1
|
Phillips PCA, de Sousa Loreto Aresta Branco M, Cliff CL, Ward JK, Squires PE, Hills CE. Targeting senescence to prevent diabetic kidney disease: Exploring molecular mechanisms and potential therapeutic targets for disease management. Diabet Med 2025; 42:e15408. [PMID: 38995865 PMCID: PMC11733669 DOI: 10.1111/dme.15408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND/AIMS As a microvascular complication, diabetic kidney disease is the leading cause of chronic kidney disease and end-stage renal disease worldwide. While the underlying pathophysiology driving transition of diabetic kidney disease to renal failure is yet to be fully understood, recent studies suggest that cellular senescence is central in disease development and progression. Consequently, understanding the molecular mechanisms which initiate and drive senescence in response to the diabetic milieu is crucial in developing targeted therapies that halt progression of renal disease. METHODS To understand the mechanistic pathways underpinning cellular senescence in the context of diabetic kidney disease, we reviewed the literature using PubMed for English language articles that contained key words related to senescence, inflammation, fibrosis, senescence-associated secretory phenotype (SASP), autophagy, and diabetes. RESULTS Aberrant accumulation of metabolically active senescent cells is a notable event in the progression of diabetic kidney disease. Through autocrine- and paracrine-mediated mechanisms, resident senescent cells potentiate inflammation and fibrosis through increased expression and secretion of pro-inflammatory cytokines, chemoattractants, recruitment of immune cells, myofibroblast activation, and extracellular matrix remodelling. Compounds that eliminate senescent cells and/or target the SASP - including senolytic and senomorphics drugs - demonstrate promising results in reducing the senescent cell burden and associated pro-inflammatory effect. CONCLUSIONS Here we evidence the link between senescence and diabetic kidney disease and highlight underlying molecular mechanisms and potential therapeutic targets that could be exploited to delay disease progression and improve outcomes for individuals with the disease. Trials are now required to translate their therapeutic potential to a clinical setting.
Collapse
Affiliation(s)
| | | | | | - Joanna Kate Ward
- Joseph Banks Laboratories, College of Health and ScienceLincolnUK
| | | | | |
Collapse
|
2
|
Josse M, Rigal E, Rosenblatt-Velin N, Collin B, Dogon G, Rochette L, Zeller M, Vergely C. Postnatally overfed mice display cardiac function alteration following myocardial infarction. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167516. [PMID: 39304090 DOI: 10.1016/j.bbadis.2024.167516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Cardiovascular (CV) pathologies remain a leading cause of death worldwide, often associated with common comorbidities such as overweight, obesity, type 2 diabetes or hypertension. An innovative mouse model of metabolic syndrome induced by postnatal overfeeding (PNOF) through litter size reduction after birth was developed experimentally. This study aimed to evaluate the impact of PNOF on cardiac remodelling and the development of heart failure following myocardial infarction. METHODS C57BL/6 male mice were raised in litter adjusted to 9 or 3 pups for normally-fed (NF) control and PNOF group respectively. After weaning, all mice had free access to standard diet and water. At 4 months, mice were subjected to myocardial infarction (MI). Echocardiographic follows-up were performed up to 6-months post-surgery and biomolecular analyses were carried-out after heart collection. FINDINGS At 4 months, PNOF mice exhibited a significant increase in body weight, along with a basal reduction in left ventricular ejection fraction (LVEF) and an increase in left ventricular end-systolic area (LVESA), compared to NF mice. Following MI, PNOF mice demonstrated a significant decrease in stroke volume and an increased heart rate compared to their respective initial values, as well as a notable reduction in cardiac output 4-months after MI. After 6-months, left ventricle and lung masses, fibrosis staining, and mRNA expression were all similar in the NF-MI and PNOF-MI groups. INTERPRETATION After MI, PNOF mice display signs of cardiac function worsening as evidenced by a decrease in cardiac output, which could indicate an early sign of heart failure decompensation.
