressed in bacteria and purified for functional and kinetic analysis. In vitro enzymatic assays using LC-MS showed that lzGGPPS is an active enzyme, capable of converting substrates dimethylallyl diphosphate (DMAPP), (E)-geranyl diphosphate (GPP), (E,E)-farnesyl diphosphate (FPP) with co-substrate isopentenyl diphosphate (IPP) into (E,E,E)-GGPP, while (Z,E)-FPP was also accepted with low efficacy. Comparison of metal cofactors for lzGGPPS highlighted Mg2+ as most efficient, giving increased GGPP output when compared against other divalent metal ions tested. In line with previously characterised GGPPS enzymes, GGPP acted as an inhibitor of lzGGPPS activity. The molecular weight in solution of lzGGPPS was determined to be ∼221 kDa by analytical SEC, suggesting a hexameric assembly, as seen in the human enzyme, and representing the first assessment of GGPPS quaternary structure in insects.
Collapse
Affiliation(s)
- Charles Ducker
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stanley French
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Monika Pathak
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Harry Taylor
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Adam Sainter
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - William Askem
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ingrid Dreveny
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | - John A Pickett
- School of Chemistry, Cardiff University, Main Building, Park Pl, Cardiff, CF10 3AT, UK
| | - Neil J Oldham
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
7
|
Muehlebach ME, Holstein SA. Geranylgeranyl diphosphate synthase: Role in human health, disease and potential therapeutic target. Clin Transl Med 2023; 13:e1167. [PMID: 36650113 PMCID: PMC9845123 DOI: 10.1002/ctm2.1167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthesis pathway, is responsible for the production of geranylgeranyl pyrophosphate (GGPP). GGPP serves as a substrate for the post-translational modification (geranylgeranylation) of proteins, including those belonging to the Ras superfamily of small GTPases. These proteins play key roles in signalling pathways, cytoskeletal regulation and intracellular transport, and in the absence of the prenylation modification, cannot properly localise and function. Aberrant expression of GGDPS has been implicated in various human pathologies, including liver disease, type 2 diabetes, pulmonary disease and malignancy. Thus, this enzyme is of particular interest from a therapeutic perspective. Here, we review the physiological function of GGDPS as well as its role in pathophysiological processes. We discuss the current GGDPS inhibitors under development and the therapeutic implications of targeting this enzyme.
Collapse
Affiliation(s)
- Molly E. Muehlebach
- Cancer Research Doctoral ProgramUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sarah A. Holstein
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
8
|
Elston KM, Maeda GP, Perreau J, Barrick JE. Addressing the challenges of symbiont-mediated RNAi in aphids. PeerJ 2023; 11:e14961. [PMID: 36874963 PMCID: PMC9983426 DOI: 10.7717/peerj.14961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/05/2023] [Indexed: 03/06/2023] Open
Abstract
Because aphids are global agricultural pests and models for bacterial endosymbiosis, there is a need for reliable methods to study and control their gene function. However, current methods available for aphid gene knockout and knockdown of gene expression are often unreliable and time consuming. Techniques like CRISPR-Cas genome editing can take several months to achieve a single gene knockout because they rely on aphids going through a cycle of sexual reproduction, and aphids often lack strong, consistent levels of knockdown when fed or injected with molecules that induce an RNA interference (RNAi) response. In the hopes of addressing these challenges, we attempted to adapt a new method called symbiont-mediated RNAi (smRNAi) for use in aphids. smRNAi involves engineering a bacterial symbiont of the insect to continuously supply double-stranded RNA (dsRNA) inside the insect body. This approach has been successful in thrips, kissing bugs, and honeybees. We engineered the laboratory Escherichia coli strain HT115 and the native aphid symbiont Serratia symbiotica CWBI-2.3T to produce dsRNA inside the gut of the pea aphid (Acyrthosiphon pisum) targeting salivary effector protein (C002) or ecdysone receptor genes. For C002 assays, we also tested co-knockdown with an aphid nuclease (Nuc1) to reduce RNA degradation. However, we found that smRNAi was not a reliable method for aphid gene knockdown under our conditions. We were unable to consistently achieve the expected phenotypic changes with either target. However, we did see indications that elements of the RNAi pathway were modestly upregulated, and expression of some targeted genes appeared to be somewhat reduced in some trials. We conclude with a discussion of the possible avenues through which smRNAi, and aphid RNAi in general, could be improved in the future.
