1
|
Shestipalova A, Nikishchenko V, Bogomolov A, Voronezhskaya EE. Parental Serotonin Modulation Alters Monoamine Balance in Identified Neurons and Affects Locomotor Activity in Progeny of Lymnaea stagnalis (Mollusca: Gastropoda). Int J Mol Sci 2025; 26:2454. [PMID: 40141098 PMCID: PMC11942300 DOI: 10.3390/ijms26062454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Monoamine neurotransmitters play a critical role in the development and function of the nervous system. In this study, we investigated the impact of parental serotonin (5-HT) modulation on the monoamine balance in the identified apical neurons of Lymnaea stagnalis embryos and its influence on embryonic locomotor activity. Using immunocytochemical and pharmacological approaches, we detected serotonin in the apical neurons of veliger-stage embryos, observing that the relative 5-HT level within these neurons varied with seasonal conditions. Pharmacological elevation of parental 5-HT levels significantly increased the relative 5-HT level in the oocytes and subsequently in the apical neurons of their offspring. Notably, while the relative dopamine (DA) levels in these neurons remained stable, the increase in the relative 5-HT level significantly enhanced the embryos' rotational locomotion. The expression of tryptophan hydroxylase (TPH), a key enzyme in serotonin synthesis, is a prerequisite for the elevation of the relative 5-HT level in apical neurons and is detected as early as the gastrula stage. Importantly, neither a reduction of 5-HT in the maternal organism by chlorpromazine application nor its pharmacological elevation via serotonin precursor (5-HTP) application at the cleavage stage affected the monoamine balance in apical neurons. These findings provide novel insights into how the parental 5-HT level selectively alters the monoamine phenotype of the identified neurons, offering a model for studying environmentally induced neural plasticity in early development.
Collapse
Affiliation(s)
- Anastasiia Shestipalova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (A.S.); (A.B.)
| | - Viktoriya Nikishchenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia;
| | - Anton Bogomolov
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (A.S.); (A.B.)
| | - Elena E. Voronezhskaya
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (A.S.); (A.B.)
| |
Collapse
|
2
|
Espino S, Watkins M, Probst R, Koch TL, Chase K, Imperial J, Robinson SD, Flórez Salcedo P, Taylor D, Gajewiak J, Yandell M, Safavi-Hemami H, Olivera BM. χ-Conotoxins are an Evolutionary Innovation of Mollusk-Hunting Cone Snails as a Counter-Adaptation to Prey Defense. Mol Biol Evol 2024; 41:msae226. [PMID: 39470581 PMCID: PMC11568388 DOI: 10.1093/molbev/msae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/05/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024] Open
Abstract
Mollusk-hunting (molluscivorous) cone snails belong to a monophyletic group in Conus, a genus of venomous marine snails. The molluscivorous lineage evolved from ancestral worm-hunting (vermivorous) snails ∼18 Ma. To enable the shift to a molluscivorous lifestyle, molluscivorous cone snails must solve biological problems encountered when hunting other gastropods, namely: (i) preventing prey escape and (ii) overcoming the formidable defense of the prey in the form of the molluscan shell, a problem unique to molluscivorous Conus. Here, we show that χ-conotoxins, peptides exclusively expressed in the venoms of molluscivorous Conus, provide solutions to the above problems. Injecting χ-conotoxins into the gastropod mollusk Aplysia californica results in impaired locomotion and uncoordinated hyperactivity. Impaired locomotion impedes escape, and a hyperactive snail will likely emerge from its shell, negating the protection the shell provides. Thus, χ-conotoxins are an evolutionary innovation that accompanied the emergence of molluscivory in Conus and provide solutions to problems posed by hunting other snails.
Collapse
Affiliation(s)
- Samuel Espino
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Maren Watkins
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodolfo Probst
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Science Research Initiative, College of Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas Lund Koch
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomolecular Sciences, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Kevin Chase
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Julita Imperial
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Dylan Taylor
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Joanna Gajewiak
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - Helena Safavi-Hemami
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomolecular Sciences, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Baldomero M Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Raman NV, Dubey A, van Donk E, von Elert E, Lürling M, Fernandes TV, de Senerpont Domis LN. Understanding the differential impacts of two antidepressants on locomotion of freshwater snails (Lymnaea stagnalis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12406-12421. [PMID: 38233708 PMCID: PMC10869440 DOI: 10.1007/s11356-024-31914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
There is growing evidence of negative impacts of antidepressants on behavior of aquatic non-target organisms. Accurate environmental risk assessment requires an understanding of whether antidepressants with similar modes of action have consistent negative impacts. Here, we tested the effect of acute exposure to two antidepressants, fluoxetine and venlafaxine (0-50 µg/L), on the behavior of non-target organism, i.e., freshwater pond snail, Lymnaea stagnalis. As compounds interact with chemical cues in the aquatic ecosystems, we also tested whether the effects altered in the presence of bile extract containing 5α-cyprinol sulfate (5α-CPS), a characterized kairomone of a natural predator, common carp (Cyprinus carpio). Behavior was studied using automated tracking and analysis of various locomotion parameters of L. stagnalis. Our results suggest that there are differences in the effects on locomotion upon exposure to venlafaxine and fluoxetine. We found strong evidence for a non-monotonic dose response on venlafaxine exposure, whereas fluoxetine only showed weak evidence of altered locomotion for a specific concentration. Combined exposure to compounds and 5α-CPS reduced the intensity of effects observed in the absence of 5α-CPS, possibly due to reduced bioavailability of the compounds. The results highlight the need for acknowledging different mechanisms of action among antidepressants while investigating their environmental risks. In addition, our results underline the importance of reporting non-significant effects and acknowledging individual variation in behavior for environmental risk assessment.