Collapse
Affiliation(s)
- Marie Josse
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Eve Rigal
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Nathalie Rosenblatt-Velin
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland.
| | - Bertrand Collin
- Preclinical Imaging and Radiotherapy Platform, Centre Georges-François Leclerc and Radiopharmaceutiques, Imagerie, Théranostiques et Multimodalité (RITM) Team, Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB - UMR CNRS 6302), France.
| | - Geoffrey Dogon
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France
| | - Luc Rochette
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Marianne Zeller
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France; Service de Cardiologie, CHU Dijon Bourgogne, France.
| | - Catherine Vergely
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| |
Collapse
|
3
|
Nikitchenko YV, Klochkov VK, Kavok NS, Karpenko NA, Yefimova SL, Semynozhenko VP, Nikitchenko IV, Bozhkov AI. Geroprotective effects of GdVO 4:Eu 3 + nanoparticles, metformin and calorie restriction in male rats with accelerated aging induced by overnutrition in early postnatal ontogenesis. Biogerontology 2024; 26:14. [PMID: 39585394 DOI: 10.1007/s10522-024-10156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024]
Abstract
GdVO4:Eu3+ nanoparticles (OVNPs) have previously been shown to exhibit anti-aging effects in old rats.The accelerated aging model (overnutrition in early postnatal ontogenesis (POF)) was used to confirm the effect of OVNPs as a potential geroprotector. A comparative study of the effect of OVNPs, calorierestriction (CR) and CR-mimetic-metformin was carried out using a number of criteria: survival, prooxidant-antioxidant balance in the liver and blood, physiological parameters of male Wistar rats with accelerated aging. It was found that the survival of rats with POF was lower than that of control animals.It was found that the rate of superoxide radical formation and the content of lipid hydroperoxides in the mitochondria and microsomes of the liver and blood serum of rats with POF were higher, and the activities of glutathione peroxidases and the GSH content were significantly lower than in the control animals.It was also found that POF leads to perturbation of physiological parameters (body weight, liver weight, liver mass coefficient, body temperature and blood thyroxine concentration) characterizing the quality of life. Long-term use of OVNPs, CR or metformin in rats with accelerated aging normalized the imbalance of the prooxidant-antioxidant system, improved the physiological parameters, and increased the survival of these experimental animals. Moreover, the increase in survival was most pronounced with the use of CR and OVNPs. Considering our results andthe inadmissibility of long-term use of CR, it should be concluded that GdVO4:Eu3+ nanoparticles are promising for the development of agents that slow down the accelerated aging of an organism.
Collapse
Affiliation(s)
- Yuri V Nikitchenko
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
| | - Vladimir K Klochkov
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
| | - Nataliya S Kavok
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine.
| | - Nina A Karpenko
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
| | - Svetlana L Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
| | - Vladimir P Semynozhenko
- SSI, Institute for Single Crystal, National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
| | - Irina V Nikitchenko
- Karazin Kharkiv National University, Svobody Square, 4, Kharkiv, 61022, Ukraine
| | - Anatoly I Bozhkov
- Karazin Kharkiv National University, Svobody Square, 4, Kharkiv, 61022, Ukraine
| |
Collapse
|
4
|
Rozé J, Bacchetta J, Lapillonne A, Boubred F, Picaud J, Marchand‐Martin L, Bruel‐Tessoulin A, Harambat J, Biran V, Nuyt A, Darmaun D, Ancel P. High Amino Acid Intake in Early Life Is Associated With Systolic but Not Diastolic Arterial Hypertension at 5 Years of Age in Children Born Very Preterm. J Am Heart Assoc 2024; 13:e032804. [PMID: 38156453 PMCID: PMC10863839 DOI: 10.1161/jaha.123.032804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND The life course of individuals born very premature is a topic of increasing concern. The association between high early amino acid intake and later high blood pressure (HBP) in preterm neonates is debated. METHODS AND RESULTS In a national, prospective, population-based birth cohort, EPIPAGE-2 (Etude Epidémiologique sur Petits Ages Gestationnels), we assessed blood pressure at 5 years. Eligible infants were those born between 24 and 29 weeks of gestation. Infants were distributed in 2 groups of 717 infants matched on propensity score on whether or not they were exposed to high amino acid intake (>3.5 g/kg per day at day 7); 455 control term infants were also enrolled. A value ≥95th percentile of reference values for age and height defined systolic or diastolic HBP. Blood pressure at 5 years of age was assessed for 389 and 385 children in the exposed and nonexposed groups, respectively. Rates (in percent) of systolic and diastolic HBP were 18.0% (95% CI, 14.5%-22.2%), 13.3% (95% CI, 10.3%-17.0%), 8.5% (95% CI, 6.5%-11.1%), and 9.0% (95% CI, 6.6%-12.3%), 10.2% (95% CI, 7.5%-13.6%), and 5.4% (95% CI, 3.8%-7.6%) in exposed, nonexposed, and term-born groups, respectively. Exposure to high early amino acid intake and maximal serum creatinine (by 50 μmol/L) between day 3 and day 7 were 2 independent risk factors for systolic HBP (adjusted odds ratio [aOR], 1.60 [95% CI, 1.05-2.43] and aOR, 1.59 [95% CI, 1.12-2.26], respectively) but not for diastolic HBP (aOR, 0.84 [95% CI, 0.50-1.39] and aOR, 1.09 [95% CI, 0.71-1.67], respectively). After adjustment for 5-year weight Z score, the aOR between high early amino acid intake and systolic HBP was 1.50 [95% CI, 0.98-2.30]. CONCLUSIONS These results suggest that mechanisms of childhood systolic HBP involve neonatal renal challenge by high amino acid intake or dysfunction.
