1
|
Loeck T, Rugi M, Todesca LM, Kalinowska P, Soret B, Neumann I, Schimmelpfennig S, Najder K, Pethő Z, Farfariello V, Prevarskaya N, Schwab A. The context-dependent role of the Na +/Ca 2+-exchanger (NCX) in pancreatic stellate cell migration. Pflugers Arch 2023; 475:1225-1240. [PMID: 37566113 PMCID: PMC10499968 DOI: 10.1007/s00424-023-02847-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
Pancreatic stellate cells (PSCs) that can co-metastasize with cancer cells shape the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) by producing an excessive amount of extracellular matrix. This leads to a TME characterized by increased tissue pressure, hypoxia, and acidity. Moreover, cells within the tumor secrete growth factors. The stimuli of the TME trigger Ca2+ signaling and cellular Na+ loading. The Na+/Ca2+ exchanger (NCX) connects the cellular Ca2+ and Na+ homeostasis. The NCX is an electrogenic transporter, which shuffles 1 Ca2+ against 3 Na+ ions over the plasma membrane in a forward or reverse mode. Here, we studied how the impact of NCX activity on PSC migration is modulated by cues from the TME. NCX expression was revealed with qPCR and Western blot. [Ca2+]i, [Na+]i, and the cell membrane potential were determined with the fluorescent indicators Fura-2, Asante NaTRIUM Green-2, and DiBAC4(3), respectively. PSC migration was quantified with live-cell imaging. To mimic the TME, PSCs were exposed to hypoxia, pressure, acidic pH (pH 6.6), and PDGF. NCX-dependent signaling was determined with Western blot analyses. PSCs express NCX1.3 and NCX1.9. [Ca2+]i, [Na+]i, and the cell membrane potential are 94.4 nmol/l, 7.4 mmol/l, and - 39.8 mV, respectively. Thus, NCX1 usually operates in the forward (Ca2+ export) mode. NCX1 plays a differential role in translating cues from the TME into an altered migratory behavior. When NCX1 is operating in the forward mode, its inhibition accelerates PSC migration. Thus, NCX1-mediated extrusion of Ca2+ contributes to a slow mode of migration of PSCs.
Collapse
Affiliation(s)
- Thorsten Loeck
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Luca Matteo Todesca
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Paulina Kalinowska
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Benjamin Soret
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
- Université de Lille, Inserm, U1003 - PhyCell - Physiologie Cellulaire, F-59000, Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Ilka Neumann
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Sandra Schimmelpfennig
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Karolina Najder
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Zoltán Pethő
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Valerio Farfariello
- Université de Lille, Inserm, U1003 - PhyCell - Physiologie Cellulaire, F-59000, Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Université de Lille, Inserm, U1003 - PhyCell - Physiologie Cellulaire, F-59000, Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany.
| |
Collapse
|
2
|
Wang Z, He R, Dong S, Zhou W. Pancreatic stellate cells in pancreatic cancer: as potential targets for future therapy. Front Oncol 2023; 13:1185093. [PMID: 37409257 PMCID: PMC10318188 DOI: 10.3389/fonc.2023.1185093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Pancreatic cancer is a strongly malignant gastrointestinal carcinoma characterized by late detection, high mortality rates, poor patient prognosis and lack of effective treatments. Consequently, there is an urgent need to identify novel therapeutic strategies for this disease. Pancreatic stellate cells, which constitute a significant component of the mesenchymal cellular layer within the pancreatic tumor microenvironment, play a pivotal role in modulating this environment through their interactions with pancreatic cancer cells. This paper reviews the mechanisms by which pancreatic stellate cells inhibit antitumor immune responses and promote cancer progression. We also discuss preclinical studies focusing on these cells, with the goal of providing some theoretical references for the development of new therapeutic approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ru He
- The Second School of Clinical Medicine, Lanzhou University Medical College, Lanzhou, China
| | - Shi Dong
- The Second School of Clinical Medicine, Lanzhou University Medical College, Lanzhou, China
| | - Wence Zhou
- The Second School of Clinical Medicine, Lanzhou University Medical College, Lanzhou, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Giarrizzo M, LaComb JF, Bialkowska AB. The Role of Krüppel-like Factors in Pancreatic Physiology and Pathophysiology. Int J Mol Sci 2023; 24:ijms24108589. [PMID: 37239940 DOI: 10.3390/ijms24108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Krüppel-like factors (KLFs) belong to the family of transcription factors with three highly conserved zinc finger domains in the C-terminus. They regulate homeostasis, development, and disease progression in many tissues. It has been shown that KLFs play an essential role in the endocrine and exocrine compartments of the pancreas. They are necessary to maintain glucose homeostasis and have been implicated in the development of diabetes. Furthermore, they can be a vital tool in enabling pancreas regeneration and disease modeling. Finally, the KLF family contains proteins that act as tumor suppressors and oncogenes. A subset of members has a biphasic function, being upregulated in the early stages of oncogenesis and stimulating its progression and downregulated in the late stages to allow for tumor dissemination. Here, we describe KLFs' function in pancreatic physiology and pathophysiology.