Collapse
Affiliation(s)
- Nandini Vasantha Raman
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Asmita Dubey
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
- Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, The Netherlands.
| | - Ellen van Donk
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Department of Environmental Biology, University of Utrecht, Utrecht, The Netherlands
| | - Eric von Elert
- Aquatic Chemical Ecology, Biocenter, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Miquel Lürling
- Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, The Netherlands
| | - Tânia V Fernandes
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Lisette N de Senerpont Domis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, The Netherlands
- Department of Pervasive Systems, EEMCS, University of Twente & Department of Water Resources, ITC, University of Twente, Enschede, The Netherlands
| |
Collapse
|
4
|
Roussel S, Coheleach M, Martin S, Day R, Badou A, Huchette S, Dubois P, Servili A, Gaillard F, Auzoux-Bordenave S. From reproductive behaviour to responses to predators: Ocean acidification does not impact the behaviour of an herbivorous marine gastropod. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167526. [PMID: 37793449 DOI: 10.1016/j.scitotenv.2023.167526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
Ocean acidification (OA), which reduces ocean pH and leads to substantial changes in seawater carbonate chemistry, may strongly impact organisms, especially those with carbonate skeletons. In marine molluscs, while the physiological effects of OA are well known, with a reduction of growth and shell calcification, there are few studies on behavioural effects. A large marine gastropod, Haliotis tuberculata, was exposed to ambient (pHT 8.0) or low pH (pHT 7.7) during a 5-month experiment. Because animal fitness can be affected through various behavioural changes, a broad spectrum of behavioural parameters was investigated, including situations involving no stress, responses to predators, righting to evaluate indirectly the level of energy reserves, and finally, reproductive behaviour. In addition, we measured the expression profile of the GABA A-like and serotonin receptor genes, often described as central neuromodulators of sensory performance and behaviour and known to be affected by OA in molluscs. No significant effect of low pH as compared to ambient pH was observed on abalone behaviour for any of these behavioural traits or gene expressions after either one week or several months of exposure to OA. The significance tests were corroborated by estimating the size of pH effects. The behaviour of this mollusc appears not to be affected by pH decrease expected by the end of the century, suggesting some resilience of the species to OA at the adult stage. This is probably related to the ecological niche of this abalone, where important pH variations can be observed at tidal, diurnal or seasonal scales.
Collapse
Affiliation(s)
- Sabine Roussel
- Université de Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané F-29280, France.
| | - Manon Coheleach
- Université de Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané F-29280, France
| | - Sophie Martin
- UMR 7144 "Adaptation et Diversité en Milieu Marin" (AD2M), CNRS/SU, Station Biologique de Roscoff, Roscoff Cedex 29680, France
| | - Rob Day
- School of Biological Sciences, University of Melbourne, Parkville, Vic., Australia
| | - Aicha Badou
- Direction Générale Déléguée à la Recherche, l'Expertise, la Valorisation et l'Enseignement (DGD REVE), Muséum National d'Histoire Naturelle, Station marine de Concarneau, Concarneau 29900, France
| | | | - Philippe Dubois
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, Brussels CP160/15 1050, Belgium
| | - Arianna Servili
- IFREMER, Université de Brest, CNRS, Plouzané IRD, LEMAR, F-29280, France
| | - Fanny Gaillard
- UMR 7144 "Adaptation et Diversité en Milieu Marin" (AD2M), CNRS/SU, Station Biologique de Roscoff, Roscoff Cedex 29680, France
| | - Stéphanie Auzoux-Bordenave
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques" (BOREA), MNHN/CNRS/SU/IRD, Muséum National d'Histoire Naturelle, Station Marine de Concarneau, Concarneau 29900, France
| |
Collapse
|
5
|
Moroz LL, Romanova DY. Chemical cognition: chemoconnectomics and convergent evolution of integrative systems in animals. Anim Cogn 2023; 26:1851-1864. [PMID: 38015282 PMCID: PMC11106658 DOI: 10.1007/s10071-023-01833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Neurons underpin cognition in animals. However, the roots of animal cognition are elusive from both mechanistic and evolutionary standpoints. Two conceptual frameworks both highlight and promise to address these challenges. First, we discuss evidence that animal neural and other integrative systems evolved more than once (convergent evolution) within basal metazoan lineages, giving us unique experiments by Nature for future studies. The most remarkable examples are neural systems in ctenophores and neuroid-like systems in placozoans and sponges. Second, in addition to classical synaptic wiring, a chemical connectome mediated by hundreds of signal molecules operates in tandem with neurons and is the most information-rich source of emerging properties and adaptability. The major gap-dynamic, multifunctional chemical micro-environments in nervous systems-is not understood well. Thus, novel tools and information are needed to establish mechanistic links between orchestrated, yet cell-specific, volume transmission and behaviors. Uniting what we call chemoconnectomics and analyses of the cellular bases of behavior in basal metazoan lineages arguably would form the foundation for deciphering the origins and early evolution of elementary cognition and intelligence.