Collapse
Affiliation(s)
- Jean‐Christophe Rozé
- Department of Neonatal MedicineNantes University HospitalNantesFrance
- UMR 1280, INRAE‐Nantes UniversitéNantesFrance
| | - Justine Bacchetta
- Reference Centre for Rare Kidney Diseases, INSERM 1033 Research Unit, Hospices Civils de LyonLyon 1 UniversityLyonFrance
| | - Alexandre Lapillonne
- Department of Neonatal Medicine, Assistance Publique Hopitaux de ParisNecker Enfants Malades HospitalParisFrance
| | - Farid Boubred
- Department of Neonatology, Faculté de MédecineAix‐Marseille UniversitéMarseilleFrance
| | - Jean‐Charles Picaud
- Department of NeonatologyHospices Civils de LyonLyonFrance
- Laboratoire CarMen, INSERM, INRAUniversité Claude Bernard Lyon1Pierre‐BéniteFrance
| | - Laetitia Marchand‐Martin
- Université Paris Cité, Sorbonne Paris‐Nord, Inserm, INRAE, CRESS, Obstetrical Perinatal and Pediatric Epidemiology Research Team, EPOPéParisFrance
| | | | - Jérome Harambat
- Pediatric Nephrology Unit, Department of PediatricsBordeaux University HospitalBordeauxFrance
| | - Valérie Biran
- Neonatal Intensive Care Unit, Assistance Publique‐Hôpitaux de ParisRobert Debré Children’s HospitalParisFrance
| | - Anne‐Monique Nuyt
- Pediatric Department, CHU Saint JustineUniversité de MontrealQuebecCanada
| | | | - Pierre‐Yves Ancel
- Université Paris Cité, Sorbonne Paris‐Nord, Inserm, INRAE, CRESS, Obstetrical Perinatal and Pediatric Epidemiology Research Team, EPOPéParisFrance
| |
Collapse
|
5
|
Basta J, Robbins L, Stout L, Brennan M, Shapiro J, Chen M, Denner D, Baldan A, Messias N, Madhavan S, Parikh SV, Rauchman M. Deletion of NuRD component Mta2 in nephron progenitor cells causes developmentally programmed FSGS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562984. [PMID: 38948707 PMCID: PMC11213133 DOI: 10.1101/2023.10.18.562984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Low nephron endowment at birth is a risk factor for chronic kidney disease. The prevalence of this condition is increasing due to higher survival rates of preterm infants and children with multi- organ birth defect syndromes that affect the kidney and urinary tract. We created a mouse model of congenital low nephron number due to deletion of Mta2 in nephron progenitor cells. Mta2 is a core component of the Nucleosome Remodeling and Deacetylase (NuRD) chromatin remodeling complex. These mice developed albuminuria at 4 weeks of age followed by focal segmental glomerulosclerosis (FSGS) at 8 weeks, with progressive kidney injury and fibrosis. Our studies reveal that altered mitochondrial metabolism in the post-natal period leads to accumulation of neutral lipids in glomeruli at 4 weeks of age followed by reduced mitochondrial oxygen consumption. We found that NuRD cooperated with Zbtb7a/7b to regulate a large number of metabolic genes required for fatty acid oxidation and oxidative phosphorylation. Analysis of human kidney tissue also supported a role for reduced mitochondrial lipid metabolism and ZBTB7A/7B in FSGS and CKD. We propose that an inability to meet the physiological and metabolic demands of post-natal somatic growth of the kidney promotes the transition to CKD in the setting of glomerular hypertrophy due to low nephron endowment.