Collapse
Affiliation(s)
- Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
4
|
Zhang Y, Zhang WQ, Liu XY, Zhang Q, Mao T, Li XY. Immune cells and immune cell-targeted therapy in chronic pancreatitis. Front Oncol 2023; 13:1151103. [PMID: 36969002 PMCID: PMC10034053 DOI: 10.3389/fonc.2023.1151103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, studies have attempted to understand the immune cells and mechanisms underlying the pathogenesis of chronic pancreatitis (CP) by constructing a model of CP. Based on these studies, the innate immune response is a key factor in disease pathogenesis and inflammation severity. Novel mechanisms of crosstalk between immune and non-immune pancreatic cells, such as pancreatic stellate cells (PSC), have also been explored. Immune cells, immune responses, and signaling pathways in CP are important factors in the development and progression of pancreatitis. Based on these mechanisms, targeted therapy may provide a feasible scheme to stop or reverse the progression of the disease in the future and provide a new direction for the treatment of CP. This review summarizes the recent advances in research on immune mechanisms in CP and the new advances in treatment based on these mechanisms.
Collapse
|
5
|
Almanzar VMD, Shah K, LaComb JF, Mojumdar A, Patel HR, Cheung J, Tang M, Ju J, Bialkowska AB. 5-FU-miR-15a Inhibits Activation of Pancreatic Stellate Cells by Reducing YAP1 and BCL-2 Levels In Vitro. Int J Mol Sci 2023; 24:3954. [PMID: 36835366 PMCID: PMC9961454 DOI: 10.3390/ijms24043954] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Chronic pancreatitis is characterized by chronic inflammation and fibrosis, processes heightened by activated pancreatic stellate cells (PSCs). Recent publications have demonstrated that miR-15a, which targets YAP1 and BCL-2, is significantly downregulated in patients with chronic pancreatitis compared to healthy controls. We have utilized a miRNA modification strategy to enhance the therapeutic efficacy of miR-15a by replacing uracil with 5-fluorouracil (5-FU). We demonstrated increased levels of YAP1 and BCL-2 (both targets of miR-15a) in pancreatic tissues obtained from Ptf1aCreERTM and Ptf1aCreERTM;LSL-KrasG12D mice after chronic pancreatitis induction as compared to controls. In vitro studies showed that delivery of 5-FU-miR-15a significantly decreased viability, proliferation, and migration of PSCs over six days compared to 5-FU, TGFβ1, control miR, and miR-15a. In addition, treatment of PSCs with 5-FU-miR-15a in the context of TGFβ1 treatment exerted a more substantial effect than TGFβ1 alone or when combined with other miRs. Conditioned medium obtained from PSC cells treated with 5-FU-miR-15a significantly inhibits the invasion of pancreatic cancer cells compared to controls. Importantly, we demonstrated that treatment with 5-FU-miR-15a reduced the levels of YAP1 and BCL-2 observed in PSCs. Our results strongly suggest that ectopic delivery of miR mimetics is a promising therapeutic approach for pancreatic fibrosis and that 5-FU-miR-15a shows specific promise.
