1
|
Casey DT, Sosa A, Mori V, Hall JK, Suki B, Smith BJ, Bates JHT. Lung architecture amplifies tissue deposition in an agent-based model of fibrotic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646600. [PMID: 40236173 PMCID: PMC11996469 DOI: 10.1101/2025.04.01.646600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease where excessive extracellular matrix (ECM) deposition and remodeling stiffens the lung, impeding its function. Many factors are known to contribute to the development of this fibrosis, but a lack of conclusive understanding endures because of their complex nature. The modification of ECM and the unique architecture of the lung are such factors in IPF's propagation and not solely casualties. Their effects on fibrogenesis are not known and tricky to study. We apply a computational methodology known as an agent-based model (ABM) to simulate cellular behavior as automata. Our ABM is a tissue maintenance model where agents modify tissue density to sustain a global mean and variance to represent the cyclic turnover of ECM. Agents traverse and interact with high fidelity architecture obtained through micro computed tomography (microCT) of mouse lung tissue. The properties of the ABM are validated to microCT of fibrotic mouse lung tissue. We find that increasing cell density is sufficient for fibrogenesis, but that the lung architecture led to more tissue deposition. Our model suggests that lung structure is a relevant contributor to the pathogenesis of IPF.
Collapse
|
2
|
Xu W, Xi L, Ni Y, Wang J, Yang H, Liu A, Gao Q, Tao X, Huang Q, Liu X, Zhen Y, Xie W, Liu M. Artificial intelligence-driven quantitative analysis of CT morphological differences between chronic thromboembolic pulmonary hypertension and chronic thromboembolic disease. Quant Imaging Med Surg 2025; 15:1101-1113. [PMID: 39995726 PMCID: PMC11847169 DOI: 10.21037/qims-24-1301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/19/2024] [Indexed: 02/26/2025]
Abstract
Background The morphological differences in the pulmonary vascular tree between chronic thromboembolic pulmonary hypertension (CTEPH) and chronic thromboembolic disease (CTED) are not yet fully understood. This study aimed to use artificial intelligence (AI) segmentation technology to identify morphological markers that can be used to differentiate CTEPH from CTED using computed tomography pulmonary angiography (CTPA). Methods We conducted a retrospective cohort study with consecutive patients diagnosed with CTEPH, CTED, and control subjects at the China-Japan Friendship Hospital from January 2019 to October 2023. The study involved the automatic quantification of the pulmonary blood volume (BV), tortuosity, and fractal dimension (FD) from CTPA images using an AI workstation. These morphological metrics were compared among the three groups using the Kruskal-Wallis test. Correlations between these metrics and the hemodynamic parameters were evaluated using Spearman's rank correlation coefficients. Additionally, a receiver operating characteristic (ROC) curve analysis was conducted to assess the discriminative ability of pulmonary artery tortuosity to differentiate between each pair of groups. Results A total of 190 participants [57 years, interquartile range (IQR), 49-65 years, 97 men], including 116 CTEPH patients, 54 CTED patients, and 20 controls, were enrolled in this study. Pulmonary artery tortuosity in the control, CTED, and CTEPH groups showed a progressively increasing trend [1.07 (IQR, 1.06-1.10) vs. 1.10 (IQR, 1.07-1.14) vs. 1.14 (IQR, 1.10-1.18), P<0.01]. The area under the curve (AUC) values of pulmonary arterial tortuosity for differentiating between the CTEPH patients and controls, CTED patients and controls, and CTEPH patients and CTED patients were 0.859, 0.712, and 0.663, respectively. There was a positive correlation between pulmonary artery tortuosity and mean pulmonary arterial pressure (mPAP) (r=0.44, P<0.01), and pulmonary vascular resistance (PVR) (r=0.47, P<0.01). Additionally, the volume of the small- and medium-sized pulmonary arteries was significantly higher in the CTED patients than the CTEPH patients (P<0.01). The pulmonary arterial FD among the three groups was comparable (P=0.36). Conclusions Pulmonary arterial tortuosity on CTPA had auxiliary diagnostic value in differentiating between CTEPH patients and controls, but its value in differentiating between CTED and CTEPH patients requires further study. The reduced volume of small- and medium-sized pulmonary arteries in CTEPH patients could indicate impaired pulmonary hemodynamics.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Magnetic Resonance Imaging, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linfeng Xi
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital National Center for Respiratory Medicine, Beijing, China
