1
|
van den Bogaard T, Klous L, Cottle RM, Van Erp J, Daanen HAM. The effect of heat acclimation on critical environmental limits and rate of rectal temperature change. J Appl Physiol (1985) 2025; 138:1150-1160. [PMID: 40192265 DOI: 10.1152/japplphysiol.01004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/20/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025] Open
Abstract
Quantifying the effect of heat acclimation (HA) on critical wet-bulb globe temperature (WBGTcrit) and rate of rectal temperature change (vTre) is relevant for developing guidelines with regards to occupational safety while working in warm environments. This study quantified the effect of HA and the period following cessation of the HA protocol on WBGTcrit and vTre. Twenty-eight non-acclimatized participants were divided into a HA (n = 15) and control (CON; n = 13) group. The HA group underwent a warm-humid (35°C, 65% relative humidity) controlled hyperthermia HA protocol (5-9 days of achieving Tre ∼38.5°C for 60 min) and four progressive heat stress tests (HSTs) to identify WBGTcrit and examine vTre: pre-, after 5 and 9 days of HA, and 4 to 8 days of no heat exposure following HA. CON performed two HSTs on average 13 days apart without heat exposure in between. HA increased WBGTcrit after nine (28.5 ± 2.7°C vs. 30.5 ± 2.0°C; P = 0.016) but not 5 days (28.5 ± 2.4; P > 0.05). No effect of HA on vTre was observed (P > 0.05). Four-to-eight days post-HA, WBGTcrit and vTre did not differ compared with 9 days of HA (P > 0.05). However, a reduction in vTre (-0.4 ± 0.3 °C/h) was observed when comparing 4 to 8 days post-HA to pre-HA. In conclusion, our results demonstrate that more than 5 days of HA are required to increase WBGTcrit and indicate that 9 days of HA proceeded by adequate recovery reduced vTre during exercise in the heat.NEW & NOTEWORTHY We assessed the effect of heat acclimation (HA) on critical environmental limits and rate of rectal temperature change. We show that more than 5 days of heat acclimation are required to increase critical environmental limits and that 9 days of HA proceeded by adequate recovery reduces the rate of rectal temperature change. These findings enhance our understanding of heat acclimation's effect on work capacity in the heat and may be used to design occupational guidelines.
Collapse
Affiliation(s)
- Timo van den Bogaard
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Lisa Klous
- Department of Human Performance, Netherlands Organization for Applied Scientific Research (TNO), Unit Defence, Safety and Security, Soesterberg, The Netherlands
| | - Rachel M Cottle
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, United States
| | - Jan Van Erp
- Department of Human Performance, Netherlands Organization for Applied Scientific Research (TNO), Unit Defence, Safety and Security, Soesterberg, The Netherlands
- Department Human Media Interaction, Faculty Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit van Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Dunn RA, Fry LA, Sekiguchi Y, Benjamin CL, Manning CN, Huggins RA, Stearns RL, Casa DJ. Effect of Heat Acclimatization, Heat Acclimation, and Intermittent Heat Training on Maximal Oxygen Uptake. Sports Health 2025; 17:305-311. [PMID: 38708678 PMCID: PMC11569670 DOI: 10.1177/19417381241249470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Maximal oxygen uptake (VO2max) is an important determinant of endurance performance. Heat acclimation/acclimatization (HA/HAz) elicits improvements in endurance performance. Upon heat exposure reduction, intermittent heat training (IHT) may alleviate HA/HAz adaptation decay; however, corresponding VO2max responses are unknown. HYPOTHESIS VO2max is maintained after HAz/HA; IHT mitigates decrements in aerobic power after HAz/HA. STUDY DESIGN Interventional study. LEVEL OF EVIDENCE Level 3. METHODS A total of 27 male endurance runners (mean ± SD; age, 36 ± 12 years; body mass, 73.03 ± 8.97 kg; height, 178.81 ± 6.39 cm) completed VO2max testing at 5 timepoints; baseline, post-HAz, post-HA, and weeks 4 and 8 of IHT (IHT4, IHT8). After baseline testing, participants completed HAz, preceded by 5 days of HA involving exercise to induce hyperthermia for 60 minutes in the heat (ambient temperature, 39.13 ± 1.37°C; relative humidity, 51.08 ± 8.42%). Participants were assigned randomly to 1 of 3 IHT groups: once-weekly, twice-weekly, or no IHT. Differences in VO2max, velocity at VO2max (vVO2), and maximal heart rate (HRmax) at all 5 timepoints were analyzed using repeated-measure analyses of variance with Bonferroni corrections post hoc. RESULTS No significant VO2max or vVO2 differences were observed between baseline, post-HAz, or post-HA (P = 0.36 and P = 0.09, respectively). No significant group or time effects were identified for VO2max or vVO2 at post-HA, IHT4, and IHT8 (P = 0.67 and P = 0.21, respectively). Significant HRmax differences were observed between baseline and post-HA tests (P < 0.01). No significant group or time HRmax differences shown for post-HA, IHT4, and IHT8 (P = 0.59). CONCLUSION VO2max was not reduced among endurance runners after HA/HAz and IHT potentially due to participants' similar aerobic training status and high aerobic fitness levels. CLINICAL RELEVANCE HAz/HA and IHT maintain aerobic power in endurance runners, with HAz/HA procuring reductions in HRmax.
Collapse
Affiliation(s)
- Ryan A. Dunn
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | - Lauren A. Fry
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Yasuki Sekiguchi
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas and Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Courteney L. Benjamin
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut and Department of Kinesiology, Samford University, Birmingham, Alabama
| | - Ciara N. Manning
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Robert A. Huggins
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Rebecca L. Stearns
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Douglas J. Casa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
3
|
Rosbrook P, Margolis LM, Pryor JL. Nutritional Considerations in Exercise-Based Heat Acclimation: A Narrative Review. Sports Med 2024; 54:3005-3017. [PMID: 39217233 DOI: 10.1007/s40279-024-02109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
In addition to its established thermoregulatory and cardiovascular effects, heat stress provokes alterations in macronutrient metabolism, gastrointestinal integrity, and appetite. Inadequate energy, carbohydrate, and protein intake have been implicated in reduced exercise and heat tolerance. Classic exercise heat acclimation (HA) protocols employ low-to-moderate-intensity exercise for 5-14 days, while recent studies have evolved the practice by implementing high-intensity and task-specific exercise during HA, which potentially results in impaired post-HA physical performance despite adequate heat adaptations. While there is robust literature demonstrating the performance benefit of various nutritional interventions during intensive training and competition, most HA studies implement few nutritional controls. This review summarizes the relationships between heat stress, HA, and intense exercise in connection with substrate metabolism, gastrointestinal function, and the potential consequences of reduced energy availability. We discuss the potential influence of macronutrient manipulations on HA study outcomes and suggest best practices to implement nutritional controls.
Collapse
Affiliation(s)
- Paul Rosbrook
- Center for Research & Education in Special Environments, Department of Exercise & Nutrition Sciences, State University of New York University at Buffalo, Buffalo, NY, USA.
| | - Lee M Margolis
- Military Nutrition Division, U.S. Army Research Institute for Environmental Medicine, Natick, MA, USA
| | - J Luke Pryor
- Center for Research & Education in Special Environments, Department of Exercise & Nutrition Sciences, State University of New York University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
4
|
Cubel C, Fischer M, Stampe D, Klaris MB, Bruun TR, Lundby C, Nordsborg NB, Nybo L. Time-course for onset and decay of physiological adaptations in endurance trained athletes undertaking prolonged heat acclimation training. Temperature (Austin) 2024; 11:350-362. [PMID: 39583901 PMCID: PMC11583594 DOI: 10.1080/23328940.2024.2383505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 11/26/2024] Open
Abstract
Short-term heat acclimation (HA) appears adequate for maximizing sudomotor adaptations and enhancing thermal resilience in trained athletes. However, for enhanced erythropoiesis and transfer effects to exercise capacity in cooler environments, prolonged HA appears necessary. To establish the time-course for physiological adaptations and performance effects, 20 male elite cyclists were divided into an intervention group (HEAT; n = 10) completing 5 weeks of HA (six one-hour HA-training sessions per week) and control (n = 10) tested pre and post in hot (40°C) and cool conditions (20°C). HEAT completed tests at 40°C every week during HA with measures of sweat rate and [Na+] and a decay test 2 weeks after termination of HA. HEAT improved time for exhaustion by 15 min (p < 0.001) in the 40°C test, increased sweat rate by 0.44 L/hour (p < 0.001), and lowered sweat sodium concentration [Na+] by 14.1 mmol/L (p = 0.006) from pre- to post-HA, with performance returning to pre-HA levels in the 2-week decay test. Total hemoglobin mass (tHbmass) was increased by 30 grams (+3%, p = 0.048) after 3 weeks and 40 grams (+4%, p = 0.038) after 5 weeks in HEAT but returned to pre-HA levels at the 2-week decay test. HEAT improved incremental peak power output (+12 W, p = 0.001) without significant changes in maximal oxygen uptake (p = 0.094). In conclusion, improvements in heat exercise tolerance and sudomotor adaptations materialized during the first ~3 weeks and the entire 5 weeks of HA augmented both cool exercise capacity and tHbmass. However, the 2-week post-HA evaluation demonstrated a rapid decay of physiological adaptations and exercise capacity in the heat.