Collapse
Affiliation(s)
- Katherine M Elston
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, United States
| | - Gerald P Maeda
- Department of Integrative Biology, The University of Texas, Austin, Texas, United States
| | - Julie Perreau
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, United States.,Department of Integrative Biology, The University of Texas, Austin, Texas, United States
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, United States
| |
Collapse
|
9
|
Microalgae as a Source of Valuable Phenolic Compounds and Carotenoids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248852. [PMID: 36557985 PMCID: PMC9783697 DOI: 10.3390/molecules27248852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Microalgae are photosynthetic, eukaryotic organisms that are widely used in the industry as cell factories to produce valuable substances, such as fatty acids (polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), sterols (sitosterol), recombinant therapeutic proteins, carbohydrates, vitamins, phenolic compounds (gallic acid, quercetin), and pigments (β-carotene, astaxanthin, lutein). Phenolic compounds and carotenoids, including those extracted from microalgae, possess beneficial bioactivities such as antioxidant capacity, antimicrobial and immunomodulatory activities, and direct health-promoting effects, which may alleviate oxidative stress and age-related diseases, including cardiovascular diseases or diabetes. The production of valuable microalgal metabolites can be modified by using abiotic stressors, such as light, salinity, nutrient availability, and xenobiotics (for instance, phytohormones).
Collapse
|
10
|
Microbial co-occurrence network in the rhizosphere microbiome: its association with physicochemical properties and soybean yield at a regional scale. J Microbiol 2022; 60:986-997. [DOI: 10.1007/s12275-022-2363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
11
|
Abstract
Carotenoids constitute an essential dietary component of animals and other non-carotenogenic species which use these pigments in both their modified and unmodified forms. Animals utilize uncleaved carotenoids to mitigate light damage and oxidative stress and to signal fitness and health. Carotenoids also serve as precursors of apocarotenoids including retinol, and its retinoid metabolites, which carry out essential functions in animals by forming the visual chromophore 11-cis-retinaldehyde. Retinoids, such as all-trans-retinoic acid, can also act as ligands of nuclear hormone receptors. The fact that enzymes and biochemical pathways responsible for the metabolism of carotenoids in animals bear resemblance to the ones in plants and other carotenogenic species suggests an evolutionary relationship. We will explore some of the modes of transmission of carotenoid genes from carotenogenic species to metazoans. This apparent relationship has been successfully exploited in the past to identify and characterize new carotenoid and retinoid modifying enzymes. We will review approaches used to identify putative animal carotenoid enzymes, and we will describe methods used to functionally validate and analyze the biochemistry of carotenoid modifying enzymes encoded by animals.
Collapse
Affiliation(s)
- Alexander R Moise
- Northern Ontario School of Medicine, Sudbury, ON, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada.
| | - Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
12
|
Ding BY, Xie XC, Shang F, Smagghe G, Niu JZ, Wang JJ. Characterization of carotenoid biosynthetic pathway genes in the pea aphid (Acyrthosiphon pisum) revealed by heterologous complementation and RNA interference assays. INSECT SCIENCE 2022; 29:645-656. [PMID: 34399028 DOI: 10.1111/1744-7917.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Carotenoids are involved in many essential physiological functions and are produced from geranylgeranyl pyrophosphate through synthase, desaturase, and cyclase activities. In the pea aphid (Acyrthosiphon pisum), the duplication of carotenoid biosynthetic genes, including carotenoid synthases/cyclases (ApCscA-C) and desaturases (ApCdeA-D), through horizontal gene transfer from fungi has been detected, and ApCdeB has known dehydrogenation functions. However, whether other genes contribute to aphid carotenoid biosynthesis, and its specific regulatory pathway, remains unclear. In the current study, functional analyses of seven genes were performed using heterologous complementation and RNA interference assays. The bifunctional enzymes ApCscA-C were responsible for the synthase of phytoene, and ApCscC may also have a cyclase activity. ApCdeA, ApCdeC, and ApCdeD had diverse dehydrogenation functions. ApCdeA catalyzed the enzymatic conversion of phytoene to neurosporene (three-step product), ApCdeC catalyzed the enzymatic conversion of phytoene to ζ-carotene (two-step product), and ApCdeD catalyzed the enzymatic conversion of phytoene to lycopene (four-step product). Silencing of ApCscs reduced the expression levels of ApCdes, and silencing these carotenoid biosynthetic genes reduced the α-, β-, and γ-carotene levels, as well as the total carotenoid level. The results suggest that these genes were activated and led to carotenoid biosynthesis in the pea aphid.