| | - Yifei Ni
- Department of Radiology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianping Wang
- Department of Radiology, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Haoyu Yang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Anqi Liu
- Department of Radiology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Gao
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital National Center for Respiratory Medicine, Beijing, China
| | - Xincao Tao
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital National Center for Respiratory Medicine, Beijing, China
| | - Qiang Huang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital National Center for Respiratory Medicine, Beijing, China
| | - Xiaopeng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yanan Zhen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Wanmu Xie
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital National Center for Respiratory Medicine, Beijing, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
Tanabe N, Shimizu K, Shima H, Wakazono N, Shiraishi Y, Terada K, Terada S, Oguma T, Sakamoto R, Suzuki M, Makita H, Sato A, Sato S, Nishimura M, Konno S, Hirai T. Computed tomography mucus plugs and airway tree structure in patients with chronic obstructive pulmonary disease: Associations with airflow limitation, health-related independence and mortality. Respirology 2024; 29:951-961. [PMID: 38924669 DOI: 10.1111/resp.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND OBJECTIVE Mucus plugs and underlying airway tree structure can affect airflow limitation and prognosis in patients with chronic obstructive pulmonary disease (COPD), but their relative roles are unclear. This study used two COPD cohorts to examine whether mucus plugs on computed tomography (CT) were associated with airflow limitation and clinical outcomes independent of other airway structural changes and emphysema. METHODS Based on visual CT assessment, patients with mucus plugs in 0, 1-2 and ≥3 lung segments were assigned to no-, low- and high-mucus groups. Loss of health-related independence and mortality were prospectively recorded for 3 and 10 years in the Kyoto-Himeji and Hokkaido cohorts, respectively. The percentages of the wall area of the central airways (WA%), total airway count (TAC) and emphysema were quantified on CT. RESULTS Of 199 and 96 patients in the Kyoto-Himeji and Hokkaido cohorts, 34% and 30%, respectively, had high mucus scores. In both cohorts, TAC was lower in the high-mucus group than in the no-mucus group, whereas their emphysema severity did not differ. High mucus score and low TAC were independently associated with airflow limitation after adjustment for WA% and emphysema. In multivariable models adjusted for WA% and emphysema, TAC, rather than mucus score, was associated with a greater rate of loss of independence, whereas high mucus score, rather than TAC, was associated with increased mortality. CONCLUSION Mucus plugs and lower airway branch count on CT had distinct roles in airflow limitation, health-related independence and mortality in patients with COPD.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Rehabilitation, Kyoto University Hospital, Kyoto, Japan
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Shima
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuyasu Wakazono
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kunihiko Terada
- Terada Clinic, Respiratory Medicine and General Practice, Himeji, Japan
| | - Satoru Terada
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Terada Clinic, Respiratory Medicine and General Practice, Himeji, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Medicine, Kyoto City Hospital, Kyoto, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hironi Makita
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Hokkaido Medical Research Institute for Respiratory Diseases, Sapporo, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaharu Nishimura
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Hokkaido Medical Research Institute for Respiratory Diseases, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Kilinc M, Demir I, Aydemir S, Gul R, Dokuyucu R. Elevated Urotensin-II and TGF-β Levels in COPD: Biomarkers of Fibrosis and Airway Remodeling in Smokers. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1750. [PMID: 39596935 PMCID: PMC11596865 DOI: 10.3390/medicina60111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: Small airway fibrosis plays a critical role in the progression of chronic obstructive pulmonary disease (COPD). Previous research has suggested that Urotensin-II (U-II) and transforming growth factor-β (TGF-β) may contribute to pathological fibrosis in various organs, including the cardiovascular system, lungs, and liver. However, their specific relationship with airway fibrosis in COPD has not yet been thoroughly investigated. This study aims to evaluate the concentrations of U-II and TGF-β in individuals with COPD, as well as in healthy smokers and non-smokers, to explore their potential roles in COPD-related fibrosis. Materials and Methods: The study included three distinct groups: a healthy non-smoker control group (n = 98), a healthy smoker group (n = 78), and a COPD group (n = 80). All participants in the COPD group had a smoking history of at least 10 pack-years. COPD was defined according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines, with only patients classified as GOLD stage 2 or higher being included in the study. Urotensin-II (U-II) and transforming growth factor-β (TGF-β) levels were measured using a commercially available ELISA kit. Results: COPD patients had a significantly lower FEV1 (58 ± 15.4%) compared to smokers (79 ± 4.5%) and non-smokers (92 ± 3.7%) (p < 0.001). Similarly, COPD patients had a lower FEV1/FVC ratio (55 ± 9.4%) compared to smokers (72 ± 4.2%) and non-smokers (85 ± 3.6%) (p < 0.01 and p < 0.05, respectively). SaO2 was significantly lower in COPD patients (87%) compared to smokers (96.5%) and non-smokers (98%) (COPD vs. smokers: p < 0.05 and smokers vs. non-smokers: p > 0.05). U-II levels were significantly higher in COPD patients (175.10 ± 62.40 pg/mL) compared to smokers (118.50 ± 45.51 pg/mL) and non-smokers (85.29 ± 35.87 pg/mL) (p < 0.001 and p < 0.05, respectively). COPD patients also had significantly higher levels of TGF-β (284.60 ± 60.50 pg/mL) compared to smokers (160.00 ± 41.80 pg/mL) and non-smokers (92.00 ± 25.00 pg/mL) (p < 0.001 and p < 0.05, respectively). Conclusions: Our study supports the growing body of evidence that U-II and TGF-β play central roles in the development and progression of fibrosis in COPD. The negative correlation between these markers and lung function parameters such as FEV1 and FEV1/FVC indicates that they may be key drivers of airway remodeling and obstruction. These biomarkers could serve as early indicators of fibrotic changes in smokers, even before the onset of COPD.
Collapse
Affiliation(s)
- Metin Kilinc
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Mardin Artuklu University, Mardin 47200, Turkey;
| | - Ibrahim Demir
- Department of Anesthesiology and Reanimation, Mardin Training and Research Hospital, Mardin 47000, Turkey;
| | - Semih Aydemir
- Department of Anesthesiology and Reanimation, Yıldırım Beyazit University Yenimahalle Training and Research Hospital, Ankara 06370, Turkey;
| | - Rauf Gul
- Department of Anesthesiology and Reanimation, School of Medicine, Gaziantep University, Gaziantep 27410, Turkey;
| | - Recep Dokuyucu
- Department of Physiology, Medical Specialization Training Center (TUSMER), Ankara 06420, Turkey
| |
Collapse
|
5
|
Hayashi Y, Tanabe N, Shimizu K, Maetani T, Shiraishi Y, Oguma T, Sunadome H, Sakamoto R, Sato A, Sato S, Date H, Matsumoto H, Hirai T. Lower skeletal muscle density and airway structure on computed tomography in asthma. Ann Allergy Asthma Immunol 2024:S1081-1206(24)00527-1. [PMID: 39179101 DOI: 10.1016/j.anai.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Lower skeletal muscle density may reflect muscle adiposity and metabolic dysregulation that potentially impair disease control and lung function independent of high body mass index (BMI) in patients with asthma. OBJECTIVE To investigate whether the lower density of pectoralis muscles (PMs) and erector spinae muscles (ESMs) on chest computed tomography was associated with airway structural changes in patients with asthma. METHODS Consecutive patients with asthma and healthy controls undergoing chest computed tomography were retrospectively analyzed. The ESM and PM density, areas of subcutaneous adipose tissue near the PM and epicardial adipose tissue, wall area percent of the airways, and airway fractal dimension (AFD) were quantified on computed tomography. RESULTS The study included 179 patients with asthma (52% women) and 88 controls (47% women). All the controls were 60 years old or younger. The PM and ESM density in female patients with asthma who were 60 years old or younger were significantly lower than those in controls after adjustment for BMI. In female patients with asthma at all ages, lower PM and ESM density (but not subcutaneous or epicardial adipose tissue area) was associated with greater wall area percent of the airways and lower AFD after adjusting for age, height, BMI, smoking status, blood eosinophil count, and oral corticosteroid use. The only association between ESM density and AFD was found in male patients with asthma. CONCLUSION Lower skeletal muscle density may be associated with airway wall thickening and less complexity of the airway luminal tree in female patients with asthma.