Collapse
Affiliation(s)
- Leonid L Moroz
- Department of Neuroscience, University of Florida, Gainesville, USA.
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA.
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| |
Collapse
|
6
|
Chikamoto N, Fujimoto K, Nakai J, Totani Y, Hatakeyama D, Ito E. Expression Level Changes in Serotonin Transporter are Associated with Food Deprivation in the Pond Snail Lymnaea stagnalis. Zoolog Sci 2023; 40:382-389. [PMID: 37818887 DOI: 10.2108/zs230027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/21/2023] [Indexed: 10/13/2023]
Abstract
In the pond snail Lymnaea stagnalis, serotonin (5-HT) plays an important role in feeding behavior and its associated learning (e.g., conditioned taste aversion: CTA). The 5-HT content in the central nervous system (CNS) fluctuates with changes in the nutritional status, but it is also expected to be influenced by changes in the serotonin transporter (SERT) expression level. In the present study, we identified SERT in Lymnaea and observed its localization in 5-HTergic neurons, including the cerebral giant cells (CGCs) in the cerebral ganglia and the pedal A cluster neurons and right and left pedal dorsal 1 neurons in the pedal ganglia by in situ hybridization. Real-time PCR revealed that the SERT mRNA expression level was lower under severe food deprivation than under mild food deprivation in the whole CNS as well as in a single CGC. These results inversely correlated with previous data that the 5-HT content in the CNS was higher in the severely food-deprived state than in the mildly food-deprived state. Furthermore, in single CGCs, we observed that the 5-HT level was significantly increased in the severely food-deprived state compared with the mildly food-deprived state. Our present findings suggest that changes in the SERT expression level associated with food deprivation may affect 5-HT signaling, probably contributing to learning and memory mechanisms in Lymnaea.
Collapse
Affiliation(s)
- Nozomi Chikamoto
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Kanta Fujimoto
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Junko Nakai
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Yuki Totani
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Etsuro Ito
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan,
| |
Collapse
|
7
|
Chistopolsky I, Leonova A, Mezheritskiy M, Boguslavsky D, Kristinina A, Zakharov I, Sorminskiy A, Vorontsov D, Dyakonova V. Intense Locomotion Enhances Oviposition in the Freshwater Mollusc Lymnaea stagnalis: Cellular and Molecular Correlates. BIOLOGY 2023; 12:764. [PMID: 37372049 DOI: 10.3390/biology12060764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023]
Abstract
Intense species-specific locomotion changes the behavioural and cognitive states of various vertebrates and invertebrates. However, whether and how reproductive behaviour is affected by previous increased motor activity remains largely unknown. We addressed this question using a model organism, the pond snail Lymnaea stagnalis. Intense crawling in shallow water for two hours had previously been shown to affect orienting behaviour in a new environment as well as the state of the serotonergic system in L. stagnalis. We found that the same behaviour resulted in an increased number of egg clutches and the total number of eggs laid in the following 24 h. However, the number of eggs per clutch was not affected. This effect was significantly stronger from January to May, in contrast to the September-December period. Transcripts of the egg-laying prohormone gene and the tryptophan hydroxylase gene, which codes for the rate-limiting enzyme in serotonin synthesis, were significantly higher in the central nervous system of snails that rested in clean water for two hours after intense crawling. Additionally, the neurons of the left (but not the right) caudo-dorsal cluster (CDC), which produce the ovulation hormone and play a key role in oviposition, responded to stimulation with a higher number of spikes, although there were no differences in their resting membrane potentials. We speculate that the left-right asymmetry of the response was due to the asymmetric (right) location of the male reproductive neurons having an antagonistic influence on the female hormonal system in the hermaphrodite mollusc. Serotonin, which is known to enhance oviposition in L. stagnalis, had no direct effect on the membrane potential or electrical activity of CDC neurons. Our data suggest that (i) two-hour crawling in shallow water enhances oviposition in L. stagnalis, (ii) the effect depends on the season, and (iii) the underlying mechanisms may include increased excitability of the CDC neurons and increased expression of the egg-laying prohormone gene.