Collapse
|
6
|
Nguyen LT, Pollock CA, Saad S. Nutrition and Developmental Origins of Kidney Disease. Nutrients 2023; 15:4207. [PMID: 37836490 PMCID: PMC10574202 DOI: 10.3390/nu15194207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The developmental programming hypothesis proposes that adverse environmental insults during critical developmental periods increase the risk of diseases later in life. The kidneys are deemed susceptible to such a process, although the exact mechanisms remain elusive. Many factors have been reported to contribute to the developmental origin of chronic kidney diseases (CKD), among which peri-gestational nutrition has a central role, affecting kidney development and metabolism. Physiologically, the link between malnutrition, reduced glomerular numbers, and increased blood pressure is key in the developmental programming of CKD. However, recent studies regarding oxidative stress, mitochondrial dysfunction, epigenetic modifications, and metabolic changes have revealed potential novel pathways for therapeutic intervention. This review will discuss the role of imbalanced nutrition in the development of CKD.
Collapse
Affiliation(s)
- Long T. Nguyen
- Renal Research Group, Kolling Institute, St. Leonards, NSW 2065, Australia; (C.A.P.); (S.S.)
| | | | | |
Collapse
|
7
|
Effect of Protein Intake Early in Life on Kidney Volume and Blood Pressure at 11 Years of Age. Nutrients 2023; 15:nu15040874. [PMID: 36839233 PMCID: PMC9961192 DOI: 10.3390/nu15040874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
High protein intake has been associated with kidney hypertrophy, which is usually reversible; however, when it occurs early in life, it could lead to cell programming with a long-lasting effect. This study aimed to assess whether higher protein ingestion early in life has a persistent effect on kidney volume at 11 years of age, as well as its influence on blood pressure. This is a secondary analysis of a randomized control trial that compared the growth of infants fed with a higher-protein formula versus those fed with a lower-protein formula, with a control group of breastfed infants. Renal ultrasound and anthropometric measurements were assessed at 6 months and 11 years of age. At 11 years, urinary protein, albumin and creatinine, and blood pressure were measured in 232 children. Feeding with a higher-protein formula was associated with a larger kidney volume (β = 8.71, 95%CI 0.09-17.33, p = 0.048) and higher systolic blood pressure (β = 3.43, 95%CI 0.78-6.08, p = 0.011) at 11 years of age. Microalbuminuria was detected in 7% of the patients, with no differences among groups (p = 0.56). The effect of increased protein ingestion early in life may condition kidney volume and blood pressure in later childhood.
Collapse
|
8
|
Tagawa M, Terasaki M, Mii A, Toda E, Kajimoto Y, Kunugi S, Terasaki Y, Shimizu A. The reduced number of nephrons with shortening renal tubules in mouse postnatal adverse environment. Pediatr Res 2022:10.1038/s41390-022-02332-0. [PMID: 36302857 DOI: 10.1038/s41390-022-02332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 08/10/2022] [Accepted: 09/18/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The intrauterine adverse environment during nephrogenesis reduces the nephron number, probably associates with impaired ureteric bud (UB) branching. METHODS The kidneys in C57/BL6 mice were irradiated with a single dose of 10 gray (10 Gy) as adverse environment on postnatal day 3 (irradiated PND3 kidneys) after UB branching ceased. The renal functions and pathological findings of irradiated PND3 kidneys were compared with those of non-irradiated control and 10 Gy irradiation on PND14 (irradiated PND14 kidney) from 1 to 18 months. RESULTS The number and density of glomeruli in irradiated PND3 kidneys were reduced by 1 month with renal dysfunction at 6 months. The morphologically incomplete glomeruli with insufficient capillaries were involuted by 1 month in the superficial cortex. Reduced tubular numbers and developmental disability with shortening renal tubules occurred in irradiated PND3 kidneys with impaired urine concentration at 6 months. Hypertrophy of glomeruli developed, and occasional sclerotic glomeruli appeared in the juxtamedullary cortex with hypertension and albuminuria at 12 to 18 months. CONCLUSIONS The reduced number of nephrons with shortening renal tubules occurred with impaired renal functions in a postnatal adverse environment after cessation of UB branching, and glomerular hypertrophy with occasional glomerulosclerosis developed accompanied with hypertension and albuminuria in the adulthood. IMPACT The reduced number of nephrons with shortening renal tubules occurred with impaired renal functions in a postnatal adverse environment after cessation of ureteric bud branching. The reduced number of glomeruli were associated with not only the impaired formation of glomeruli but also involution of morphologically small incomplete glomeruli after an adverse environment. The insufficiently developed nephrons were characterized by the shortening renal tubules with impaired urine concentration. In addition, glomerular hypertrophy and occasional glomerulosclerosis developed with hypertension and albuminuria in adulthood. The present study can help to understand the risk of alternations of premature nephrons in preterm neonates.