Collapse
Affiliation(s)
- Yusuke Hayashi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoki Maetani
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Respiratory Medicine, Kyoto City Hospital, Kyoto, Japan
| | - Hironobu Sunadome
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University, Kyoto, Japan
| | - Hisako Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Respiratory Medicine and Allergology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Paramore SV, Goodwin K, Fowler EW, Devenport D, Nelson CM. Mesenchymal Vangl1 and Vangl2 facilitate airway elongation and widening independently of the planar cell polarity complex. Development 2024; 151:dev202692. [PMID: 39225402 PMCID: PMC11385325 DOI: 10.1242/dev.202692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Adult mammalian lungs exhibit a fractal pattern, as each successive generation of airways is a fraction of the size of the parental branch. Achieving this structure likely requires precise control of airway length and diameter, as the embryonic airways initially lack the fractal scaling observed in the adult. In monolayers and tubes, directional growth can be regulated by the planar cell polarity (PCP) complex. Here, we characterized the roles of PCP complex components in airway initiation, elongation and widening during branching morphogenesis of the lung. Using tissue-specific knockout mice, we surprisingly found that branching morphogenesis proceeds independently of PCP complex function in the lung epithelium. Instead, we found a previously unreported Celsr1-independent role for the PCP complex components Vangl1 and Vangl2 in the pulmonary mesenchyme, where they are required for branch initiation, elongation and widening. Our data thus reveal an explicit function for Vangl1 and Vangl2 that is independent of the core PCP complex, suggesting a functional diversification of PCP complex components in vertebrate development. These data also reveal an essential role for the embryonic mesenchyme in generating the fractal structure of airways in the mature lung.
Collapse
Affiliation(s)
- Sarah V. Paramore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Eric W. Fowler
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
7
|
Kaji S, Tanabe N, Maetani T, Shiraishi Y, Sakamoto R, Oguma T, Suzuki K, Terada K, Fukui M, Muro S, Sato S, Hirai T. Quantification of Airway Structures by Persistent Homology. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2758-2768. [PMID: 38478453 DOI: 10.1109/tmi.2024.3376683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We propose two types of novel morphological metrics for quantifying the geometry of tubular structures on computed tomography (CT) images. We apply our metrics to identify irregularities in the airway of patients with chronic obstructive pulmonary disease (COPD) and demonstrate that they provide complementary information to the conventional metrics used to assess COPD, such as the tissue density distribution in lung parenchyma and the wall area ratio of the segmented airway. The three-dimensional shape of the airway and its abstraction as a rooted tree with the root at the trachea carina are automatically extracted from a lung CT volume, and the two metrics are computed based on a mathematical tool called persistent homology; treeH0 quantifies the distribution of branch lengths to assess the complexity of the tree-like structure and radialH0 quantifies the irregularities in the luminal radius along the airway. We show our metrics are associated with clinical outcomes.
Collapse
|
8
|
Virdee S, Tan WC, Hogg JC, Bourbeau J, Hague CJ, Kirby M. CT Chest Imaging Using Normalized Join-Count: Predicting Emphysema Progression in the CanCOLD Study. Radiology 2024; 312:e233265. [PMID: 39012250 DOI: 10.1148/radiol.233265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Background Pre-existing emphysema is recognized as an indicator of future worsening in patients with chronic obstructive pulmonary disease (COPD) when observed through CT imaging. However, it remains uncertain whether additional factors, such as the spatial compactness of CT emphysema, might also serve as predictors of disease progression. Purpose To evaluate the relationship between the compactness of CT emphysema voxels and emphysema progression. Materials and Methods This secondary analysis uses data from the prospective Canadian Cohort Obstructive Lung Disease (CanCOLD) study, examining CT images obtained in participants with and without COPD at baseline and a 3-year follow-up time point (November 2009 to November 2018). Measurements of forced expiratory volume in first second of expiration (FEV1) and diffusing capacity of lung for carbon monoxide (DLco) were collected. The normalized join-count (NJC) measurement from baseline CT images and lung density (LD) changes were analyzed. Emphysema progression was defined as an annualized LD change of less than half an SD below the mean of the participants without COPD with no smoking history. Multivariable linear and logistic regression models were used to assess the association between baseline CT NJC measurements and the annualized change in LD, FEV1, DLco, and emphysema progression versus nonprogression. Results A total of 524 participants (mean age, 66 years ± 10 [SD]; 293 male) (FEV1 percent predicted, 88% ± 19; FEV1/FVC, 67% ± 9; DLco percent predicted, 105% ± 25) were analyzed, 187 (36%) of whom had COPD. CT NJC was associated with the annualized change in LD (P < .001), FEV1 (P = .02), and DLco (P = .01). Additionally, CT NJC predicted emphysema progression versus nonprogression (odds ratio, 2.24; 95% CI: 1.37, 3.50; P < .001). Conclusion The spatial distribution, or "compactness," of CT emphysema voxels predicted emphysema progression in individuals with and without COPD. ClinicalTrials.gov Identifier: NCT00920348 © RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Sukhraj Virdee
- From the Department of Physics, Toronto Metropolitan University, 350 Victoria St, Kerr Hall South Bldg, Rm KHS-344, Toronto, ON, Canada M5B 2K3 (S.V., M.K.); Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (W.C.T., J.C.H., C.J.H., M.K.); and McGill University Health Centre, McGill University, Montreal, Canada (J.B.)