Collapse
Affiliation(s)
- Ilya Chistopolsky
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexandra Leonova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Maxim Mezheritskiy
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Dmitri Boguslavsky
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Angelina Kristinina
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Igor Zakharov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Andrey Sorminskiy
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Dmitri Vorontsov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Varvara Dyakonova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
8
|
Totani Y, Nakai J, Hatakeyama D, Dyakonova VE, Lukowiak K, Ito E. CNS serotonin content mediating food deprivation-enhanced learning is regulated by hemolymph tryptophan concentration and autophagic flux in the pond snail. Nutr Neurosci 2023; 26:217-227. [PMID: 35156560 DOI: 10.1080/1028415x.2022.2033045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nutritional status affects cognitive function in many types of organisms. In the pond snail Lymnaea stagnalis, 1 day of food deprivation enhances taste aversion learning ability by decreasing the serotonin (5-hydroxytryptamin; 5-HT) content in the central nervous system (CNS). On the other hand, after 5 days of food deprivation, learning ability and the CNS 5-HT concentration return to basal levels. How food deprivation leads to alterations of 5-HT levels in the CNS, however, is unknown. Here, we measured the concentration of the 5-HT precursor tryptophan in the hemolymph and CNS, and demonstrated that the CNS tryptophan concentration was higher in 5-day food-deprived snails than in non-food-deprived or 1-day food-deprived snails, whereas the hemolymph tryptophan concentration was not affected by the duration of food deprivation. This finding suggests the existence of a mediator of the CNS tryptophan concentration independent of food deprivation. To identify the mediator, we investigated autophagic flux in the CNS under different food deprivation conditions. We found that autophagic flux was significantly upregulated by inhibition of the tropomyosin receptor kinase (Trk)-Akt-mechanistic target of rapamycin complex 1 (MTORC1) pathway in the CNS of 5-day food-deprived snails. Moreover, when autophagy was inhibited, the CNS 5-HT content was significantly downregulated in 5-day food-deprived snails. Our results suggest that the hemolymph tryptophan concentration and autophagic flux in the CNS cooperatively regulate learning ability affected by different durations of food deprivation. This mechanism may underlie the selection of behaviors appropriate for animal survival depending on the degree of nutrition.
Collapse
Affiliation(s)
- Yuki Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - Junko Nakai
- Department of Biology, Waseda University, Tokyo, Japan
| | - Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Varvara E Dyakonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, AB, Canada
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan.,Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Voronezhskaya EE. Serotonin as a volume transmission signal in the “simple nervous system” of mollusks: From axonal guidance to behavioral orchestration. Front Synaptic Neurosci 2022; 14:1024778. [DOI: 10.3389/fnsyn.2022.1024778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
|
10
|
Auzoux-Bordenave S, Ledoux A, Martin S, Di Poi C, Suquet M, Badou A, Gaillard F, Servili A, Le Goïc N, Huchette S, Roussel S. Responses of early life stages of European abalone (Haliotis tuberculata) to ocean acidification after parental conditioning: Insights from a transgenerational experiment. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105753. [PMID: 36130468 DOI: 10.1016/j.marenvres.2022.105753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
CO2 absorption is leading to ocean acidification (OA), which is a matter of major concern for marine calcifying species. This study investigated the effects of simulated OA on the reproduction of European abalone Haliotis tuberculata and the survival of its offspring. Four-year-old abalone were exposed during reproductive season to two relevant OA scenarios, ambient pH (8.0) and low pH (7.7). After five months of exposure, abalone were induced to spawn. The gametes, larvae and juveniles were then exposed for five months to the same pH conditions as their parents. Several biological parameters involved in adult reproduction as well as in larval, post-larval and juvenile fitness were measured. No effects on gametes, fertilisation or larval oxidative stress response were detected. However, developmental abnormalities and significant decreases in shell length and calcification were observed at veliger stages. The expression profile of a GABA A receptor-like gene appeared to be regulated by pH, depending on larval stage. Larval and post-larval survival was not affected by low pH. However, a lower survival and a reduction of growth were recorded in juveniles at pH 7.7. Our results confirm that OA negatively impacts larval and juvenile fitness and suggest the absence of carry-over effects on abalone offspring. This may compromise the survival of abalone populations in the near future.