Collapse
Affiliation(s)
- Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest, Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiu-Cheng Xie
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest, Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest, Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest, Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest, Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest, Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Carotenoid Biosynthetic Genes in Cabbage: Genome-Wide Identification, Evolution, and Expression Analysis. Genes (Basel) 2021; 12:genes12122027. [PMID: 34946976 PMCID: PMC8701174 DOI: 10.3390/genes12122027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
Carotenoids are natural functional pigments produced by plants and microorganisms and play essential roles in human health. Cabbage (Brassica oleracea L. var. capitata L.) is an economically important vegetable in terms of production and consumption. It is highly nutritious and contains β-carotene, lutein, and other antioxidant carotenoids. Here, we systematically analyzed carotenoid biosynthetic genes (CBGs) on the whole genome to understand the carotenoid biosynthetic pathway in cabbage. In total, 62 CBGs were identified in the cabbage genome, which are orthologs of 47 CBGs in Arabidopsis thaliana. Out of the 62 CBGs, 46 genes in cabbage were mapped to nine chromosomes. Evolutionary analysis of carotenoid biosynthetic orthologous gene pairs among B. oleracea, B. rapa, and A. thaliana revealed that orthologous genes of B. oleracea underwent a negative selection similar to that of B. rapa. Expression analysis of the CBGs showed functional differentiation of orthologous gene copies in B. oleracea and B. rapa. Exogenous phytohormone treatment suggested that ETH, ABA, and MeJA can promote some important CBGs expression in cabbage. Phylogenetic analysis showed that BoPSYs exhibit high conservatism. Subcellular localization analysis indicated that BoPSYs are located in the chloroplast. This study is the first to study carotenoid biosynthesis genes in cabbage and provides a basis for further research on carotenoid metabolic mechanisms in cabbage.
Collapse
|
14
|
Takemura M, Maoka T, Koyanagi T, Kawase N, Nishida R, Tsuchida T, Hironaka M, Ueda T, Misawa N. Elucidation of the whole carotenoid biosynthetic pathway of aphids at the gene level and arthropodal food chain involving aphids and the red dragonfly. BMC ZOOL 2021; 6:19. [PMID: 37170139 PMCID: PMC10127341 DOI: 10.1186/s40850-021-00082-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/29/2021] [Indexed: 02/01/2023] Open
Abstract
Abstract
Background
Aphids can be positioned as robust pest insects in farming and as ones of the model organisms for arthropods in molecular biology. Carotenoids are pigments that protect organisms from photooxidative damage caused by excessive light. Aphids were shown to possess genes of fungal origin for carotenoid biosynthesis, whereas a little knowledge was available about the functions of the genes and the biosynthetic pathway. Even carotenoid species contained in aphids were not enough understood. Main purpose of this study is to clarify these insufficient findings.
Results
The whole carotenoid biosynthetic pathway of the pea aphid (Acyrthosiphon pisum) was elucidated at the gene level, through comprehensive functional analysis of its carotenogenic genes, using Escherichia coli that synthesized carotenoid substrates, along with structural and quantitative analysis of carotenoids from various aphid species. Four genes were needed to synthesize all carotenoids accumulated in aphids from geranylgeranyl diphosphate. The tor gene mediated desaturation reaction from phytoene to 3,4-didehydrolycopene. It was revealed that a gene designated ApCrtYB3, which was considered to have functionally evolved in aphids, can convert lycopene into uncommon carotenoids with the γ-ring such as (6′S)-β,γ-carotene and γ,γ-carotene. We further demonstrated that the atypical carotenoids work as ecological indicators for estimating the food chain from aphids to predatory arthropods, and showed that aphids contributed with significant levels to the food chain from insect herbivores to several predatory arthropods, i.e., the red dragonfly (Sympetrum frequens; adults), seven-spotted ladybird (Coccinella septempunctata), and two spiders, Oxyopes sertatus and Nephila clavata. Gut microflora of the dragonfly (mature adults) was also found to include endosymbiotic bacteria such as Serratia symbiotica specific to the black bean aphid (Aphis fabae).
Conclusions
We revealed the whole carotenoid biosynthetic pathway of aphids, including functional identification of the corresponding genes. Subsequently, we showed that arthropodal food chain can be estimated using the uncommon carotenoids of aphids as ecological indicators. This result indicated that aphids made significant contributions to the food chain of several predatory arthropods including the red-dragonfly adults. Aphids are likely to be positioned as an important “phytochemicals” source for some predatory insects and arachnids, which are often active under bright sunlight.