Collapse
Affiliation(s)
- Claes Cubel
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mads Fischer
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Stampe
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Magnus B. Klaris
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tim R. Bruun
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Lundby
- Department of Health and Exercise Physiology, Inland Norway University of Applied Science, Lillehammer, Norway
| | - Nikolai B. Nordsborg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Ramos JAP, Ducker KJ, Riddell H, Landers G, Girard O, Brade CJ. Single Session Intermittent Heat Exposure With More Frequent and Shorter Cooling Breaks Facilitates Greater Training Intensity and Elicits Physiological Responses Comparable to Continuous Heat Exposure. Int J Sports Physiol Perform 2024; 19:798-808. [PMID: 38862102 DOI: 10.1123/ijspp.2023-0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE To investigate the influence of shorter, more frequent rest breaks with per-cooling as an alternative heat-acclimation session on physiological, perceptual, and self-paced maximal cycling performance, compared with continuous heat exposure. METHODS Thirteen participants completed 1 continuous and 3 intermittent-heat-exposure (IHE) maximal self-paced cycling protocols in a random order in heat (36 °C, 80% relative humidity): 1 × 60-minute exercise (CON), 3 × 20-minute exercise with 7.5-minute rest between sets (IHE-20), 4 × 15-minute exercise with 5-minute rest between sets (IHE-15), and 6 × 10-minute exercise with 3-minute rest between sets (IHE-10). Mixed-method per-cooling (crushed-ice ingestion and cooling vest) was applied during rest periods of all IHE protocols. RESULTS Total distance completed was greater in IHE-10, IHE-15, and IHE-20 than in CON (+11%, +9%, and +8%, respectively), with no difference observed between IHE protocols. Total time spent above 38.5 °C core temperature was longer in CON compared with IHE-15 and IHE-20 (+62% and +78%, respectively) but similar to IHE-10 (+5%). Furthermore, a longer time above 38.5 °C core temperature occurred in IHE-10 versus IHE-15 and IHE-20 (+54% and +69%, respectively). Sweat loss did not differ between conditions. CONCLUSION IHE with per-cooling may be a viable alternative heat-acclimation protocol in situations where training quality takes precedence over thermal stimulus or when both factors hold equal priority.
Collapse
Affiliation(s)
- Julian A P Ramos
- Curtin School of Allied Health, Curtin University, Bentley, WA, Australia
| | - Kagan J Ducker
- Curtin School of Allied Health, Curtin University, Bentley, WA, Australia
| | - Hugh Riddell
- Curtin School of Allied Health, Curtin University, Bentley, WA, Australia
| | - Grant Landers
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia
| | - Carly J Brade
- Curtin School of Allied Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
6
|
Ebisuda Y, Mukai K, Takahashi Y, Yoshida T, Matsuhashi T, Kawano A, Miyata H, Kuwahara M, Ohmura H. Heat acclimation improves exercise performance in hot conditions and increases heat shock protein 70 and 90 of skeletal muscles in Thoroughbred horses. Physiol Rep 2024; 12:e16083. [PMID: 38789393 PMCID: PMC11126422 DOI: 10.14814/phy2.16083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to determine whether heat acclimation could induce adaptations in exercise performance, thermoregulation, and the expression of proteins associated with heat stress in the skeletal muscles of Thoroughbreds. Thirteen trained Thoroughbreds performed 3 weeks of training protocols, consisting of cantering at 90% maximal oxygen consumption (VO2max) for 2 min 2 days/week and cantering at 7 m/s for 3 min 1 day/week, followed by a 20-min walk in either a control group (CON; Wet Bulb Globe Temperature [WBGT] 12-13°C; n = 6) or a heat acclimation group (HA; WBGT 29-30°C; n = 7). Before and after heat acclimation, standardized exercise tests (SET) were conducted, cantering at 7 m/s for 90 s and at 115% VO2max until fatigue in hot conditions. Increases in run time (p = 0.0301), peak cardiac output (p = 0.0248), and peak stroke volume (p = 0.0113) were greater in HA than in CON. Pulmonary artery temperature at 7 m/s was lower in HA than in CON (p = 0.0332). The expression of heat shock protein 70 (p = 0.0201) and 90 (p = 0.0167) increased in HA, but not in CON. These results suggest that heat acclimation elicits improvements in exercise performance and thermoregulation under hot conditions, with a protective adaptation to heat stress in equine skeletal muscles.
Collapse
Affiliation(s)
- Yusaku Ebisuda
- Sports Science DivisionEquine Research Institute, Japan Racing AssociationShimotsukeJapan
| | - Kazutaka Mukai
- Sports Science DivisionEquine Research Institute, Japan Racing AssociationShimotsukeJapan
| | - Yuji Takahashi
- Sports Science DivisionEquine Research Institute, Japan Racing AssociationShimotsukeJapan
| | - Toshinobu Yoshida
- Sports Science DivisionEquine Research Institute, Japan Racing AssociationShimotsukeJapan
| | - Tsubasa Matsuhashi
- Department of Biological Sciences, Graduate School of Sciences and Technology for InnovationYamaguchi UniversityYamaguchiJapan
| | - Aoto Kawano
- Department of Biological Sciences, Graduate School of Sciences and Technology for InnovationYamaguchi UniversityYamaguchiJapan
| | - Hirofumi Miyata
- Department of Biological Sciences, Graduate School of Sciences and Technology for InnovationYamaguchi UniversityYamaguchiJapan
| | - Masayoshi Kuwahara
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Hajime Ohmura
- Sports Science DivisionEquine Research Institute, Japan Racing AssociationShimotsukeJapan
| |
Collapse
|
7
|
Kelly MK, Smith ES, Brown HA, Jardine WT, Convit L, Bowe SJ, Condo D, Guy JH, Burke LM, Périard JD, Snipe RMJ, Snow RJ, Carr AJ. Auditing the Representation of Females Versus Males in Heat Adaptation Research. Int J Sport Nutr Exerc Metab 2024; 34:111-121. [PMID: 38211577 DOI: 10.1123/ijsnem.2023-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024]
Abstract
The aim of this audit was to quantify female representation in research on heat adaptation. Using a standardized audit tool, the PubMed database was searched for heat adaptation literature from inception to February 2023. Studies were included if they investigated heat adaptation among female and male adults (≥18-50 years) who were free from noncommunicable diseases, with heat adaptation the primary or secondary outcome of interest. The number and sex of participants, athletic caliber, menstrual status, research theme, journal impact factor, Altmetric score, Field-Weighted Citation Impact, and type of heat exposure were extracted. A total of 477 studies were identified in this audit, including 7,707 participants with ∼13% of these being female. Most studies investigated male-only cohorts (∼74%, n = 5,672 males), with ∼5% (n = 360 females) including female-only cohorts. Of the 126 studies that included females, only 10% provided some evidence of appropriate methodological control to account for ovarian hormone status, with no study meeting best-practice recommendations. Of the included female participants, 40% were able to be classified to an athletic caliber, with 67% of these being allocated to Tier 2 (i.e., trained/developmental) or below. Exercise heat acclimation was the dominant method of heat exposure (437 interventions), with 21 studies investigating sex differences in exercise heat acclimation interventions. We recommend that future research on heat adaptation in female participants use methodological approaches that consider the potential impact of sexual dimorphism on study outcomes to provide evidence-based guidelines for female athletes preparing for exercise or competition in hot conditions.