Collapse
Affiliation(s)
- Vanessa M. Diaz Almanzar
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Kunal Shah
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F. LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Aisharja Mojumdar
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Hetvi R. Patel
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Jacky Cheung
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Meiyi Tang
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
Zhang T, Ren Y, Yang P, Wang J, Zhou H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Cell Death Dis 2022; 13:897. [PMID: 36284087 PMCID: PMC9596464 DOI: 10.1038/s41419-022-05351-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a prominent extracellular matrix (ECM) deposition and poor prognosis. High levels of ECM proteins derived from tumour cells reduce the efficacy of conventional cancer treatment paradigms and contribute to tumour progression and metastasis. As abundant tumour-promoting cells in the ECM, cancer-associated fibroblasts (CAFs) are promising targets for novel anti-tumour interventions. Nonetheless, related clinical trials are hampered by the lack of specific markers and elusive differences between CAF subtypes. Here, we review the origins and functional diversity of CAFs and show how they create a tumour-promoting milieu, focusing on the crosstalk between CAFs, tumour cells, and immune cells in the tumour microenvironment. Furthermore, relevant clinical advances and potential therapeutic strategies relating to CAFs are discussed.
Collapse
Affiliation(s)
- Tianyi Zhang
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yanxian Ren
- grid.412643.60000 0004 1757 2902Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Pengfei Yang
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jufang Wang
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Heng Zhou
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
7
|
Activation of pancreatic stellate cells attenuates intracellular Ca 2+ signals due to downregulation of TRPA1 and protects against cell death induced by alcohol metabolites. Cell Death Dis 2022; 13:744. [PMID: 36038551 PMCID: PMC9421659 DOI: 10.1038/s41419-022-05186-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 01/21/2023]
Abstract
Alcohol abuse, an increasing problem in developed societies, is one of the leading causes of acute and chronic pancreatitis. Alcoholic pancreatitis is often associated with fibrosis mediated by activated pancreatic stellate cells (PSCs). Alcohol toxicity predominantly depends on its non-oxidative metabolites, fatty acid ethyl esters, generated from ethanol and fatty acids. Although the role of non-oxidative alcohol metabolites and dysregulated Ca2+ signalling in enzyme-storing pancreatic acinar cells is well established as the core mechanism of pancreatitis, signals in PSCs that trigger fibrogenesis are less clear. Here, we investigate real-time Ca2+ signalling, changes in mitochondrial potential and cell death induced by ethanol metabolites in quiescent vs TGF-β-activated PSCs, compare the expression of Ca2+ channels and pumps between the two phenotypes and the consequences these differences have on the pathogenesis of alcoholic pancreatitis. The extent of PSC activation in the pancreatitis of different aetiologies has been investigated in three animal models. Unlike biliary pancreatitis, alcohol-induced pancreatitis results in the activation of PSCs throughout the entire tissue. Ethanol and palmitoleic acid (POA) or palmitoleic acid ethyl ester (POAEE) act directly on quiescent PSCs, inducing cytosolic Ca2+ overload, disrupting mitochondrial functions, and inducing cell death. However, activated PSCs acquire remarkable resistance against ethanol metabolites via enhanced Ca2+-handling capacity, predominantly due to the downregulation of the TRPA1 channel. Inhibition or knockdown of TRPA1 reduces EtOH/POA-induced cytosolic Ca2+ overload and protects quiescent PSCs from cell death, similarly to the activated phenotype. Our results lead us to review current dogmas on alcoholic pancreatitis. While acinar cells and quiescent PSCs are prone to cell death caused by ethanol metabolites, activated PSCs can withstand noxious signals and, despite ongoing inflammation, deposit extracellular matrix components. Modulation of Ca2+ signals in PSCs by TRPA1 agonists/antagonists could become a strategy to shift the balance of tissue PSCs towards quiescent cells, thus limiting pancreatic fibrosis.