Collapse
Affiliation(s)
- Masako Tagawa
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Mika Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Akiko Mii
- Department of Nephrology, Nippon Medical School, Tokyo, Japan
| | - Etsuko Toda
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yusuke Kajimoto
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan.,Division of Pathology, Nippon Medical School Hospital, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
9
|
Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 2022; 18:611-627. [PMID: 35922662 PMCID: PMC9362342 DOI: 10.1038/s41581-022-00601-z] [Citation(s) in RCA: 488] [Impact Index Per Article: 162.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a ubiquitous process with roles in tissue remodelling, including wound repair and embryogenesis. However, prolonged senescence can be maladaptive, leading to cancer development and age-related diseases. Cellular senescence involves cell-cycle arrest and the release of inflammatory cytokines with autocrine, paracrine and endocrine activities. Senescent cells also exhibit morphological alterations, including flattened cell bodies, vacuolization and granularity in the cytoplasm and abnormal organelles. Several biomarkers of cellular senescence have been identified, including SA-βgal, p16 and p21; however, few markers have high sensitivity and specificity. In addition to driving ageing, senescence of immune and parenchymal cells contributes to the development of a variety of diseases and metabolic disorders. In the kidney, senescence might have beneficial roles during development and recovery from injury, but can also contribute to the progression of acute kidney injury and chronic kidney disease. Therapies that target senescence, including senolytic and senomorphic drugs, stem cell therapies and other interventions, have been shown to extend lifespan and reduce tissue injury in various animal models. Early clinical trials confirm that senotherapeutic approaches could be beneficial in human disease. However, larger clinical trials are needed to translate these approaches to patient care.
Collapse
Affiliation(s)
- Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Hypertension and renal disease programming: focus on the early postnatal period. Clin Sci (Lond) 2022; 136:1303-1339. [PMID: 36073779 DOI: 10.1042/cs20220293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
The developmental origin of hypertension and renal disease is a concept highly supported by strong evidence coming from both human and animal studies. During development there are periods in which the organs are more vulnerable to stressors. Such periods of susceptibility are also called 'sensitive windows of exposure'. It was shown that as earlier an adverse event occurs; the greater are the consequences for health impairment. However, evidence show that the postnatal period is also quite important for hypertension and renal disease programming, especially in rodents because they complete nephrogenesis postnatally, and it is also important during preterm human birth. Considering that the developing kidney is vulnerable to early-life stressors, renal programming is a key element in the developmental programming of hypertension and renal disease. The purpose of this review is to highlight the great number of studies, most of them performed in animal models, showing the broad range of stressors involved in hypertension and renal disease programming, with a particular focus on the stressors that occur during the early postnatal period. These stressors mainly include undernutrition or specific nutritional deficits, chronic behavioral stress, exposure to environmental chemicals, and pharmacological treatments that affect some important factors involved in renal physiology. We also discuss the common molecular mechanisms that are activated by the mentioned stressors and that promote the appearance of these adult diseases, with a brief description on some reprogramming strategies, which is a relatively new and promising field to treat or to prevent these diseases.