Collapse
Affiliation(s)
- Monica K Kelly
- Centre for Sport Research, Deakin University, Burwood, VIC, Australia
| | - Ella S Smith
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Harry A Brown
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - William T Jardine
- Centre for Sport Research, Deakin University, Burwood, VIC, Australia
| | - Lilia Convit
- Centre for Sport Research, Deakin University, Burwood, VIC, Australia
| | - Steven J Bowe
- Deakin Biostatistics Unit, Faculty of Health, Deakin University, Burwood, VIC, Australia
- Faculty and School of Health, Victoria University of Wellington, Kelburn, Wellington, New Zealand
| | - Dominique Condo
- Centre for Sport Research, Deakin University, Burwood, VIC, Australia
| | - Joshua H Guy
- School of Health, Medical and Applied Sciences, Central Queensland University, Cairns, QLD, Australia
| | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Julien D Périard
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | | | - Rodney J Snow
- Institute for Physical Activity and Nutrition, Deakin University, Burwood, VIC, Australia
| | - Amelia J Carr
- Centre for Sport Research, Deakin University, Burwood, VIC, Australia
| |
Collapse
|
8
|
Amoatey P, Osborne NJ, Darssan D, Xu Z, Doan QV, Phung D. The effects of diurnal temperature range on mortality and emergency department presentations in Victoria state of Australia: A time-series analysis. ENVIRONMENTAL RESEARCH 2024; 240:117397. [PMID: 37879389 DOI: 10.1016/j.envres.2023.117397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/30/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
State of Victoria, Australia (SVA) has a wide variation of diurnal temperatures (DTR). DTR has been reported to be associated with risk of mortality and morbidity. We examined the association between exposure to DTR and risk of all-cause mortality and emergency department (ED) presentations in the SVA. We obtained data on daily counts of deaths and ED presentations, and weather data from 1 st January 2000─2019. We applied a quasi-Poisson time-series regression analysis to examine the association between daily DTR exposures and risk of mortality and ED presentations. The analyses were queried by age, sex, seasons, ED presentations triages, and departure status. Risk of mortality and ED presentation increased by 0.33% (95% CI: 0.24%-0.43%), and 0.094% (95% CI: 0.077%-0.11%) in relation to one degree increase in the daily DTR. The association between DTR and ED presentations was stronger in children (0-15 years) (0.38% [95% CI: 0.34%-0.42%]) and the elderly (75+ years) (0.34% [95% CI: 0.29%-0.39%]). Resuscitation, which was consistently accounted for the highest vulnerability to DTR variation, increased by 0.79% (95% CI: 0.60%-0.99%). This study suggests that the risk of mortality and ED presentations associates with the increase of DTR. Children, the elderly, and their caregivers need to be made aware of the health risk posed by DTR.
Collapse
Affiliation(s)
- Patrick Amoatey
- School of Public Health, Faculty of Medicine, The University of Queensland, Australia
| | - Nicholas J Osborne
- School of Public Health, Faculty of Medicine, The University of Queensland, Australia; School of Population Health, University of New South Wales, Sydney, NSW 2052, Australia; European Centre for Environment and Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro TR1 3HD, Cornwall, UK; Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia
| | - Darsy Darssan
- School of Public Health, Faculty of Medicine, The University of Queensland, Australia
| | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Australia
| | - Quang-Van Doan
- Center for Computational Sciences, University of Tsukuba, Japan
| | - Dung Phung
- School of Public Health, Faculty of Medicine, The University of Queensland, Australia; Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia.
| |
Collapse
|
9
|
Corbett J, Young JS, Tipton MJ, Costello JT, Williams TB, Walker EF, Lee BJ, Stevens CE. Molecular biomarkers for assessing the heat-adapted phenotype: a narrative scoping review. J Physiol Sci 2023; 73:26. [PMID: 37848829 PMCID: PMC10717221 DOI: 10.1186/s12576-023-00882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Heat acclimation/acclimatisation (HA) mitigates heat-related decrements in physical capacity and heat-illness risk and is a widely advocated countermeasure for individuals operating in hot environments. The efficacy of HA is typically quantified by assessing the thermo-physiological responses to a standard heat acclimation state test (i.e. physiological biomarkers), but this can be logistically challenging, time consuming, and expensive. A valid molecular biomarker of HA would enable evaluation of the heat-adapted state through the sampling and assessment of a biological medium. This narrative review examines candidate molecular biomarkers of HA, highlighting the poor sensitivity and specificity of these candidates and identifying the current lack of a single 'standout' biomarker. It concludes by considering the potential of multivariable approaches that provide information about a range of physiological systems, identifying a number of challenges that must be overcome to develop a valid molecular biomarker of the heat-adapted state, and highlighting future research opportunities.
Collapse
Affiliation(s)
- J Corbett
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK.
| | - J S Young
- National Horizons Centre, Teesside University, Darlington, UK
| | - M J Tipton
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - J T Costello
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - T B Williams
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - E F Walker
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - B J Lee
- Occupational and Environmental Physiology Group, Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - C E Stevens
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
10
|
Kelly MK, Bowe SJ, Jardine WT, Condo D, Guy JH, Snow RJ, Carr AJ. Heat Adaptation for Females: A Systematic Review and Meta-Analysis of Physiological Adaptations and Exercise Performance in the Heat. Sports Med 2023; 53:1395-1421. [PMID: 37222863 PMCID: PMC10289939 DOI: 10.1007/s40279-023-01831-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Heat adaptation regimes are used to prepare athletes for exercise in hot conditions to limit a decrement in exercise performance. However, the heat adaptation literature mostly focuses on males, and consequently, current heat adaptation guidelines may not be optimal for females when accounting for the biological and phenotypical differences between sexes. OBJECTIVES We aimed to examine: (1) the effects of heat adaptation on physiological adaptations in females; (2) the impact of heat adaptation on performance test outcomes in the heat; and (3) the impact of various moderators, including duration (minutes and/or days), total heat dose (°C.min), exercise intensity (kcal.min-1), total energy expended (kcal), frequency of heat exposures and training status on the physiological adaptations in the heat. METHODS SPORTDiscus, MEDLINE Complete and Embase databases were searched to December 2022. Random-effects meta-analyses for resting and exercise core temperature, skin temperature, heart rate, sweat rate, plasma volume and performance tests in the heat were completed using Stata Statistical Software: Release 17. Sub-group meta-analyses were performed to explore the effect of duration, total heat dose, exercise intensity, total energy expended, frequency of heat exposure and training status on resting and exercise core temperature, skin temperature, heart rate and sweat rate. An explorative meta-regression was conducted to determine the effects of physiological adaptations on performance test outcomes in the heat following heat adaptation. RESULTS Thirty studies were included in the systematic review; 22 studies were meta-analysed. After heat adaptation, a reduction in resting core temperature (effect size [ES] = - 0.45; 95% confidence interval [CI] - 0.69, - 0.22; p < 0.001), exercise core temperature (ES = - 0.81; 95% CI - 1.01, - 0.60; p < 0.001), skin temperature (ES = - 0.64; 95% CI - 0.79, - 0.48; p < 0.001), heart rate (ES = - 0.60; 95% CI - 0.74, - 0.45; p < 0.001) and an increase in sweat rate (ES = 0.53; 95% CI 0.21, 0.85; p = 0.001) were identified in females. There was no change in plasma volume (ES = - 0.03; 95% CI - 0.31, 0.25; p = 0.835), whilst performance test outcomes were improved following heat adaptation (ES = 1.00; 95% CI 0.56, 1.45; p < 0.001). Across all moderators, physiological adaptations were more consistently observed following durations of 451-900 min and/or 8-14 days, exercise intensity ≥ 3.5 kcal.min-1, total energy expended ≥ 3038 kcal, consecutive (daily) frequency and total heat dose ≥ 23,000 °C.min. The magnitude of change in performance test outcomes in the heat was associated with a reduction in heart rate following heat adaptation (standardised mean difference = - 10 beats.min-1; 95% CI - 19, - 1; p = 0.031). CONCLUSIONS Heat adaptation regimes induce physiological adaptations beneficial to thermoregulation and performance test outcomes in the heat in females. Sport coaches and applied sport practitioners can utilise the framework developed in this review to design and implement heat adaptation strategies for females.
Collapse
Affiliation(s)
- Monica K Kelly
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| | - Steven J Bowe
- Deakin Biostatistics Unit, Faculty of Health, Deakin University, Burwood, VIC, Australia
- Faculty and School of Health, Victoria University of Wellington, Kelburn, Wellington, New Zealand
| | - William T Jardine
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Dominique Condo
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Joshua H Guy
- School of Health, Medical and Applied Sciences, Central Queensland University, Cairns, QLD, Australia
| | - Rodney J Snow
- Institute for Physical Activity and Nutrition, Deakin University, Burwood, VIC, Australia
| | - Amelia J Carr
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| |
Collapse
|
11
|
Peel J, John K, Page J, Scott G, Jeffries O, Heffernan S, Tallent J, Waldron M. Factors contributing to the change in thermoneutral maximal oxygen consumption after iso-intensity heat acclimation programmes. Eur J Sport Sci 2023:1-10. [PMID: 36533403 DOI: 10.1080/17461391.2022.2160278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The factors explaining variance in thermoneutral maximal oxygen uptake (V˙O2max) adaptation to heat acclimation (HA) were evaluated, with consideration of HA programme parameters, biophysical variables and thermo-physiological responses. Seventy-one participants consented to perform iso-intensity training (range: 45%-55% V˙O2max) in the heat (range: 30°C-38°C; 20%-60% relative humidity) on consecutive days (range: 5-days-14-days) for between 50-min and-90 min. The participants were evaluated for their thermoneutral V˙O2max change pre-to-post HA. Participants' whole-body sweat rate, heart rate, core temperature, perceived exertion and thermal sensation and plasma volume were measured, and changes in these responses across the programme determined. Partial least squares regression was used to explain variance in the change in V˙O2max across the programme using 24 variables. Sixty-three percent of the participants increased V˙O2max more than the test error, with a mean ± SD improvement of 2.6 ± 7.9%. A two-component model minimised the root mean squared error and explained the greatest variance (R2; 65%) in V˙O2max change. Eight variables positively contributed (P < 0.05) to the model: exercise intensity (%V˙O2max), ambient temperature, HA training days, total exposure time, baseline body mass, thermal sensation, whole-body mass losses and the number of days between the final day of HA and the post-testing day. Within the ranges evaluated, iso-intensity HA improved V˙O2max 63% of the time, with intensity - and volume-based parameters, alongside sufficient delays in post-testing being important considerations for V˙O2max maximisation. Monitoring of thermal sensation and body mass losses during the programme offers an accessible way to gauge the degree of potential adaptation.