Collapse
|
8
|
Radoslavova S, Fels B, Pethö Z, Gruner M, Ruck T, Meuth SG, Folcher A, Prevarskaya N, Schwab A, Ouadid-Ahidouch H. TRPC1 channels regulate the activation of pancreatic stellate cells through ERK1/2 and SMAD2 pathways and perpetuate their pressure-mediated activation. Cell Calcium 2022; 106:102621. [PMID: 35905654 DOI: 10.1016/j.ceca.2022.102621] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/02/2022]
Abstract
Pancreatic stellate cell (PSC) activation is a major event occurring during pancreatic ductal adenocarcinoma (PDAC) development. Up to now mechanisms underlying their activation by mechanical cues such as the elevated tissue pressure in PDAC remain poorly understood. Here we investigate the role of one potential mechano-transducer, TRPC1 ion channel, in PSC activation. Using pre-activated human siTRPC1 and murine TRPC1-KO PSCs, we show that TRPC1 promotes αSMA (α-smooth muscle actin) expression, the main activation marker, in cooperation with the phosphorylated SMAD2, under normal and elevated pressure. Functional studies following TRPC1 silencing demonstrate the dual role of TRPC1 in the modulation of PSC proliferation and IL-6 secretion through the activation of ERK1/2 and SMAD2 pathways. Moreover, pressurization changes the mechanical behavior of PSCs by increasing their cellular stiffness and emitted traction forces in a TRPC1-dependent manner. In summary, these results point to a role of TRPC1 channels in sensing and transducing the characteristic mechanical properties of the PDAC microenvironment in PSCs.
Collapse
Affiliation(s)
- Silviya Radoslavova
- Laboratory of Cellular and Molecular Physiology, UR-UPJV 4667, University of Picardie Jules Verne, 80039 Amiens, France; University of Lille, Inserm U1003 - PHYCEL - Cellular Physiology, F-59000 Lille, France
| | - Benedikt Fels
- Institute of Physiology, University Lübeck, Lübeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Zoltan Pethö
- Institute of Physiology II, University Münster, Münster, Germany
| | - Matthias Gruner
- Institute of Physiology II, University Münster, Münster, Germany
| | - Tobias Ruck
- Klinik für Neurologie, Medical Faculty, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Klinik für Neurologie, Medical Faculty, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Antoine Folcher
- University of Lille, Inserm U1003 - PHYCEL - Cellular Physiology, F-59000 Lille, France
| | - Natalia Prevarskaya
- University of Lille, Inserm U1003 - PHYCEL - Cellular Physiology, F-59000 Lille, France.
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, Münster, Germany.
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-UPJV 4667, University of Picardie Jules Verne, 80039 Amiens, France.
| |
Collapse
|
9
|
Cytoglobin attenuates pancreatic cancer growth via scavenging reactive oxygen species. Oncogenesis 2022; 11:23. [PMID: 35504863 PMCID: PMC9065067 DOI: 10.1038/s41389-022-00389-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
Pancreatic cancer is a highly challenging malignancy with extremely poor prognosis. Cytoglobin (CYGB), a hemeprotein involved in liver fibrosis and cancer development, is expressed in pericytes of all organs. Here, we examined the role of CYGB in the development of pancreatic cancer. CYGB expression appeared predominately in the area surrounding adenocarcinoma and negatively correlated with tumor size in patients with pancreatic cancer. Directly injecting 7, 12-dimethylbenz[a]anthracene into the pancreatic tail in wild-type mice resulted in time-dependent induction of severe pancreatitis, fibrosis, and oxidative damage, which was rescued by Cygb overexpression in transgenic mice. Pancreatic cancer incidence was 93% in wild-type mice but only 55% in transgenic mice. Enhanced CYGB expression in human pancreatic stellate cells in vitro reduced cellular collagen synthesis, inhibited cell activation, increased expression of antioxidant-related genes, and increased CYGB secretion into the medium. Cygb-overexpressing or recombinant human CYGB (rhCYGB) -treated MIA PaCa-2 cancer cells exhibited dose-dependent cell cycle arrest at the G1 phase, diminished cell migration, and reduction in colony formation. RNA sequencing in rhCYGB-treated MIA PaCa-2 cells revealed downregulation of cell cycle and oxidative phosphorylation pathways. An increase in MIA PaCa-2 cell proliferation and reactive oxygen species production by H2O2 challenge was blocked by rhCYGB treatment or Cygb overexpression. PANC-1, OCUP-A2, and BxPC-3 cancer cells showed similar responses to rhCYGB. Known antioxidants N-acetyl cysteine and glutathione also inhibited cancer cell growth. These results demonstrate that CYGB suppresses pancreatic stellate cell activation, pancreatic fibrosis, and tumor growth, suggesting its potential therapeutic application against pancreatic cancer.