Collapse
Affiliation(s)
- Stéphanie Auzoux-Bordenave
- UMR "Biologie des Organismes et Ecosystèmes Aquatiques" (BOREA), MNHN/CNRS/SU/IRD, Muséum national d'Histoire naturelle, Station marine de Concarneau, 29900, Concarneau, France; Sorbonne Université, 4, place Jussieu, 75005, Paris, France.
| | - Apolline Ledoux
- IFREMER, Université de Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Sophie Martin
- Sorbonne Université, 4, place Jussieu, 75005, Paris, France; UMR 7144 "Adaptation et Diversité en Milieu Marin" (AD2M), CNRS/SU, Station Biologique de Roscoff, 29680, Roscoff Cedex, France
| | - Carole Di Poi
- IFREMER, Université de Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Marc Suquet
- IFREMER, Université de Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Aïcha Badou
- Direction Générale Déléguée à la Recherche, l'Expertise, la Valorisation et l'Enseignement (DGD REVE), Muséum national d'Histoire naturelle, Station marine de Concarneau, 29900, Concarneau, France
| | - Fanny Gaillard
- UMR 7144 "Adaptation et Diversité en Milieu Marin" (AD2M), CNRS/SU, Station Biologique de Roscoff, 29680, Roscoff Cedex, France
| | - Arianna Servili
- IFREMER, Université de Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Nelly Le Goïc
- IFREMER, Université de Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | | - Sabine Roussel
- Université de Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| |
Collapse
|
11
|
Mezheritskiy MI, Dyakonova VE. Direct and Inherited Epigenetic Changes in the Nervous System Caused by Intensive Locomotion: Possible Adaptive Significance. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
This review is devoted to the analysis of works that investigated the long-term effects of species-specific forms of intensive locomotion on the cognitive functions of animals and humans, which can be transmitted to the next generation. To date, the anxiolytic and cognitive-enhancing long-term effects of intensive locomotion have been demonstrated in humans, rodents, fish, insects, mollusks, and nematodes. In rodents, changes in the central nervous system caused by intense locomotion can be transmitted through the maternal and paternal line to the descendants of the first generation. These include reduced anxiety, improved spatial learning and memory, increased levels of brain neurotrophic factor and vascular endothelial growth factor in the hippocampus and frontal cortex. The shift of the balance of histone acetylation in the hippocampus of rodents towards hyperacetylation, and the balance of DNA methylation towards demethylation manifests itself both as a direct and as a first-generation inherited effect of motor activity. The question about the mechanisms that link locomotion with an increase in the plasticity of a genome in the brain of descendants remains poorly understood, and invertebrate model organisms can be an ideal object for its study. Currently, there is a lack of a theoretical model explaining why motor activity leads to long-term improvement of some cognitive functions that can be transmitted to the next generation and why such an influence could have appeared in evolution. The answer to these questions is not only of fundamental interest, but it is necessary for predicting therapeutic and possible side effects of motor activity in humans. In this regard, the article pays special attention to the review of ideas on the evolutionary aspects of the problem. We propose our own hypothesis, according to which the activating effect of intensive locomotion on the function of the nervous system could have been formed in evolution as a preadaptation to a possible entry into a new environment.
Collapse
|
12
|
Bouly L, Vignet C, Carayon JL, Malgouyres JM, Fenet H, Géret F. Multigenerational responses in the Lymnaea stagnalis freshwater gastropod exposed to diclofenac at environmental concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106266. [PMID: 36037607 DOI: 10.1016/j.aquatox.2022.106266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/17/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Over the last decade, there has been increased concern about the occurrence of diclofenac (DCF) in aquatic ecosystems. Living organisms could be exposed to this "pseudo-persistent" pharmaceutical for more than one generation. In this multigenerational study, we assessed the DCF impact at environmentally relevant concentrations on the life history and behavioral parameters of two offspring generations (F1 and F2) of the Lymnaea stagnalis freshwater gastropod. Snail growth was affected by DCF in the F1 generation, with increased shell sizes of juveniles exposed to 0.1 µg L - 1 concentration and a decreased shell size at 2 and 10 µg L - 1. DCF also lowered food intake, enhanced locomotion activity and reduced the number of eggs/egg mass in the F1 generation. For the F2 generation, shorter time to hatch, faster growth, increased food intake and production of more egg masses/snail were induced by DCF exposure at 10 µg L - 1. Over time, DCF exposure led to maximization of L. stagnalis reproductive function. These results show that multigenerational studies are crucial to reveal adaptive responses to chronic contaminant exposure, which are not observable after short-term exposure.
Collapse
Affiliation(s)
- Lucie Bouly
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France; HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France.
| | - Caroline Vignet
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Jean-Luc Carayon
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Jean-Michel Malgouyres
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Hélène Fenet
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Florence Géret
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| |
Collapse
|
13
|
Baz ES, Hussein AAA, Vreeker EMT, Soliman MFM, Tadros MM, El-Shenawy NS, Koene JM. Consequences of artificial light at night on behavior, reproduction, and development of Lymnaea stagnalis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119507. [PMID: 35609841 DOI: 10.1016/j.envpol.2022.119507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Light is an important zeitgeber that regulates many behavioral and physiological processes in animals. These processes may become disturbed due to the changes in natural patterns of light and dark via the introduction of artificial light at night (ALAN). The present study was designed to determine the effect of possible consequences of ALAN on reproduction, hatching success, developmental success, growth rate, feeding rate, mortality rate, and locomotor activity of the simultaneous hermaphrodite pond snail Lymnaea stagnalis. Snails were exposed to different light intensities at night that simulate actual ALAN measurements from the snail's night environment. The data revealed that exposure to ALAN at a low level significantly affected the cumulative number of laid eggs. At the same time, snails exposed to ALAN laid smaller eggs than those laid under normal light-dark cycles. Additionally, high light-intensity of ALAN delayed development and hatching of eggs of L. stagnalis while it showed no effect on hatching percentage. Furthermore, ALAN increased both the feeding and growth rates but did not lead to mortality. The results also show that snails exposed to dark conditions at night travel longer distances and do so faster than those exposed to ALAN. In light of these findings, it is clear that ALAN may have an influence on snails and their abundance in an environment, possibly disturbing ecological stability.