Collapse
Affiliation(s)
- Jenny Peel
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Kevin John
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Joe Page
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Georgia Scott
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Owen Jeffries
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Shane Heffernan
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Jamie Tallent
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester, UK.,Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Mark Waldron
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK.,Welsh Institute of Performance Science, Swansea University, Swansea, UK.,School of Health and Behavioural Sciences, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
12
|
Donnan KJ, Williams EL, Bargh MJ. The effectiveness of heat preparation and alleviation strategies for cognitive performance: A systematic review. Temperature (Austin) 2023; 10:404-433. [PMID: 38130656 PMCID: PMC10732620 DOI: 10.1080/23328940.2022.2157645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
A range of occupational and performance contexts (e.g. military personnel operations, emergency services, sport) require the critical maintenance of cognitive performance in environmentally challenging environments. Several reviews exist which evaluate the effectiveness of heat preparation strategies to facilitate physical performance. To date, no review has explored the usefulness of heat preparation strategies for cognitive performance. Therefore, this systematic review aimed to evaluate a range of interventions for the maintenance of cognitive performance, during or following active or passive heat exposure. Studies to be included were assessed by two authors reviewing title, abstract, and full-text. Forty articles were identified which met the inclusion criteria. Interventions were categorised into chronic (i.e. acclimation/acclimatisation) and acute strategies (i.e. hydration, cooling, supplementation, psychological). The results indicate that medium-term consecutive heat acclimation may mitigate some cognitive deficits under heat stress, although heat acclimation effectiveness could be influenced by age. Further, pre-cooling appears the most effective cooling method for maintaining cognitive performance under heat stress, although results were somewhat ambiguous. The hydration literature showed that the most effective hydration strategies were those which individualised electrolyte fortified fluid volumes to match for sweat loss. Limited research exploring psychological interventions indicates that motivational self-talk could be facilitative for maintaining cognitive skills following exercise in hot conditions. These findings can be used to help inform strategies for maintaining critical cognitive and decision-making skills in hot environments.
Collapse
Affiliation(s)
- Kate J. Donnan
- Department of Sport, Exercise, and Rehabilitation Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Emily L. Williams
- Centre for Human Performance, Carnegie School of Sport, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Melissa J. Bargh
- School of Sport and Exercise Science, College of Social Science of University of Lincoln, Lincoln, LN6 7TS, UK
| |
Collapse
|
13
|
TAN SHAWNCHEECHONG, ANG WEEHON, LIM LOUISASIXIAN, LOW IVANCHERHCHIET, LEE JASONKAIWEI. Efficacy of Isothermic Conditioning over Military-Based Heat Acclimatization and Interval Training in Tropical Native Males. Med Sci Sports Exerc 2022; 54:1925-1935. [PMID: 35787594 PMCID: PMC9632943 DOI: 10.1249/mss.0000000000002991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE We compared the effectiveness of three field-based training programs, namely military-based heat acclimatization (MHA), isothermic conditioning (IC) and interval training (IT), in inducing physiological adaptations in tropical natives. METHODS Fifty-one untrained tropical native males (mean ± standard deviation: age, 25 ± 2 yr; body mass index, 23.6 ± 3.2 kg·m -2 ; body fat, 19% ± 5%; 2.4-km run time, 13.2 ± 0.9 min) donned the Full Battle Order attire (22 kg) and performed a treadmill route march heat stress test in an environmental chamber (dry bulb temperature, 29.9°C ± 0.5°C; relative humidity, 70% ± 3%). Heat stress tests were conducted before (PRE) and after (POST) a 2-wk training intervention consisting of either a MHA ( n = 17, 10 sessions of military-based heat acclimatization), IC ( n = 17, 10 sessions with target gastrointestinal temperature ( Tgi ) ≥ 38.5°C) or IT ( n = 17, six sessions of high-intensity interval training) program. Tgi , HR, mean weighted skin temperature ( Tsk ), physiological strain index (PSI) and thigh-predicted sweat sodium concentration ([Na + ]) were measured and analyzed by one-factor and two-factor mixed design ANOVA with a 0.05 level of significance. RESULTS Field-based IC induced a greater thermal stimulus than MHA ( P = 0.029) and IT ( P < 0.001) during training. Reductions in mean exercise Tgi (-0.2°C [-0.3°C, 0.0°C]; P = 0.009) , PSI (-0.4 [-0.7, -0.1]; P = 0.015) and thigh-predicted sweat [Na + ] (-9 [-13, -5 mmol·L -1 ]; P < 0.001) were observed in IC but not MHA and IT (all P > 0.05). Resting HR (MHA, -4 bpm [-7, 0 bpm]; P = 0.025; IC, -7 bpm [-10, -4 bpm]; P < 0.001; IT, -4 bpm [-8, -1 bpm]; P = 0.008) and mean exercise HR (MHA, -4 [-8, 0 bpm]; P = 0.034; IC, -11 bpm [-15, -8 bpm]; P < 0.001, IT = -5 bpm [-9, -1 bpm]; P = 0.012) were lowered in all groups after training. Isothermic conditioning elicited a greater attenuation in mean exercise HR and thigh-predicted sweat [Na + ] relative to MHA (both P < 0.05). No between-group differences were observed when comparing MHA and IT (all P > 0.05). CONCLUSIONS Isothermic conditioning induced a more complete heat-adapted phenotype relative to MHA and IT. Interval training may serve as a time efficient alternative to MHA.
Collapse
Affiliation(s)
- SHAWN CHEE CHONG TAN
- Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
| | - WEE HON ANG
- Combat Protection and Performance Program, Defence Medical and Environmental Research Institute, DSO National Laboratories, SINGAPORE
| | - LOUISA SI XIAN LIM
- Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
| | - IVAN CHERH CHIET LOW
- Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
| | - JASON KAI WEI LEE
- Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Global Asia Institute, National University of Singapore, SINGAPORE
- N.1 Institute for Health, National University of Singapore, SINGAPORE
- Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), SINGAPORE
| |
Collapse
|
14
|
Sekiguchi Y, Benjamin CL, Manning CN, Struder JF, Armstrong LE, Lee EC, Huggins RA, Stearns RL, Distefano LJ, Casa DJ. Effects of Heat Acclimatization, Heat Acclimation, and Intermittent Exercise Heat Training on Time-Trial Performance. Sports Health 2021; 14:694-701. [PMID: 34706597 DOI: 10.1177/19417381211050643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate effects of heat acclimatization (HAz) followed by heat acclimation (HA), and intermittent heat training (IHT) on time-trial performance. HYPOTHESIS Time-trial performance will improve after HA and will further improve with twice a week of IHT. STUDY DESIGN Interventional study. LEVEL OF EVIDENCE Level 3. METHODS A total of 26 male athletes (mean ± SD; age, 35 ± 12 years; body mass, 72.8 ± 8.9 kg; peak oxygen consumption [VO2peak], 57.3 ± 6.7 mL·kg-1·min-1) completed five 4-km time trials (baseline, post-HAz, post-HA, post-IHT4, post-IHT8) in the heat (ambient temperature, 35.4°C ± 0.3°C; relative humidity, 46.7% ± 1.2%) on a motorized treadmill. After baseline time trial, participants performed HAz (109 ± 10 days) followed by post-HAz time trial. Then, participants completed 5 days of HA, which involved exercising to induce hyperthermia (38.50°C-39.75°C) for 60 minutes. Participants were then divided into 3 groups and completed IHT either twice per week (IHTMAX), once per week (IHTMIN), or not at all (IHTCON) over an 8-week period. The exercise used for the IHT matched the HA. Four-kilometer time trials were performed after 4 weeks (post-IHT4) and 8 weeks of IHT (post-IHT8). RESULTS Time trial was faster in post-HA (17.98 ± 2.51 minutes) compared with baseline (18.61 ± 3.06 minutes; P = 0.037) and post-HAz (18.66 ± 3.12 minutes; P = 0.023). Percentage change in time trial was faster in IHTMAX (-3.9% ± 5.2%) compared with IHTCON (11.5% ± 16.9%) (P = 0.020) and approached statistical significance with large effect (effect size = 0.96) compared with IHTMIN (1.6% ± 6.2%; P = 0.059) at post-IHT8. Additionally, IHTMAX (-2.2% ± 4.2%) was faster than IHTCON (3.6% ± 6.9%) (P = 0.05) at post-IHT4. CONCLUSION These results indicate that HA after HAz induces additional improvement in time-trial performance. IHT twice per week shows improvement after 8 weeks, while once per week maintains performance for 8 weeks. No IHT results in a loss of adaptations after 4 weeks and even greater losses after 8 weeks. CLINICAL RELEVANCE HA after HAz improves time-trial performance, twice a week of IHT improves performance further, and once a week of IHT maintains performance for at least 8 weeks.