Collapse
|
10
|
RNAi-Based Approaches for Pancreatic Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13101638. [PMID: 34683931 PMCID: PMC8541396 DOI: 10.3390/pharmaceutics13101638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is one of the most lethal forms of cancer, predicted to be the second leading cause of cancer-associated death by 2025. Despite intensive research for effective treatment strategies and novel anticancer drugs over the past decade, the overall patient survival rate remains low. RNA interference (RNAi) is capable of interfering with expression of specific genes and has emerged as a promising approach for pancreatic cancer because genetic aberrations and dysregulated signaling are the drivers for tumor formation and the stromal barrier to conventional therapy. Despite its therapeutic potential, RNA-based drugs have remaining hurdles such as poor tumor delivery and susceptibility to serum degradation, which could be overcome with the incorporation of nanocarriers for clinical applications. Here we summarize the use of small interfering RNA (siRNA) and microRNA (miRNA) in pancreatic cancer therapy in preclinical reports with approaches for targeting either the tumor or tumor microenvironment (TME) using various types of nanocarriers. In these studies, inhibition of oncogene expression and induction of a tumor suppressive response in cancer cells and surrounding immune cells in TME exhibited a strong anticancer effect in pancreatic cancer models. The review discusses the remaining challenges and prospective strategies suggesting the potential of RNAi-based therapeutics for pancreatic cancer.
Collapse
|
11
|
Pancreatic Cancer Small Extracellular Vesicles (Exosomes): A Tale of Short- and Long-Distance Communication. Cancers (Basel) 2021; 13:cancers13194844. [PMID: 34638330 PMCID: PMC8508300 DOI: 10.3390/cancers13194844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Even today, pancreatic cancer still has a dismal prognosis. It is characterized by a lack of early symptoms and thus late diagnosis as well as early metastasis. The majority of patients suffer from pancreatic ductal adenocarcinoma (PDAC). PDACs communicate extensively with cellular components of their microenvironment, but also with distant metastatic niches to facilitate tumor progression and dissemination. This crosstalk is substantially enabled by small extracellular vesicles (sEVs, exosomes) with a size of 30–150 nm that are released from the tumor cells. sEVs carry bioactive cargos that reprogram target cells to promote tumor growth, migration, metastasis, immune evasion, or chemotherapy resistance. Interestingly, sEVs also carry novel diagnostic, prognostic and potentially also predictive biomarkers. Moreover, engineered sEVs may be utilized as therapeutic agents, improving treatment options. The role of sEVs for PDAC development, progression, diagnosis, prognosis, and treatment is the focus of this review. Abstract Even with all recent advances in cancer therapy, pancreatic cancer still has a dismal 5-year survival rate of less than 7%. The most prevalent tumor subtype is pancreatic ductal adenocarcinoma (PDAC). PDACs display an extensive crosstalk with their tumor microenvironment (TME), e.g., pancreatic stellate cells, but also immune cells to regulate tumor growth, immune evasion, and metastasis. In addition to crosstalk in the local TME, PDACs were shown to induce the formation of pre-metastatic niches in different organs. Recent advances have attributed many of these interactions to intercellular communication by small extracellular vesicles (sEVs, exosomes). These nanovesicles are derived of endo-lysosomal structures (multivesicular bodies) with a size range of 30–150 nm. sEVs carry various bioactive cargos, such as proteins, lipids, DNA, mRNA, or miRNAs and act in an autocrine or paracrine fashion to educate recipient cells. In addition to tumor formation, progression, and metastasis, sEVs were described as potent biomarker platforms for diagnosis and prognosis of PDAC. Advances in sEV engineering have further indicated that sEVs might once be used as effective drug carriers. Thus, extensive sEV-based communication and applications as platform for biomarker analysis or vehicles for treatment suggest a major impact of sEVs in future PDAC research.