Collapse
Affiliation(s)
- El-Sayed Baz
- Zoology Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt
| | - Ahmed A A Hussein
- Zoology Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt; Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, Amsterdam, the Netherlands; Department of Malacology, Theodor Bilharz Research Institute (TBRI), 30 Imbaba, 12411, Giza, Egypt.
| | - Edith M T Vreeker
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, Amsterdam, the Netherlands
| | - Maha F M Soliman
- Zoology Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt
| | - Menerva M Tadros
- Department of Malacology, Theodor Bilharz Research Institute (TBRI), 30 Imbaba, 12411, Giza, Egypt
| | - Nahla S El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt
| | - Joris M Koene
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Dyakonova V, Mezheritskiy M, Boguslavsky D, Dyakonova T, Chistopolsky I, Ito E, Zakharov I. Exercise and the Brain: Lessons From Invertebrate Studies. Front Behav Neurosci 2022; 16:928093. [PMID: 35836487 PMCID: PMC9275788 DOI: 10.3389/fnbeh.2022.928093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Benefits of physical exercise for brain functions are well documented in mammals, including humans. In this review, we will summarize recent research on the effects of species-specific intense locomotion on behavior and brain functions of different invertebrates. Special emphasis is made on understanding the biological significance of these effects as well as underlying cellular and molecular mechanisms. The results obtained in three distantly related clades of protostomes, Nematodes, Molluscs and Artropods, suggest that influence of intense locomotion on the brain could have deep roots in evolution and wide adaptive significance. In C. elegans, improved learning, nerve regeneration, resistance to neurodegenerative processes were detected after physical activity; in L. stagnalis—facilitation of decision making in the novel environment, in Drosophila—increased endurance, improved sleep and feeding behavior, in G. bimaculatus—improved orientation in conspecific phonotaxis, enhanced aggressiveness, higher mating success, resistance to some disturbing stimuli. Many of these effects have previously been described in mammals as beneficial results of running, suggesting certain similarity between distantly-related species. Our hypothesis posits that the above modulation of cognitive functions results from changes in the organism’s predictive model. Intense movement is interpreted by the organism as predictive of change, in anticipation of which adjustments need to be made. Identifying the physiological and molecular mechanisms behind these adjustments is easier in experiments in invertebrates and may lead to the discovery of novel neurobiological mechanisms for regulation and correction of cognitive and emotional status.
Collapse
Affiliation(s)
- Varvara Dyakonova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Varvara Dyakonova
| | - Maxim Mezheritskiy
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitri Boguslavsky
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Taisia Dyakonova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya Chistopolsky
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan
| | - Igor Zakharov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
De Almeida TF, Spinelli BG, Hypolito Lima R, Gonzalez MC, Rodrigues AC. PyRAT: An Open-Source Python Library for Animal Behavior Analysis. Front Neurosci 2022; 16:779106. [PMID: 35615283 PMCID: PMC9125180 DOI: 10.3389/fnins.2022.779106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Here we developed an open-source Python-based library called Python rodent Analysis and Tracking (PyRAT). Our library analyzes tracking data to classify distinct behaviors, estimate traveled distance, speed and area occupancy. To classify and cluster behaviors, we used two unsupervised algorithms: hierarchical agglomerative clustering and t-distributed stochastic neighbor embedding (t-SNE). Finally, we built algorithms that associate the detected behaviors with synchronized neural data and facilitate the visualization of this association in the pixel space. PyRAT is fully available on GitHub: https://github.com/pyratlib/pyrat.