Collapse
|
15
|
The efficacy of weekly and bi-weekly heat training to maintain the physiological benefits of heat acclimation. J Sci Med Sport 2021; 25:255-260. [PMID: 34750069 DOI: 10.1016/j.jsams.2021.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To examine the efficacy of weekly and bi-weekly heat training to maintain heat acclimatization (HAz) and heat acclimation (HA) for 8 weeks in aerobically trained athletes. DESIGN Randomized, between-group. METHODS Twenty-four males (mean [m ± standard deviation [sd]; (age, 34 ± 12 y; body mass, 72.6 ± 8.8 kg, VO2peak, 57.7 ± 6.8 mL·kg-1·min-1) completed five trials (baseline, following HAz, following HA (HAz + HA), four weeks into heat training [HTWK4], and eight weeks into HT [HTWK8] that involved 60 min of steady-state exercise (59.1 ± 1.8% vVO2peak) in an environmental laboratory (wet bulb globe temperature [WBGT], 29.6 ± 1.4 °C) on a motorized treadmill. Throughout exercise, heart rate (HR) and rectal temperature (Trec) were recorded. Following HAz + HA, participants were assigned to three groups: control group (HT0), once per week heat training (HT1), and twice per week heat training (HT2). HT involved heated exercise (WBGT, 33.3 ± 1.3 °C) to achieve hyperthermia (38.5-39.75 °C) for 60 min. Repeated measures ANOVAs were used to determine differences. RESULTS HAz + HA resulted in significant improvements in HR (p < 0.001) and Trec (p < 0.001). At HTWK8, HR was significantly higher in HT0 (174 ± 22 beats⋅min-1) compared to HT2 (151 ± 17 beats⋅min-1, p < 0.023), but was not different than HT1 (159 ± 17 beats⋅min-1, p = 0.112). There was no difference in % change of Trec from post-HAz + HA to HTWK4 (0.6 ± 1.3%; p = 0.218), however, HTWK8 (1.8 ± 1.4%) was significantly greater than post-HAz + HA in HT0 (p = 0.009). CONCLUSIONS Bi-weekly HT provided clear evidence for the ability to maintain physiological adaptions for 8 weeks following HA.
Collapse
|
16
|
Morrissey MC, Casa DJ, Brewer GJ, Adams WM, Hosokawa Y, Benjamin CL, Grundstein AJ, Hostler D, McDermott BP, McQuerry ML, Stearns RL, Filep EM, DeGroot DW, Fulcher J, Flouris AD, Huggins RA, Jacklitsch BL, Jardine JF, Lopez RM, McCarthy RB, Pitisladis Y, Pryor RR, Schlader ZJ, Smith CJ, Smith DL, Spector JT, Vanos JK, Williams WJ, Vargas NT, Yeargin SW. Heat Safety in the Workplace: Modified Delphi Consensus to Establish Strategies and Resources to Protect the US Workers. GEOHEALTH 2021; 5:e2021GH000443. [PMID: 34471788 PMCID: PMC8388206 DOI: 10.1029/2021gh000443] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 06/04/2023]
Abstract
The purpose of this consensus document was to develop feasible, evidence-based occupational heat safety recommendations to protect the US workers that experience heat stress. Heat safety recommendations were created to protect worker health and to avoid productivity losses associated with occupational heat stress. Recommendations were tailored to be utilized by safety managers, industrial hygienists, and the employers who bear responsibility for implementing heat safety plans. An interdisciplinary roundtable comprised of 51 experts was assembled to create a narrative review summarizing current data and gaps in knowledge within eight heat safety topics: (a) heat hygiene, (b) hydration, (c) heat acclimatization, (d) environmental monitoring, (e) physiological monitoring, (f) body cooling, (g) textiles and personal protective gear, and (h) emergency action plan implementation. The consensus-based recommendations for each topic were created using the Delphi method and evaluated based on scientific evidence, feasibility, and clarity. The current document presents 40 occupational heat safety recommendations across all eight topics. Establishing these recommendations will help organizations and employers create effective heat safety plans for their workplaces, address factors that limit the implementation of heat safety best-practices and protect worker health and productivity.
Collapse
Affiliation(s)
- Margaret C. Morrissey
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - Douglas J. Casa
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - Gabrielle J. Brewer
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - William M. Adams
- Department of KinesiologyUniversity of North Carolina at GreensboroGreensboroNCUSA
| | - Yuri Hosokawa
- Faculty of Sports SciencesWaseda UniversitySaitamaJapan
| | | | | | - David Hostler
- Department of Exercise and Nutrition SciencesCenter for Research and Education in Special EnvironmentsBuffaloNYUSA
| | - Brendon P. McDermott
- Department of Health, Human Performance and RecreationUniversity of ArkansasFayettevilleARUSA
| | | | - Rebecca L. Stearns
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - Erica M. Filep
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - David W. DeGroot
- Fort Benning Heat CenterMartin Army Community HospitalFort BenningGAUSA
| | | | - Andreas D. Flouris
- Department of Exercise ScienceFAME LaboratoryUniversity of ThessalyTrikalaGreece
| | - Robert A. Huggins
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | | | - John F. Jardine
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - Rebecca M. Lopez
- School of Physical Therapy & Rehabilitation SciencesMorsani College of MedicineUniversity of South FloridaTampaFLUSA
| | | | - Yannis Pitisladis
- Collaborating Centre of Sports MedicineUniversity of BrightonBrightonUK
| | - Riana R. Pryor
- Department of Exercise and Nutrition SciencesCenter for Research and Education in Special EnvironmentsBuffaloNYUSA
| | - Zachary J. Schlader
- Department of KinesiologySchool of Public HealthIndiana UniversityBloomingtonIAUSA
| | - Caroline J. Smith
- Department of Health and Exercise ScienceAppalachian State UniversityBooneNCUSA
| | - Denise L. Smith
- Department of Health and Human Physiological SciencesFirst Responder Health and Safety LaboratorySkidmore CollegeSaratoga SpringsNYUSA
| | - June T. Spector
- Department of Environmental and Occupational Health SciencesSchool of Public HealthUniversity of WashingtonSeattleWAUSA
| | | | - W. Jon Williams
- Centers for Disease Control and Prevention (CDC)National Personal Protective Technology Laboratory (NPPTL)National Institute for Occupational Safety and Health (NIOSH)PittsburghPAUSA
| | - Nicole T. Vargas
- Faculty of Health SciencesUniversity of SydneySydneyNSWAustralia
| | - Susan W. Yeargin
- Department of Exercise ScienceArnold School of Public HealthUniversity of South CarolinaColumbiaSCUSA
| |
Collapse
|
17
|
Pokora I, Sadowska-Krępa E, Wolowski Ł, Wyderka P, Michnik A, Drzazga Z. The Effect of Medium-Term Sauna-Based Heat Acclimation (MPHA) on Thermophysiological and Plasma Volume Responses to Exercise Performed under Temperate Conditions in Elite Cross-Country Skiers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6906. [PMID: 34199101 PMCID: PMC8297353 DOI: 10.3390/ijerph18136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
The influence of a series of ten sauna baths (MPHA) on thermophysiological and selected hematological responses in 14 elite cross-country skiers to a submaximal endurance exercise test performed under thermoneutral environmental conditions was studied. Thermal and physiological variables were measured before and after the exercise test, whereas selected hematological indices were studied before, immediately after, and during recovery after a run, before (T1) and after sauna baths (T2). MPHA did not influence the baseline internal, body, and skin temperatures. There was a decrease in the resting heart rate (HR: p = 0.001) and physiological strain (PSI: p = 0.052) after MPHA and a significant effect of MPHA on systolic blood pressure (p = 0.03), hematological indices, and an exercise effect but no combined effect of treatments and exercise on the tested variables. A positive correlation was reported between PSI and total protein (%ΔTP) in T2 and a negative between plasma volume (%ΔPV) and mean red cellular volume (%ΔMCV) in T1 and T2 in response to exercise and a positive one during recovery. This may suggest that MPHA has a weak influence on body temperatures but causes a moderate decrease in PSI and modifications of plasma volume restoration in response to exercise under temperate conditions in elite athletes.