Collapse
|
15
|
Yang S, Tian X, Wang Z, Wei X, Zhao Y, Su H, Zhao X, Tian B, Yuan Y, Zhang XW. Fine Mapping and Candidate Gene Identification of a White Flower Gene BrWF3 in Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2021; 12:646222. [PMID: 34025693 PMCID: PMC8138439 DOI: 10.3389/fpls.2021.646222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/13/2021] [Indexed: 05/27/2023]
Abstract
Flower color is an important trait in plants. However, genes responsible for the white flower trait in Chinese cabbage are rarely reported. In this study, we constructed an F2 population derived from the Y640-288 (white flower) and Y641-87 (yellow flower) lines for the fine mapping of the white flower gene BrWF3 in Chinese cabbage. Genetic analysis indicated that BrWF3 was controlled by a single recessive gene. Using BSA-seq and KASP assays, BrWF3 was fine-mapped to an interval of 105.6 kb. Functional annotation, expression profiling, and sequence variation analyses confirmed that the AtPES2 homolog, Bra032957, was the most likely candidate gene for BrWF3. Carotenoid profiles and transmission electron microscopy analysis suggested that BrWF3 might participate in the production of xanthophyll esters (particularly violaxanthin esters), which in turn disrupt chromoplast development and the formation of plastoglobules (PGs). A SNP deletion in the third exon of BrWF3 caused the loss of protein function, and interfered with the normal assembly of PGs, which was associated with reduced expression levels of genes involved in carotenoid metabolism. Furthermore, we developed and validated the functional marker TXBH83 for BrWF3. Our results provide insight into the molecular mechanism underlying flower color pigmentation and reveal valuable information for marker-assisted selection (MAS) breeding in Chinese cabbage.
Collapse
Affiliation(s)
- Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinxin Tian
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Xiaobin Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Baoming Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao-Wei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Carotenoids of hemipteran insects, from the perspective of chemo-systematic and chemical ecological studies. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Ding BY, Niu J, Shang F, Yang L, Zhang W, Smagghe G, Wang JJ. Parental silencing of a horizontally transferred carotenoid desaturase gene causes a reduction of red pigment and fitness in the pea aphid. PEST MANAGEMENT SCIENCE 2020; 76:2423-2433. [PMID: 32056367 DOI: 10.1002/ps.5783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/18/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Aphids obtained carotenoid biosynthesis genes via horizontal gene transfers from fungi. However, the roles of these genes in the contributions of in aphids'adaptation and whether these genes could be used as RNAi-based pest control targets are not yet clear. Thus, in this study we used parental RNAi to analyze the potential function of a carotenoid desaturase gene (CdeB) by combined molecular and chemical approaches in the pea aphid (Acyrthosiphon pisum). RESULTS Transcriptional analyses showed that CdeB was significantly more highly expressed in the red morphs compared to the green ones and was associated with the production of red carotenoid. Co-transferring of pET28a-CdeB (the CdeB gene was cloned into pET28a) and pACCRT-EIB (produced lycopene) showed a deep red color in the bacterial precipitate and produced more of a red pigment, lycopene, in vitro. Parental gene-silencing of CdeB resulted in a lower body color intensity in the treated aphids and following generations in vivo. Interestingly, the dsCdeB treatment also reduced aphid performance as reflected by a delay in nymphal developmental duration, lower weight, smaller number, and altered age structure of the population. CONCLUSION Our results demonstrate that CdeB is involved in red color formation and the silencing of this gene by parental RNAi reduced fitness in the pea aphid. The results enhance our understanding of the biosynthesis of carotenoid in aphids and provide insights into the potential ecological significance of carotenoids in the adaptation of the aphid's biology to the environment and developing environmentally friendly control strategies for this pest.
Collapse
Affiliation(s)
- Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
18
|
Cecal microbiome composition and metabolic function in probiotic treated broilers. PLoS One 2020; 15:e0225921. [PMID: 32492021 PMCID: PMC7269258 DOI: 10.1371/journal.pone.0225921] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/21/2020] [Indexed: 01/04/2023] Open
Abstract
Probiotics have become increasingly popular in the poultry industry as a promising nutritional intervention to promote the modulation of intestinal microbial communities and their metabolic activities as a means of improving health and performance. This study aimed to determine the influence of different probiotic formulations on the taxonomic and metabolic profiling of cecal microbial communities, as well as to define associations between cecal microbiota and growth parameters in 21 and 42-day-old broilers. Probiotics investigated included a synbiotic (SYNBIO), a yeast-based probiotic (YEAST), and three single-strain formulations of spore-forming Bacillus amyloliquefaciens (SINGLE1), B. subtilis (SINGLE2) and B. licheniformis (SINGLE3). Dietary inclusion of SYNBIO, YEAST, SINGLE2, and SINGLE3 into the diets supported a significant stimulation of BW and BWG by 7 days of age. Besides, SYNBIO reduced the overall mortality rate by 42d (p<0.05). No significant variation was observed among different probiotic-based formulations for cecal microbiota composition. However, there was a treatment-specific effect on the metabolic profiles, with a particular beneficial metabolic adaptation by the microbiota when supplemented by SYNBIO and SINGLE2. Furthermore, the population of Lactobacillales was identified to be strongly associated with lower Enterobacteriales colonization, higher BW means, and lower mortality rate of growing broilers. Overall, the results emphasize that probiotic supplementation may enhance the microbial energy metabolism in the ceca of young broilers.
Collapse
|
19
|
Carotenoids of dragonflies, from the perspective of comparative biochemical and chemical ecological studies. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|