| | - Wan C Tan
- From the Department of Physics, Toronto Metropolitan University, 350 Victoria St, Kerr Hall South Bldg, Rm KHS-344, Toronto, ON, Canada M5B 2K3 (S.V., M.K.); Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (W.C.T., J.C.H., C.J.H., M.K.); and McGill University Health Centre, McGill University, Montreal, Canada (J.B.)
| | - James C Hogg
- From the Department of Physics, Toronto Metropolitan University, 350 Victoria St, Kerr Hall South Bldg, Rm KHS-344, Toronto, ON, Canada M5B 2K3 (S.V., M.K.); Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (W.C.T., J.C.H., C.J.H., M.K.); and McGill University Health Centre, McGill University, Montreal, Canada (J.B.)
| | - Jean Bourbeau
- From the Department of Physics, Toronto Metropolitan University, 350 Victoria St, Kerr Hall South Bldg, Rm KHS-344, Toronto, ON, Canada M5B 2K3 (S.V., M.K.); Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (W.C.T., J.C.H., C.J.H., M.K.); and McGill University Health Centre, McGill University, Montreal, Canada (J.B.)
| | - Cameron J Hague
- From the Department of Physics, Toronto Metropolitan University, 350 Victoria St, Kerr Hall South Bldg, Rm KHS-344, Toronto, ON, Canada M5B 2K3 (S.V., M.K.); Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (W.C.T., J.C.H., C.J.H., M.K.); and McGill University Health Centre, McGill University, Montreal, Canada (J.B.)
| | - Miranda Kirby
- From the Department of Physics, Toronto Metropolitan University, 350 Victoria St, Kerr Hall South Bldg, Rm KHS-344, Toronto, ON, Canada M5B 2K3 (S.V., M.K.); Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (W.C.T., J.C.H., C.J.H., M.K.); and McGill University Health Centre, McGill University, Montreal, Canada (J.B.)
| |
Collapse
|
9
|
Stoleriu MG, Pienn M, Joerres RA, Alter P, Fero T, Urschler M, Kovacs G, Olschewski H, Kauczor HU, Wielpütz M, Jobst B, Welte T, Behr J, Trudzinski FC, Bals R, Watz H, Vogelmeier CF, Biederer J, Kahnert K. Expiratory Venous Volume and Arterial Tortuosity are Associated with Disease Severity and Mortality Risk in Patients with COPD: Results from COSYCONET. Int J Chron Obstruct Pulmon Dis 2024; 19:1515-1529. [PMID: 38974817 PMCID: PMC11227296 DOI: 10.2147/copd.s458905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose The aim of this study was to evaluate the association between computed tomography (CT) quantitative pulmonary vessel morphology and lung function, disease severity, and mortality risk in patients with chronic obstructive pulmonary disease (COPD). Patients and Methods Participants of the prospective nationwide COSYCONET cohort study with paired inspiratory-expiratory CT were included. Fully automatic software, developed in-house, segmented arterial and venous pulmonary vessels and quantified volume and tortuosity on inspiratory and expiratory scans. The association between vessel volume normalised to lung volume and tortuosity versus lung function (forced expiratory volume in 1 sec [FEV1]), air trapping (residual volume to total lung capacity ratio [RV/TLC]), transfer factor for carbon monoxide (TLCO), disease severity in terms of Global Initiative for Chronic Obstructive Lung Disease (GOLD) group D, and mortality were analysed by linear, logistic or Cox proportional hazard regression. Results Complete data were available from 138 patients (39% female, mean age 65 years). FEV1, RV/TLC and TLCO, all as % predicted, were significantly (p < 0.05 each) associated with expiratory vessel characteristics, predominantly venous volume and arterial tortuosity. Associations with inspiratory vessel characteristics were absent or negligible. The patterns were similar for relationships between GOLD D and mortality with vessel characteristics. Expiratory venous volume was an independent predictor of mortality, in addition to FEV1. Conclusion By using automated software in patients with COPD, clinically relevant information on pulmonary vasculature can be extracted from expiratory CT scans (although not inspiratory scans); in particular, expiratory pulmonary venous volume predicted mortality. Trial Registration NCT01245933.