Collapse
Affiliation(s)
- Ilona Pokora
- Department of Physiological-Medical Sciences, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland;
| | - Ewa Sadowska-Krępa
- Department of Physiological-Medical Sciences, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland;
| | - Łukasz Wolowski
- Doctoral Studies, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (Ł.W.); (P.W.)
| | - Piotr Wyderka
- Doctoral Studies, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (Ł.W.); (P.W.)
| | - Anna Michnik
- The Silesian Centre for Education and Interdisciplinary Research, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (A.M.); (Z.D.)
| | - Zofia Drzazga
- The Silesian Centre for Education and Interdisciplinary Research, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (A.M.); (Z.D.)
| |
Collapse
|
18
|
Osborne JO, Stewart IB, Borg DN, Beagley KW, Buhmann RL, Minett GM. Short-term heat acclimation preserves knee extensor torque but does not improve 20 km self-paced cycling performance in the heat. Eur J Appl Physiol 2021; 121:2761-2772. [PMID: 34148124 PMCID: PMC8416835 DOI: 10.1007/s00421-021-04744-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/10/2021] [Indexed: 01/16/2023]
Abstract
Purpose This study investigated the effect of 5 days of heat acclimation training on neuromuscular function, intestinal damage, and 20 km cycling (20TT) performance in the heat. Methods Eight recreationally trained males completed two 5-day training blocks (cycling 60 min day−1 at 50% peak power output) in a counter-balanced, cross-over design, with a 20TT completed before and after each block. Training was conducted in hot (HA: 34.9 ± 0.7 °C, 53 ± 4% relative humidity) or temperate (CON: 22.2 ± 2.6 °C, 65 ± 8% relative humidity) environment. All 20TTs were completed in the heat (35.1 ± 0.5 °C, 51 ± 4% relative humidity). Neuromuscular assessment of knee extensors (5 × 5 s maximum voluntary contraction; MVC) was completed before and after each 20TT and on the first and last days of each training block. Results MVC torque was statistically higher after 5 days of HA training compared to CON (mean difference = 14 N m [95% confidence interval; 6, 23]; p < 0.001; d = 0.77). However, 20TT performance after 5 days of HA training was not statistically different to CON, with a between-conditions mean difference in the completion time of 68 s [95% confidence interval; − 9, 145] (p = 0.076; d = 0.35). Conclusion Short-term heat acclimation training may increase knee extensor strength without changes in central fatigue or intestinal damage. Nevertheless, it is insufficient to improve 20 km self-paced cycling performance in the heat compared to workload-matched training in a temperate environment. These data suggest that recreationally trained athletes gain no worthwhile performance advantage from short-term heat-training before competing in the heat. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-021-04744-y.
Collapse
Affiliation(s)
- John O Osborne
- School of Sport Sciences, UiT The Arctic University of Norway, Tromsø, Norway. .,School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane, Australia. .,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.
| | - Ian B Stewart
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | - David N Borg
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,The Hopkins Centre, Menzies Health Institute Queensland, Griffith University, Brisbane, Australia
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Robert L Buhmann
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, Australia
| | - Geoffrey M Minett
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
19
|
Meylan CMP, Bowman K, Stellingwerff T, Pethick WA, Trewin J, Koehle MS. The Efficacy of Heat Acclimatization Pre-World Cup in Female Soccer Players. Front Sports Act Living 2021; 3:614370. [PMID: 34113844 PMCID: PMC8185056 DOI: 10.3389/fspor.2021.614370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/06/2021] [Indexed: 11/25/2022] Open
Abstract
The efficacy of a 14-day field-based heat acclimatization (HA) training camp in 16 international female soccer players was investigated over three phases: phase 1: 8 days moderate HA (22. 1°C); phase 2: 6 days high HA (34.5°C); and phase 3: 11 days of post-HA (18.2°C), with heart rate (HR), training load, core temp (Tc), and perceptual ratings recorded throughout. The changes from baseline (day−16) in (i) plasma volume (PV), (ii) HR during a submaximal running test (HRex) and HR recovery (HRR), and (iii) pre-to-post phase 2 (days 8–13) in a 4v4 small-sided soccer game (4V4SSG) performance were assessed. Due to high variability, PV non-significantly increased by 7.4% ± 3.6% [standardized effect (SE) = 0.63; p = 0.130] from the start of phase 1 to the end of phase 2. Resting Tc dropped significantly [p < 0.001 by −0.47 ± 0.29°C (SE = −2.45)], from day 1 to day 14. Submaximal running HRR increased over phase 2 (HRR; SE = 0.53) after having decreased significantly from baseline (p = 0.03). While not significant (p > 0.05), the greatest HR improvements from baseline were delayed, occurring 11 days into phase 3 (HRex, SE = −0.42; HRR, SE = 0.37). The 4v4SSG revealed a moderate reduction in HRex (SE = −0.32; p = 0.007) and a large increase in HRR (SE = 1.27; p < 0.001) from pre-to-post phase 2. Field-based HA can induce physiological changes beneficial to soccer performance in temperate and hot conditions in elite females, and the submaximal running test appears to show HRex responses induced by HA up to 2 weeks following heat exposure.
Collapse
Affiliation(s)
- César M P Meylan
- Physical Performance Department, Canada Soccer, Ottawa, ON, Canada.,Division of Sports Medicine and School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Canadian Sport Institute Pacific, Victoria, BC, Canada
| | - Kimberly Bowman
- Division of Sports Medicine and School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Trent Stellingwerff
- Division of Sports Medicine and School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Canadian Sport Institute Pacific, Victoria, BC, Canada
| | | | - Joshua Trewin
- Physical Performance Department, Canada Soccer, Ottawa, ON, Canada.,Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Michael S Koehle
- Division of Sports Medicine and School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Wardenaar FC, Ortega-Santos CP, Vento KAS, Beaumont JS, Griffin SC, Johnston C, Kavouras SA. A 5-day Heat Acclimation Program Improves Heat Stress Indicators While Maintaining Exercise Capacity. J Strength Cond Res 2021; 35:1279-1286. [PMID: 33900261 DOI: 10.1519/jsc.0000000000003970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Wardenaar, FC, Ortega-Santos, CP, Vento, K, Beaumont, JS, Griffin, SC, Johnston, C, and Kavouras, SA. A 5-day heat acclimation program improves heat stress indicators while maintaining exercise capacity. J Strength Cond Res 35(5): 1279-1286, 2021-This study aimed to evaluate whether a daily 60 minutes isothermic biking protocol during a 5-day period could improve physiological heat acclimation and exercise performance capacity in partially acclimated subjects. A quasi-experimental study consisted of an intervention (INT, n = 7) and control (CON, n = 7) group completing 2 12 minutes Cooper tests (pre-CT on day 1 and post-CT on day 7) and a heat stress test (HST, on day 9). INT performed additional intensive exercise 1 hour per day on days 1-5, whereas CON did not. During CTs and HST, core temperature (Tc, telemetric capsule), skin temperature (Tsk, sensors at neck, right shoulder, left hand, and right shin), and heart rate (HR, chest strap) were continuously monitored and baseline, average, peak, and increment were calculated. During the HST, the INT group showed a smaller baseline-peak Tc increment (INT 0.88 ± 0.27 vs. CON 1.64 ± 0.90° C, p = 0.02), a lower HR peak (150.2 ± 12.6 vs. 173.0 ± 16.8 b·min-1, p = 0.02), and lower Tsk peak (36.47 ± 0.62 vs. 36.54 ± 0.46° C, p = 0.04). There was a nonsignificant, but practical difference based on a moderate effect size for change in pre-CT to post-CT performance of nearly +2.7 ± 12.3% in INT and -3.0 ± 8.5% in CON (p = 0.32 and d = 0.51), and HST distance covered resulting in a nonsignificant difference of 464 ± 849 m between INT and CON (p = 0.38 and d = 0.44). In conclusion a short-term 5-day heat acclimation program including 300 minutes of extra exercise resulted in positive physiological adaptions to heat stress, as indicated by lower core temperature and HR in comparison with a control group.