Collapse
|
16
|
Nakai J, Chikamoto N, Fujimoto K, Totani Y, Hatakeyama D, Dyakonova VE, Ito E. Insulin and Memory in Invertebrates. Front Behav Neurosci 2022; 16:882932. [PMID: 35558436 PMCID: PMC9087806 DOI: 10.3389/fnbeh.2022.882932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Insulin and insulin-like peptides (ILP) help to maintain glucose homeostasis, whereas insulin-like growth factor (IGF) promotes the growth and differentiation of cells in both vertebrates and invertebrates. It is sometimes difficult to distinguish between ILP and IGF in invertebrates, however, because in some cases ILP has the same function as IGF. In the present review, therefore, we refer to these peptides as ILP/IGF signaling (IIS) in invertebrates, and discuss the role of IIS in memory formation after classical conditioning in invertebrates. In the arthropod Drosophila melanogaster, IIS is involved in aversive olfactory memory, and in the nematode Caenorhabditis elegans, IIS controls appetitive/aversive response to NaCl depending on the duration of starvation. In the mollusk Lymnaea stagnalis, IIS has a critical role in conditioned taste aversion. Insulin in mammals is also known to play an important role in cognitive function, and many studies in humans have focused on insulin as a potential treatment for Alzheimer’s disease. Although analyses of tissue and cellular levels have progressed in mammals, the molecular mechanisms, such as transcriptional and translational levels, of IIS function in cognition have been far advanced in studies using invertebrates. We anticipate that the present review will help to pave the way for studying the effects of insulin, ILPs, and IGFs in cognitive function across phyla.
Collapse
Affiliation(s)
- Junko Nakai
- Department of Biology, Waseda University, Tokyo, Japan
| | | | | | - Yuki Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - Dai Hatakeyama
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Varvara E. Dyakonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Etsuro Ito
| |
Collapse
|
17
|
Voronezhskaya EE. Maternal Serotonin: Shaping Developmental Patterns and Behavioral Strategy on Progeny in Molluscs. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.739787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Serotonin is a well-known neurotransmitter and neurohormone regulating mood, sleep, feeding, and learning in high organisms. Serotonin also affects the embryonic events related to neurogenesis and maturation of hormonal systems, the underlying organism adaptation to a changing environment. Such serotonin-based mother-to-embryo signaling is realized via direct interactions in case of internal fertilization and embryonic development inside the mother body. However, the possibility of such signaling is less obvious in organisms with the ancestral type of embryogenesis and embryo development within the egg, outside the mother body. Our data, based on the investigation of freshwater gastropod molluscs (Lymnaea and Helisoma), demonstrated a correlation between seasonal variations of serotonin content within the female reproductive system, and developmental patterns and the behavioral characteristics of progeny. The direct action of serotonin via posttranslational protein modification—serotonylation—during early development, as well as classical receptor-mediated effects, underlies such serotonin-modulated developmental changes. In the present paper, I will shortly overview our results on freshwater molluscs and parallel the experimental data with the living strategy of these species occupying almost all Holarctic regions.
Collapse
|
18
|
Agonistic experience during development establishes inter-individual differences in approach-avoidance behaviour of crickets. Sci Rep 2021; 11:16702. [PMID: 34404861 PMCID: PMC8371163 DOI: 10.1038/s41598-021-96201-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Members of numerous animal species show consistent inter-individual differences in behaviours, but the forces generating animal "personality" or individuality remain unclear. We show that experiences gathered solely from social conflict can establish consistent differences in the decision of male crickets to approach or avoid a stimulus directed at one antenna. Adults isolated for 48 h from a colony already exhibit behavioural differences. Prior to staging a single dyadic contest, prospective winners approached the stimulus whereas prospective losers turned away, as they did also after fighting. In contrast, adults raised as nymphs with adult males present but isolated from them as last instar nymphs, all showed avoidance. Furthermore, adults raised without prior adult contact, showed no preferred directional response. However, following a single fight, winners from both these groups showed approach and losers avoidance, but this difference lasted only one day. In contrast, after 6 successive wins or defeats, the different directional responses of multiple winners and losers remained consistent for at least 6 days. Correlation analysis revealed examples of consistent inter-individual differences in the direction and magnitude of turning responses, which also correlated with individual aggressiveness and motility. Together our data reveal that social subjugation, or lack thereof, during post-embryonic and early adult development forges individuality and supports the notion of a proactive-reactive syndrome in crickets.
Collapse
|
19
|
Mezheritskiy M, Vorontsov D, Lapshin D, Dyakonova V. Previous flight facilitates partner finding in female crickets. Sci Rep 2020; 10:22328. [PMID: 33339880 PMCID: PMC7749130 DOI: 10.1038/s41598-020-78969-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/18/2020] [Indexed: 11/09/2022] Open
Abstract
In the cricket Gryllus bimaculatus, flying occurs soon after the last imaginal molt and precedes the mating behavior in natural conditions. Here, we tested the hypothesis that flying may improve subsequent behavioral performance in a novel environment in female crickets. We developed a behavioral set-up to test female cricket responsiveness to male calling song as well as their ability to locate and find the source of the song. The male song was produced by a loudspeaker hidden behind the fabric wall of a spacious square arena. Forced flight prior to the test promoted female sexual searching behavior in the novel environment. After the flight, more females reached the hidden source zone, spent more time near the source and finally more of them climbed over the wall section immediately in front of the hidden loudspeaker. At the same time, their behavior in the arena did not differ from the control group when the calling song was not delivered, suggesting that flight exerts its behavioral effects by influencing sexual motivation. Our results support the suggestion that preceding intense locomotion facilitates sexual searching behavior of females in a novel environment.