Collapse
Affiliation(s)
- Mircea Gabriel Stoleriu
- Division for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Medical Center; Munich-Gauting, Gauting, 82131, Germany
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive; Helmholtz Center Munich; Member of the German Lung Research Center (DZL), Munich, 81377, Germany
| | - Michael Pienn
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Rudolf A Joerres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Hospital of Ludwig-Maximilians-University Munich (LMU), Munich, 80336, Germany
| | - Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, 35033, Germany
| | - Tamas Fero
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Urschler
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- University Clinic for Internal Medicine, Medical University of Graz, Division of Pulmonology, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- University Clinic for Internal Medicine, Medical University of Graz, Division of Pulmonology, Graz, Austria
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany
| | - Mark Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany
| | - Bertram Jobst
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Disease, Member of the German Center of Lung Research, Hannover School of Medicine, Hannover, Germany
| | - Jürgen Behr
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive; Helmholtz Center Munich; Member of the German Lung Research Center (DZL), Munich, 81377, Germany
- Department of Medicine V, LMU University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Franziska C Trudzinski
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, 66421, Germany
- Helmholtz Institute for Pharmaceutical Research, Saarbrücken, 66123, Germany
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Centre North, German Centre for Lung Research, Großhansdorf, Germany
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, 35033, Germany
| | - Jürgen Biederer
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany
- Faculty of Medicine, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany
- University of Latvia, Faculty of Medicine, Riga, LV-1586, Latvia
| | - Kathrin Kahnert
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive; Helmholtz Center Munich; Member of the German Lung Research Center (DZL), Munich, 81377, Germany
- Department of Medicine V, LMU University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- MediCenterGermering, Germering, Germany
| |
Collapse
|
10
|
Tomiyama F, Suzuki T, Watanabe T, Miyanaga J, Suzuki A, Ito T, Murai S, Suzuki Y, Niikawa H, Oishi H, Notsuda H, Watanabe Y, Hirama T, Onodera K, Togo T, Noda M, Waddell TK, Karoubi G, Okada Y. Orthotopic transplantation of the bioengineered lung using a mouse-scale perfusion-based bioreactor and human primary endothelial cells. Sci Rep 2024; 14:7040. [PMID: 38575597 PMCID: PMC10994903 DOI: 10.1038/s41598-024-57084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Whole lung engineering and the transplantation of its products is an ambitious goal and ultimately a viable solution for alleviating the donor-shortage crisis for lung transplants. There are several limitations currently impeding progress in the field with a major obstacle being efficient revascularization of decellularized scaffolds, which requires an extremely large number of cells when using larger pre-clinical animal models. Here, we developed a simple but effective experimental pulmonary bioengineering platform by utilizing the lung as a scaffold. Revascularization of pulmonary vasculature using human umbilical cord vein endothelial cells was feasible using a novel in-house developed perfusion-based bioreactor. The endothelial lumens formed in the peripheral alveolar area were confirmed using a transmission electron microscope. The quality of engineered lung vasculature was evaluated using box-counting analysis of histological images. The engineered mouse lungs were successfully transplanted into the orthotopic thoracic cavity. The engineered vasculature in the lung scaffold showed blood perfusion after transplantation without significant hemorrhage. The mouse-based lung bioengineering system can be utilized as an efficient ex-vivo screening platform for lung tissue engineering.