Collapse
Affiliation(s)
- Floris C Wardenaar
- Athleat Field Lab, College of Health Solutions, Arizona State University, Phoenix, Arizona
| | - Carmen P Ortega-Santos
- Athleat Field Lab, College of Health Solutions, Arizona State University, Phoenix, Arizona
| | - Kaila A S Vento
- Athleat Field Lab, College of Health Solutions, Arizona State University, Phoenix, Arizona
| | - Joshua S Beaumont
- Athleat Field Lab, College of Health Solutions, Arizona State University, Phoenix, Arizona
- Sun Devil Athletics, Arizona State University, Tempe, Arizona
| | - Stephanie C Griffin
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona; and
| | - Carol Johnston
- Athleat Field Lab, College of Health Solutions, Arizona State University, Phoenix, Arizona
- College of Health Solutions, Arizona State University, Phoenix, Arizona
| | - Stavros A Kavouras
- Athleat Field Lab, College of Health Solutions, Arizona State University, Phoenix, Arizona
- College of Health Solutions, Arizona State University, Phoenix, Arizona
| |
Collapse
|
21
|
Benjamin CL, Sekiguchi Y, Struder JF, Szymanski MR, Manning CN, Grundstein AJ, Lee EC, Huggins RA, Armstrong LE, Casa DJ. Heat Acclimation Following Heat Acclimatization Elicits Additional Physiological Improvements in Male Endurance Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084366. [PMID: 33924138 PMCID: PMC8074339 DOI: 10.3390/ijerph18084366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to assess the effectiveness of heat acclimatization (HAz) followed by heat acclimation (HA) on physiological adaptations. 25 male endurance athletes (age 36 ± 12 y, height 178.8 ± 6.39 cm, body mass 73.03 ± 8.97 kg, and VO2peak 57.5 ± 7.0 mL·kg-1·min-1) completed HAz and HA. HAz was 3 months of self-directed summer training. In the laboratory, a 5-day HA prescribed exercise to target a hyperthermic zone (HZHA) of Trec between 38.50 and 39.75 °C for 60 min. Exercise trials were 60 min of running (59% ± 2% VO2peak) in an environmental chamber (wet bulb globe temperature 29.53 ± 0.63 °C) and administered at: baseline, post-HAz, and post-HAz+HA. Measured variables included internal body temperature (Trec), heart rate (HR), and sweat rate (SR). Repeated measure ANOVAs and post hoc comparisons were used to assess statistically significant (p < 0.05) differences. Trec was lower post-HAz+HA (38.03 ± 0.39 °C) than post-HAz (38.25 ± 0.42 °C, p = 0.009) and baseline (38.29 ± 0.37 °C, p = 0.005). There were no differences between baseline and post-HAz (p = 0.479) in Trec. HR was lower post-HAz (143 ± 12 bpm, p = 0.002) and post-HAz+HA (134 ± 11 bpm, p < 0.001) than baseline (138 ± 14 bpm). HR was lower post-HAz+HA than post-HAz (p = 0.013). SR was higher post-HAz+HA (1.93 ± 0.47 L·h-1) than post-HAz (1.76 ± 0.43 L·h-1, p = 0.027). Combination HAz and HA increased physiological outcomes above HAz. This method can be used to improve performance and safety in addition to HAz alone.
Collapse
Affiliation(s)
- Courteney L. Benjamin
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT 06269, USA; (Y.S.); (J.F.S.); (M.R.S.); (C.N.M.); (R.A.H.); (L.E.A.); (D.J.C.)
- Department of Kinesiology, Samford University, Birmingham, AL 35229, USA
- Correspondence:
| | - Yasuki Sekiguchi
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT 06269, USA; (Y.S.); (J.F.S.); (M.R.S.); (C.N.M.); (R.A.H.); (L.E.A.); (D.J.C.)
| | - Jeb F. Struder
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT 06269, USA; (Y.S.); (J.F.S.); (M.R.S.); (C.N.M.); (R.A.H.); (L.E.A.); (D.J.C.)
| | - Michael R. Szymanski
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT 06269, USA; (Y.S.); (J.F.S.); (M.R.S.); (C.N.M.); (R.A.H.); (L.E.A.); (D.J.C.)
| | - Ciara N. Manning
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT 06269, USA; (Y.S.); (J.F.S.); (M.R.S.); (C.N.M.); (R.A.H.); (L.E.A.); (D.J.C.)
| | | | - Elaine C. Lee
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA;
| | - Robert A. Huggins
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT 06269, USA; (Y.S.); (J.F.S.); (M.R.S.); (C.N.M.); (R.A.H.); (L.E.A.); (D.J.C.)
| | - Lawrence E. Armstrong
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT 06269, USA; (Y.S.); (J.F.S.); (M.R.S.); (C.N.M.); (R.A.H.); (L.E.A.); (D.J.C.)
| | - Douglas J. Casa
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT 06269, USA; (Y.S.); (J.F.S.); (M.R.S.); (C.N.M.); (R.A.H.); (L.E.A.); (D.J.C.)
| |
Collapse
|
22
|
Effects of Heat Acclimation and Acclimatisation on Maximal Aerobic Capacity Compared to Exercise Alone in Both Thermoneutral and Hot Environments: A Meta-Analysis and Meta-Regression. Sports Med 2021; 51:1509-1525. [PMID: 33811616 PMCID: PMC8222027 DOI: 10.1007/s40279-021-01445-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2021] [Indexed: 11/25/2022]
Abstract
Background Heat acclimation and acclimatisation (HA) is typically used to enhance tolerance to the heat, thereby improving performance. HA might also confer a positive adaptation to maximal oxygen consumption (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{\text{O}}_{2\max }$$\end{document}VO2max), although this has been historically debated and requires clarification via meta-analysis. Objectives (1) To meta-analyse all studies (with and without control groups) that have investigated the effect of HA on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{\text{O}}_{2\max }$$\end{document}VO2max adaptation in thermoneutral or hot environments; (2) Conduct meta-regressions to establish the moderating effect of selected variables on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{\text{O}}_{2\max }$$\end{document}VO2max adaptation following HA. Methods A search was performed using various databases in May 2020. The studies were screened using search criteria for eligibility. Twenty-eight peer-reviewed articles were identified for inclusion across four separate meta-analyses: (1) Thermoneutral \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{\text{O}}_{2\max }$$\end{document}VO2max within-participants (pre-to-post HA); (2) Hot \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{\text{O}}_{2\max }$$\end{document}VO2max within-participants (pre-to-post HA); (3) Thermoneutral \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{\text{O}}_{2\max }$$\end{document}VO2max measurement; HA vs. control groups; (4) Hot \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{\text{O}}_{2\max }$$\end{document}VO2max measurement, HA vs. control groups. Meta-regressions were performed for each meta-analysis based on: isothermal vs. iso-intensity programmes, days of heat exposure, HA ambient temperature (°C), heat index, HA session duration (min), ambient thermal load (HA session x ambient temperature), mean mechanical intensity (W) and the post-HA testing period (days). Results The meta-analysis of pre–post differences in thermoneutral \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{\text{O}}_{2\max }$$\end{document}VO2max demonstrated small-to-moderate improvements in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{\text{O}}_{2\max }$$\end{document}VO2max (Hedges’ g = 0.42, 95% CI 0.24–0.59, P < 0.001), whereas moderate improvements were found for the equivalent analysis of hot \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{\text{O}}_{2\max }$$\end{document}VO2max changes (Hedges’ g = 0.63, 95% CI 0.26–1.00, P < 0.001), which were positively moderated by the number of days post-testing (P = 0.033, β = 0.172). Meta-analysis of control vs. HA thermoneutral \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{\text{O}}_{2\max }$$\end{document}VO2max demonstrated a small improvement in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{\text{O}}_{2\max }$$\end{document}VO2max in HA compared to control (Hedges’ g = 0.30, 95% CI 0.06–0.54, P = 0.014) and this effect was larger for the equivalent hot \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{\text{O}}_{2\max }$$\end{document}VO2max analysis where a higher (moderate-to-large) improvement in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{\text{O}}_{2\max }$$\end{document}VO2max was found (Hedges’ g = 0.75, 95% CI 0.22–1.27, P = 0.005), with the number of HA days (P = 0.018; β = 0.291) and the ambient temperature during HA (P = 0.003; β = 0.650) positively moderating this effect. Conclusion HA can enhance \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{\text{O}}_{2\max }$$\end{document}VO2max adaptation in thermoneutral or hot environments, with or without control group consideration, by at least a small and up to a moderate–large amount, with the larger improvements occurring in the heat. Ambient heat, number of induction days and post-testing days can explain some of the changes in hot \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{\text{O}}_{2\max }$$\end{document}VO2max adaptation.
Collapse
|
23
|
Callovini A, Fornasiero A, Savoldelli A, Stella F, Low DA, Pellegrini B, Schena F, Bortolan L. Effects of three-exercise sessions in the heat on endurance cycling performance. J Therm Biol 2021; 98:102925. [PMID: 34016347 DOI: 10.1016/j.jtherbio.2021.102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the effects of a very short-term acclimation protocol (VSTAP) on performance, physiological and perceptual responses to exercise in the heat. METHODS 12 trained male cyclists (age 31.2 ± 7; weight 71.3 ± 7 kg, VO2max: 58.4 ± 3.7 mL/kg/min) randomly performed two Time to Exhaustion Tests (TTE) at 75% of normothermic peak power output (PPO), one in normothermia (N,18°C-50% RH) and one in the heat (H,35°C-50% RH), before and after a VSTAP intervention, consisting of 3 days-90 min exercise (10min at 30% of PPO+80 min at 50% of PPO) in H (≈4.5h of heat exposure). Performance time of TTEs and physiological and perceptual variables of both TTEs and training sessions (T1, T2 and T3) were evaluated. RESULTS Magnitude Based Inferences (MBI) revealed 92/6/1% and 62/27/11% chances of positive/trivial/negative effects of VSTAP of improving performance in H (+17%) and in N (+9%), respectively. Heart Rate (HR) decreased from T1 to T3 (p < 0.001) and T2 to T3 (p < 0.001), whereas Tympanic Temperature (TyT) decreased from T1 to T2 (p = 0.047) and from T1 to T3 (p = 0.007). Furthermore, despite the increased tolerance to target Power Output (PO) throughout training sessions, RPE decreased from T1 to T3 (p = 0.032). CONCLUSIONS The VSTAP determined meaningful physiological (i.e. decreased HR and TyT) and perceptual (i.e. decreased RPE) adaptations to submaximal exercise. Furthermore, showing good chances to improve performance in the heat, it represents a valid acclimation strategy to be implemented when no longer acclimation period is possible. Finally, no cross-over effect of the VSTAP on performance in temperate conditions was detected.