Collapse
|
12
|
Orai1 Channel Regulates Human-Activated Pancreatic Stellate Cell Proliferation and TGF β1 Secretion through the AKT Signaling Pathway. Cancers (Basel) 2021; 13:cancers13102395. [PMID: 34063470 PMCID: PMC8156432 DOI: 10.3390/cancers13102395] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Activated pancreatic stellate cells (aPSCs), the main source of cancer-associated fibroblasts in pancreatic ductal adenocarcinoma (PDAC), are well known as the key actor of the abundant fibrotic stroma development surrounding the tumor cells. In permanent communication with the tumor cells, they enhance PDAC early spreading and limit the drug delivery. However, the understanding of PSC activation mechanisms and the associated signaling pathways is still incomplete. In this study, we aimed to evaluate the role of Ca2+, and Orai1 Ca2+ channels, in two main PSC activation processes: cell proliferation and cytokine secretion. Indeed, Ca2+ is a versatile second messenger implicated in the regulation of numerous biological processes. We believe that a better comprehension of PSC Ca2+ -dependent activation mechanisms will bring up new crucial PDAC early prognostic markers or new targeting approaches in PDAC treatment. Abstract Activated pancreatic stellate cells (aPSCs), the crucial mediator of pancreatic desmoplasia, are characterized, among others, by high proliferative potential and abundant transforming growth factor β1 (TGFβ1) secretion. Over the past years, the involvement of Ca2+ channels in PSC pathophysiology has attracted great interest in pancreatic cancer research. We, thus, aimed to investigate the role of the Orai1 Ca2+ channel in these two PSC activation processes. Using the siRNA approach, we invalided Orai1 expression and assessed the channel functionality by Ca2+ imaging, the effect on aPSC proliferation, and TGFβ1 secretion. We demonstrated the functional expression of the Orai1 channel in human aPSCs and its implication in the store-operated Ca2+ entry (SOCE). Orai1 silencing led to a decrease in aPSC proliferation, TGFβ1 secretion, and AKT activation. Interestingly, TGFβ1 induced a higher SOCE response by increasing Orai1 mRNAs and proteins and promoted both AKT phosphorylation and cell proliferation, abolished by Orai1 silencing. Together, our results highlight the role of Orai1-mediated Ca2+ entry in human aPSC pathophysiology by controlling cell proliferation and TGFβ1 secretion through the AKT signaling pathway. Moreover, we showed a TGFβ1-induced autocrine positive feedback loop by promoting the Orai1/AKT-dependent proliferation via the stimulation of Orai1 expression and function.