Collapse
|
11
|
Yong C, Zhang Z, Huang G, Yang Y, Zhu Y, Qian L, Tian F, Liu L, Wu Q, Xu Z, Chen C, Zhao J, Gao K, Zhou E. Exploring the Critical Components and Therapeutic Mechanisms of Perilla frutescens L. in the Treatment of Chronic Kidney Disease via Network Pharmacology. Front Pharmacol 2021; 12:717744. [PMID: 34899287 PMCID: PMC8662752 DOI: 10.3389/fphar.2021.717744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic progressive disease that seriously threatens human health. Some patients will continue to progress into the CKD stage 3–5 (also called chronic renal failure), which is mainly manifested by a decline in renal function and multi-system damage. Perilla frutescens (L.) Britton. (Lamiaceae) is one of the most widely used traditional Chinese medicine (TCM) herbs in CKD, especially in CKD stage 3–5. But its active components and mechanisms are still unclear. In this study, we used network pharmacology to analyze the active components of P. frutescens and the main therapeutic targets for intervention in CKD stage 3–5. Then, the key components were selected for enrichment analysis and identified by high performance liquid chromatograph (HPLC). Finally, we verified the critical components through molecular docking, and in vitro experiments. The results show that 19 main active components of P. frutescens were screened, and 108 targets were intersected with CKD stage 3–5. The PPI network was constructed and found that the core nodes AKT1, TP53, IL6, TNF, and MAPK1 may be key therapeutic targets. Enrichment analysis shows that related targets may be involved in regulating various biological functions, and play a therapeutic role in CKD stage 3–5 by regulating apoptosis, T cell receptor, and PI3K-AKT signaling pathways. Molecular docking indicates that the key active components were well docked with its corresponding targets. Five active components were identified and quantified by HPLC. According to the results, luteolin was selected as the critical component for further verification. In vitro experiments have shown that luteolin can effectively alleviate adriamycin (ADR)-induced renal tubular apoptosis and suppress AKT and p53 phosphorylation. The effects of luteolin to reduce apoptosis may be mediated by inhibiting oxidative stress and downregulating the mitogen-activated protein kinase (MAPK) and p53 pathways. In general, we screened and analyzed the possible active components, therapeutic targets and pathways of P. frutescens for treating CKD. Our findings revealed that luteolin can reduce renal tubular epithelial cell apoptosis and may be the critical component of P. frutescens in the treatment of CKD. It provides references and direction for further research.
Collapse
Affiliation(s)
- Chen Yong
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Zhengchun Zhang
- Division of Nephrology, JiangYan Hospital affiliated to Nanjing University of Chinese Medicine, Taizhou, China
| | - Guoshun Huang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yang Yang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yiye Zhu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Leilei Qian
- Division of Nephrology, The People's Hospital of Rugao, Rugao, China
| | - Fang Tian
- Research Center of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Li Liu
- Research Center of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Qijing Wu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Zhongchi Xu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Chong Chen
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jing Zhao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Kun Gao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Enchao Zhou
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Programming of Cardiovascular Dysfunction by Postnatal Overfeeding in Rodents. Int J Mol Sci 2020; 21:ijms21249427. [PMID: 33322275 PMCID: PMC7763005 DOI: 10.3390/ijms21249427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Nutritional environment in the perinatal period has a great influence on health and diseases in adulthood. In rodents, litter size reduction reproduces the effects of postnatal overnutrition in infants and reveals that postnatal overfeeding (PNOF) not only permanently increases body weight but also affects the cardiovascular function in the short- and long-term. In addition to increased adiposity, the metabolic status of PNOF rodents is altered, with increased plasma insulin and leptin levels, associated with resistance to these hormones, changed profiles and levels of circulating lipids. PNOF animals present elevated arterial blood pressure with altered vascular responsiveness to vasoactive substances. The hearts of overfed rodents exhibit hypertrophy and elevated collagen content. PNOF also induces a disturbance of cardiac mitochondrial respiration and produces an imbalance between oxidants and antioxidants. A modification of the expression of crucial genes and epigenetic alterations is reported in hearts of PNOF animals. In vivo, a decreased ventricular contractile function is observed during adulthood in PNOF hearts. All these alterations ultimately lead to an increased sensitivity to cardiac pathologic challenges such as ischemia-reperfusion injury. Nevertheless, caloric restriction and physical exercise were shown to improve PNOF-induced cardiac dysfunction and metabolic abnormalities, drawing a path to the potential therapeutic correction of early nutritional programming.
Collapse
|