Collapse
Affiliation(s)
- Alexa Callovini
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Alessandro Fornasiero
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Aldo Savoldelli
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Federico Stella
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy.
| | - David A Low
- Liverpool John Moores University, Research Institute for Sport and Exercise Sciences (RISES), Liverpool, United Kingdom.
| | - Barbara Pellegrini
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Federico Schena
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Lorenzo Bortolan
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
24
|
Corbett J, Massey HC, Costello JT, Tipton MJ, Neal RA. The effect of medium-term heat acclimation on endurance performance in a temperate environment. Eur J Sport Sci 2021; 22:190-199. [PMID: 33241974 DOI: 10.1080/17461391.2020.1856935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We investigated whether an 11-day heat acclimation programme (HA) enhanced endurance performance in a temperate environment, and the mechanisms underpinning any ergogenic effect. Twenty-four males (V̇O2max: 56.7 ± 7.5 mL·kg-1·min-1) completed either: (i) HA consisting of 11 consecutive daily exercise sessions (60-90 min·day-1; n = 16) in a hot environment (40°C, 50% RH) or; (ii) duration and exertion matched exercise in cool conditions (CON; n = 8 [11°C, 60% RH]). Before and after each programme power at lactate threshold, mechanical efficiency, VO2max, peak power output (PPO) and work done during a 30-minute cycle trial (T30) were determined under temperate conditions (22°C, 50% RH). HA reduced resting (-0.34 ± 0.30°C) and exercising (-0.43 ± 0.30°C) rectal temperature, and increased whole-body sweating (+0.37 ± 0.31 L·hr-1) (all P≤0.001), with no change in CON. Plasma volume increased in HA (10.1 ± 7.2%, P < 0.001) and CON (7.2 ± 6.3%, P = 0.015) with no between-groups difference, whereas exercise heart rate reduced in both groups, but to a greater extent in HA (-20 ± 11 b·min-1) than CON (-6 ± 4 b·min-1). VO2max, lactate threshold and mechanical efficiency were unaffected by HA. PPO increased in both groups (+14 ± 18W), but this was not related to alterations in any of the performance or thermal variables, and T30 performance was unchanged in either group (HA: Pre = 417 ± 90 vs. Post = 427 ± 83 kJ; CON: Pre = 418 ± 63 vs. Post = 423 ± 56 kJ). In conclusion, 11-days HA induces thermophysiological adaptations, but does not alter the key determinants of endurance performance. In trained males, the effect of HA on endurance performance in temperate conditions is no greater than that elicited by exertion and duration matched exercise training in cool conditions.
Collapse
Affiliation(s)
- Jo Corbett
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Heather C Massey
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Joseph T Costello
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Michael J Tipton
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Rebecca A Neal
- Department of Rehabilitation and Sport Sciences, Bournemouth University, Poole, UK
| |
Collapse
|
25
|
Sex differences in the physiological adaptations to heat acclimation: a state-of-the-art review. Eur J Appl Physiol 2020; 121:353-367. [PMID: 33205218 DOI: 10.1007/s00421-020-04550-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Over the last few decades, females have significantly increased their participation in athletic competitions and occupations (e.g. military, firefighters) in hot and thermally challenging environments. Heat acclimation, which involves repeated passive or active heat exposures that lead to physiological adaptations, is a tool commonly used to optimize performance in the heat. However, the scientific community's understanding of adaptations to heat acclimation are largely based on male data, complicating the generalizability to female populations. Though limited, current evidence suggests that females may require a greater number of heat acclimation sessions or greater thermal stress to achieve the same magnitude of physiological adaptations as males. The underlying mechanisms explaining the temporal sex differences in the physiological adaptations to heat acclimation are currently unclear. Therefore, the aims of this state-of-the-art review are to: (i) present a brief yet comprehensive synthesis of the current female and sex difference literature, (ii) highlight sex-dependent (e.g. anthropometric, menstrual cycle) and sex-independent factors (e.g. environmental conditions, fitness) influencing the physiological and performance adaptations to heat acclimation, and (iii) address key avenues for future research.
Collapse
|
26
|
Waldron M, Papavasileiou G, Jeffries O, Nevola V, Heffernan S M, Kilduff L, Tallent J. Concurrent adaptations in maximal aerobic capacity, heat tolerance, microvascular blood flow and oxygen extraction following heat acclimation and ischemic preconditioning. J Therm Biol 2020; 93:102724. [PMID: 33077136 DOI: 10.1016/j.jtherbio.2020.102724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/29/2022]
Abstract
We investigated the effects of: 1) Ischemic pre-conditioning (IPC) plus a concurrent five-day heat acclimation + IPC (IPC + HA), 2) five-day HA with sham IPC (HA), or 3) control (CON) on thermoneutral measurements of endurance performance, resting measures of skeletal muscle oxygenation and blood flow. Twenty-nine participants were randomly allocated to three groups, which included: 1) five-days of repeated leg occlusion (4 x 5-min) IPC at limb occlusive pressure, plus fixed-intensity (55% V˙ O2max) cycling HA at ~36 °C/40% humidity; 2) HA plus sham IPC (20 mmHg) or 3) or CON (thermoneutral 55% V˙ O2max plus sham IPC). In IPC + HA and HA, there were increases in maximal oxygen consumption (O2max) (7.8% and 5.4%, respectively; P < 0.05), ventilatory threshold (VT) (5.6% and 2.4%, respectively, P < 0.05), delta efficiency (DE) (2.0% and 1.4%, respectively; P < 0.05) and maximum oxygen pulse (O2pulse-Max) (7.0% and 6.9%, respectively; P < 0.05) during an exhaustive incremental test. There were no changes for CON (P > 0.05). Changes (P < 0.05) in resting core temperature (TC), muscle oxygen consumption (m V˙ O2), and limb blood flow (LBF) were also found pre-to-post intervention among the HA and IPC + HA groups, but not in CON (P > 0.05). Five-days of either HA or IPC + HA can enhance markers of endurance performance in cooler environments, alongside improved muscle oxygen extraction, blood flow, exercising muscle efficiency and O2 pulse at higher intensities, thus suggesting the occurrence of peripheral adaptation. Both HA and IPC + HA enhance the adaptation of endurance capacity, which might partly relate to peripheral changes.
Collapse
Affiliation(s)
- M Waldron
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK; School of Science and Technology, University of New England, NSW, Australia; Welsh Institute of Performance Science, Swansea University, Swansea, UK.
| | - G Papavasileiou
- Sport, Health and Applied Sciences, St Mary's University, London, UK
| | - O Jeffries
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - V Nevola
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK; Defence Science and Technology Laboratory (Dstl), Fareham, Hampshire, UK
| | - M Heffernan S
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - L Kilduff
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK; Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - J Tallent
- Sport, Health and Applied Sciences, St Mary's University, London, UK
| |
Collapse
|
27
|
Mang ZA, Fennel ZJ, Realzola RA, Wells AD, McKenna Z, Droemer C, Houck JM, Nava RC, Mermier CM, Amorim FT. Heat acclimation during low‐intensity exercise increases and Hsp72, but not markers of mitochondrial biogenesis and oxidative phosphorylation, in skeletal tissue. Exp Physiol 2020; 106:290-301. [DOI: 10.1113/ep088563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Zachary A. Mang
- Department of Health, Exercise, and Sport Science University of New Mexico Albuquerque NM 87131 USA
| | - Zachary J. Fennel
- Department of Health, Exercise, and Sport Science University of New Mexico Albuquerque NM 87131 USA
| | - Rogelio A. Realzola
- Department of Health, Exercise, and Sport Science University of New Mexico Albuquerque NM 87131 USA
| | - Andrew D. Wells
- Department of Health, Exercise, and Sport Science University of New Mexico Albuquerque NM 87131 USA
| | - Zachary McKenna
- Department of Health, Exercise, and Sport Science University of New Mexico Albuquerque NM 87131 USA
| | - Christian Droemer
- Department of Health, Exercise, and Sport Science University of New Mexico Albuquerque NM 87131 USA
| | - Jonathan M. Houck
- Department of Health, Exercise, and Sport Science University of New Mexico Albuquerque NM 87131 USA
| | - Roberto C. Nava
- Department of Health, Exercise, and Sport Science University of New Mexico Albuquerque NM 87131 USA
| | - Christine M. Mermier
- Department of Health, Exercise, and Sport Science University of New Mexico Albuquerque NM 87131 USA
| | - Fabiano T. Amorim
- Department of Health, Exercise, and Sport Science University of New Mexico Albuquerque NM 87131 USA
| |
Collapse
|