Collapse
|
13
|
Fan J, Duan L, Wu N, Xu X, Xin J, Jiang S, Zhang C, Zhang H. Baicalin Ameliorates Pancreatic Fibrosis by Inhibiting the Activation of Pancreatic Stellate Cells in Mice with Chronic Pancreatitis. Front Pharmacol 2021; 11:607133. [PMID: 33536916 PMCID: PMC7848203 DOI: 10.3389/fphar.2020.607133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023] Open
Abstract
Pancreatic inflammation and fibrosis are typical pathological features in chronic pancreatitis (CP). Activated pancreatic stellate cells (PSCs) have been regarded as the core event in the development of pancreatic fibrosis and are considered to be the key target for treatment of CP. Baicalin (C21H18O11), the main chemical composition of Baikal skullcap in the traditional Chinese medicines Dachaihu decoction (DCHD) and Xiaochaihu decoction (XCHD), has shown significant effects in the treatment of pancreatic fibrosis in CP mice; however, whether baicalin can inhibit the activation of PSCs and its underlying mechanism remain unclear. In this study, the influence of baicalin on activated PSCs in vitro and in vivo was investigated, and the results showed that Baicalin could significantly ameliorate the degree of pancreatic inflammation and fibrosis, while decreasing the levels of alpha-smooth muscle actin (α-SMA), F4/80 (surface markers of mouse macrophages), nuclear factor kappa-B (NF-κB), monocyte chemotactic protein 1 (MCP-1), and collagen type I alpha 1 (COL1A1)in the pancreas. Moreover, NF-κB and α-SMA were co-expressed in the pancreas of CP mice. Baicalin treatment markedly reduced the expression of co-location of α-SMA and NF-κB. In vitro, the protein expression levels of transforming growth factor-β receptor 1 (TGF-βR1), phosphorylated TGF-β activated kinase 1 p-TAK 1, and NF-κBp65 in PSCs were all remarkably reduced after treatment with baicalin. In addition, baicalin could inhibit MCP-1 mRNA expression in supernatant of activated PSCs, as well as the excessive migration of macrophages. Taken together, our findings indicated that baicalin could inhibit the TGF-β1/TGF-βR1/TAK1/NF-κB signaling pathway of activated PSCs, reduce the secretion of MCP-1, and further decrease the infiltration of macrophages and inflammation cells of the local microenvironment of the pancreas. Thus, this study provides a reliable experimental basis for baicalin in the prevention and treatment of CP.
Collapse
Affiliation(s)
- Jianwei Fan
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lifang Duan
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Nan Wu
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaofan Xu
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiaqi Xin
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shengnan Jiang
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Cheng Zhang
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, China
| | - Hong Zhang
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
14
|
Gryshchenko O, Gerasimenko JV, Petersen OH, Gerasimenko OV. Calcium Signaling in Pancreatic Immune Cells In situ. FUNCTION (OXFORD, ENGLAND) 2020; 2:zqaa026. [PMID: 35330972 PMCID: PMC8788766 DOI: 10.1093/function/zqaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/06/2023]
Abstract
Immune cells were identified in intact live mouse pancreatic lobules and their Ca2+ signals, evoked by various agents, characterized and compared with the simultaneously recorded Ca2+ signals in neighboring acinar and stellate cells. Immunochemistry in the live lobules indicated that the pancreatic immune cells most likely are macrophages. In the normal pancreas the density of these cells is very low, but induction of acute pancreatitis (AP), by a combination of ethanol and fatty acids, markedly increased the number of the immune cells. The principal agent eliciting Ca2+ signals in the pancreatic immune cells was ATP, but these cells also frequently produced Ca2+ signals in response to acetylcholine and to high concentrations of bradykinin. Pharmacological studies, using specific purinergic agonists and antagonists, indicated that the ATP-elicited Ca2+ signals were mediated by both P2Y1 and P2Y13 receptors. The pancreatic immune cells were not electrically excitable and the Ca2+ signals generated by ATP were primarily due to release of Ca2+ from internal stores followed by store-operated Ca2+ entry through Ca2+ release-activated Ca2+ channels. The ATP-induced intracellular Ca2+ liberation was dependent on both IP3 generation and IP3 receptors. We propose that the ATP-elicited Ca2+ signal generation in the pancreatic immune cells is likely to play an important role in the severe inflammatory response to the primary injury of the acinar cells that occurs in AP.