Collapse
Affiliation(s)
- Maxim Mezheritskiy
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov Str. 26, 119334, Moscow, Russia
| | - Dmitry Vorontsov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov Str. 26, 119334, Moscow, Russia
| | - Dmitry Lapshin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Varvara Dyakonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov Str. 26, 119334, Moscow, Russia.
| |
Collapse
|
20
|
Kayacan Y, Ghojebeigloo BE, Çerit G, Kocacan SE, Ayyıldız M. Physical exercise and 5-hydroxytryptophan, a precursor for serotonin synthesis, reduce penicillin-induced epileptiform activity. Epilepsy Behav 2020; 112:107403. [PMID: 32950765 DOI: 10.1016/j.yebeh.2020.107403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
AIM Previous studies have shown that 5- hydroxytryptophan (5-HTP) and exercise play an important role in the synthesis of serotonin independently. The effects of the treadmill exercise and 5- hydroxytryptophan (5-HTP) on seizure mechanisms created by epileptiform activity with penicillin model were investigated in rats. METHOD A total of 28 male albino Wistar rats were randomly divided into four groups: exercise (Ex), Control (Cnt), 5-hydroxytryptophan (5htp) and 5-hydroxytryptophan + exercise (5htpEx) groups. Treadmill exercise and gavage (25 mg/kg/day) were administered five days a week for ten weeks. Electrocorticogram data were recorded for 3 h at the end of the protocol using the Power-Lab data acquisition system. Spike frequency, amplitude, and latency time were analyzed offline. The significant differences among the groups were evaluated by one-way analysis of variance (ANOVA). RESULTS Spike frequency was observed at the highest level from the 20th minute in the Cnt group, and this continued until the end of the recording. The 5-HTP alone group did not affect epileptiform activity. At the 80th minute of penicillin injection, the epileptiform activity in the 5htpEx group decreased significantly compared with the Cnt, and this significance continued until the 110th minute. There was no statistical difference in the amplitude values of the groups. The 5htpEx group was significantly higher than both the Cnt and Ex group in the seizure latency times. CONCLUSIONS It was determined that exercise reduced the spike number and delayed seizure significantly by potentiating the effect of 5-HTP. Given that 5-HTP used in combination with exercise can perform useful actions such as reducing seizure sensitivity and consequently improving the quality of life for individuals with epilepsy, it may be a potential candidate for the treatment of epilepsy in nonpharmacological methods.
Collapse
Affiliation(s)
- Yildirim Kayacan
- Ondokuz Mayıs University, Faculty of Yasar Dogu Sports Sciences, Samsun, Turkey.
| | | | - Günay Çerit
- Ondokuz Mayıs University, Faculty of Yasar Dogu Sports Sciences, Samsun, Turkey
| | - Süleyman Emre Kocacan
- Ondokuz Mayıs University Faculty of Medicine, Department of Medical Physiology, Samsun, Turkey
| | - Mustafa Ayyıldız
- Ondokuz Mayıs University Faculty of Medicine, Department of Medical Physiology, Samsun, Turkey
| |
Collapse
|
21
|
Totani Y, Nakai J, Hatakeyama D, Ito E. Memory-enhancing effects of short-term fasting. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1827053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Y. Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - J. Nakai
- Department of Biology, Waseda University, Tokyo, Japan
| | - D. Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - E. Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Induction of LTM following an Insulin Injection. eNeuro 2020; 7:ENEURO.0088-20.2020. [PMID: 32291265 PMCID: PMC7218004 DOI: 10.1523/eneuro.0088-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
The pond snail Lymnaea stagnalis learns conditioned taste aversion (CTA) and consolidates it into long-term memory (LTM). One-day food-deprived snails (day 1 snails) show the best CTA learning and memory, whereas more severely food-deprived snails (5 d) do not express good memory. However, previous studies showed that CTA-LTM was indeed formed in 5-d food-deprived snails (day 5 snails), but its recall was prevented by the effects of food deprivation. CTA-LTM recall in day 5 snails was expressed following 7 d of feeding and then 1 d of food deprivation (day 13 snails). In the present study, we thus hypothesized that memory recall occurs because day 13 snails are in an optimal internal state. One day of food deprivation before the memory test in day 13 snails increased the mRNA level of molluscan insulin-related peptide (MIP) in the CNS. Thus, we further hypothesized that an injection of insulin into day 5 snails following seven additional days with access to food (day 12 snails) activates CTA neurons and mimics the food deprivation state before the memory test in day 13 snails. Day 12 snails injected with insulin could recall the memory. In addition, the simultaneous injection of an anti-insulin receptor antibody and insulin into day 12 snails did not allow memory recall. Insulin injection also decreased the hemolymph glucose concentration. Together, the results suggest that an optimal internal state (i.e., a spike in insulin release and specific glucose levels) are necessary for LTM recall following CTA training in snails.
Collapse
|