Collapse
Affiliation(s)
- Oleksiy Gryshchenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK,Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine
| | | | - Ole H Petersen
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Oleg V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK,Corresponding author. E-mail:
| |
Collapse
|
15
|
Xia SH. Prospect and clinical value of oxymatrine in prevention and treatment of pancreatic fibrosis. Shijie Huaren Xiaohua Zazhi 2020; 28:819-826. [DOI: 10.11569/wcjd.v28.i17.819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Studies have confirmed that pancreatic stellate cell activation is the central event in the initiation and development of pancreatic fibrosis (PF), but the specific mechanism of PF is still unknown, and there is no specific treatment for PF. Some basic studies have confirmed that oxymatrine (OMT) has a certain therapeutic effect on PF, but further research is needed. It can be predicted that OMT has a far-reaching research prospect and good clinical application value for the prevention and treatment of PF, and is also conducive to the better development and utilization of traditional Chinese herbal medicine radix sophorae flavescentis.
Collapse
Affiliation(s)
- Shi-Hai Xia
- Gastroenterology Department of Medical Center of the Chinese People's Armed Police Force (Institute of Digestive Diseases of Medical Center), Medical Center for Hepatobiliary, Pancreatic and Splenic Disease of the Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin 300162, China
| |
Collapse
|
16
|
Macrophages in pancreatitis: Mechanisms and therapeutic potential. Biomed Pharmacother 2020; 131:110693. [PMID: 32882586 DOI: 10.1016/j.biopha.2020.110693] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages play a crucial role in the pathogenesis of pancreatitis that is a common gastrointestinal disease. Particularly, macrophages differentiate into different phenotypes and exert diverse functions in acute pancreatitis (AP) and chronic pancreatitis (CP), respectively. In AP, macrophages in the pancreas and other related organs are mainly activated and differentiated into a pro-inflammatory M1 phenotype, and furthermore secrete inflammatory cytokines and mediators, causing local inflammation of the pancreas, and even intractable systemic inflammatory response or multiple organ failure. In CP, macrophages often exhibit a M2 polarisation and interact with pancreatic stellate cells (PSCs) in an autocrine and paracrine cytokine-dependent manner to promote the progression of pancreatic fibrosis. As the severity of pancreatic fibrosis aggravates, the proportion of M2/M1 macrophage cytokines in the pancreas increases. The discovery of macrophages in the pathogenesis of pancreatitis has promoted the research of targeted drugs, which provides great potential for the effective treatment of pancreatitis. This paper provides an overview of the roles of various macrophages in the pathogenesis of pancreatitis and the current research status of pancreatitis immunotherapy targeting macrophages. The findings addressed in this review are of considerable significance for understanding the pivotal role of macrophages in pancreatitis.
Collapse
|
17
|
Stopa KB, Kusiak AA, Szopa MD, Ferdek PE, Jakubowska MA. Pancreatic Cancer and Its Microenvironment-Recent Advances and Current Controversies. Int J Mol Sci 2020; 21:E3218. [PMID: 32370075 PMCID: PMC7246785 DOI: 10.3390/ijms21093218] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) causes annually well over 400,000 deaths world-wide and remains one of the major unresolved health problems. This exocrine pancreatic cancer originates from the mutated epithelial cells: acinar and ductal cells. However, the epithelia-derived cancer component forms only a relatively small fraction of the tumor mass. The majority of the tumor consists of acellular fibrous stroma and diverse populations of the non-neoplastic cancer-associated cells. Importantly, the tumor microenvironment is maintained by dynamic cell-cell and cell-matrix interactions. In this article, we aim to review the most common drivers of PDAC. Then we summarize the current knowledge on PDAC microenvironment, particularly in relation to pancreatic cancer therapy. The focus is placed on the acellular stroma as well as cell populations that inhabit the matrix. We also describe the altered metabolism of PDAC and characterize cellular signaling in this cancer.
Collapse
Affiliation(s)
- Kinga B. Stopa
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland;
| | - Agnieszka A. Kusiak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Mateusz D. Szopa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Pawel E. Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Monika A. Jakubowska
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland;
| |
Collapse
|