Collapse
Affiliation(s)
- Fumiko Tomiyama
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Takaya Suzuki
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, Toronto, ON, M5G1L7, Canada.
| | - Tatsuaki Watanabe
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Jun Miyanaga
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Anna Suzuki
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Takayasu Ito
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Sho Murai
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuyo Suzuki
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiromichi Niikawa
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hisashi Oishi
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hirotsugu Notsuda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yui Watanabe
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Takashi Hirama
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Ken Onodera
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Takeo Togo
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masafumi Noda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Thomas K Waddell
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, Toronto, ON, M5G1L7, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Golnaz Karoubi
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, Toronto, ON, M5G1L7, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, M5S1A8, Canada
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
11
|
Maina JN. A critical assessment of the cellular defences of the avian respiratory system: are birds in general and poultry in particular relatively more susceptible to pulmonary infections/afflictions? Biol Rev Camb Philos Soc 2023; 98:2152-2187. [PMID: 37489059 DOI: 10.1111/brv.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
In commercial poultry farming, respiratory diseases cause high morbidities and mortalities, begetting colossal economic losses. Without empirical evidence, early observations led to the supposition that birds in general, and poultry in particular, have weak innate and adaptive pulmonary defences and are therefore highly susceptible to injury by pathogens. Recent findings have, however, shown that birds possess notably efficient pulmonary defences that include: (i) a structurally complex three-tiered airway arrangement with aerodynamically intricate air-flow dynamics that provide efficient filtration of inhaled air; (ii) a specialised airway mucosal lining that comprises air-filtering (ciliated) cells and various resident phagocytic cells such as surface and tissue macrophages, dendritic cells and lymphocytes; (iii) an exceptionally efficient mucociliary escalator system that efficiently removes trapped foreign agents; (iv) phagocytotic atrial and infundibular epithelial cells; (v) phagocytically competent surface macrophages that destroy pathogens and injurious particulates; (vi) pulmonary intravascular macrophages that protect the lung from the vascular side; and (vii) proficiently phagocytic pulmonary extravasated erythrocytes. Additionally, the avian respiratory system rapidly translocates phagocytic cells onto the respiratory surface, ostensibly from the subepithelial space and the circulatory system: the mobilised cells complement the surface macrophages in destroying foreign agents. Further studies are needed to determine whether the posited weak defence of the avian respiratory system is a global avian feature or is exclusive to poultry. This review argues that any inadequacies of pulmonary defences in poultry may have derived from exacting genetic manipulation(s) for traits such as rapid weight gain from efficient conversion of food into meat and eggs and the harsh environmental conditions and severe husbandry operations in modern poultry farming. To reduce pulmonary diseases and their severity, greater effort must be directed at establishment of optimal poultry housing conditions and use of more humane husbandry practices.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway Avenue, Johannesburg, 2006, South Africa
| |
Collapse
|
12
|
Blodgett JM, Ahmadi M, Stamatakis E, Rockwood K, Hamer M. Fractal complexity of daily physical activity and cognitive function in a midlife cohort. Sci Rep 2023; 13:20340. [PMID: 37990028 PMCID: PMC10663528 DOI: 10.1038/s41598-023-47200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
High stability of fluctuation in physiological patterns across fixed time periods suggest healthy fractal complexity, while greater randomness in fluctuation patterns may indicate underlying disease processes. The importance of fractal stability in mid-life remains unexplored. We quantified fractal regulation patterns in 24-h accelerometer data and examined associations with cognitive function in midlife. Data from 5097 individuals (aged 46) from the 1970 British Cohort Study were analyzed. Participants wore thigh-mounted accelerometers for seven days and completed cognitive tests (verbal fluency, memory, processing speed; derived composite z-score). Detrended fluctuation analysis (DFA) was used to examine temporal correlations of acceleration magnitude across 25 time scales (range: 1 min-10 h). Linear regression examined associations between DFA scaling exponents (DFAe) and each standardised cognitive outcome. DFAe was normally distributed (mean ± SD: 0.90 ± 0.06; range: 0.72-1.25). In males, a 0.10 increase in DFAe was associated with a 0.30 (95% Confidence Interval: 0.14, 0.47) increase in composite cognitive z-score in unadjusted models; associations were strongest for verbal fluency (0.10 [0.04, 0.16]). Associations remained in fully-adjusted models for verbal fluency only (0.06 [0.00, 0.12]). There was no association between DFA and cognition in females. Greater fractal stability in men was associated with better cognitive function. This could indicate mechanisms through which fractal complexity may scale up to and contribute to cognitive clinical endpoints.
Collapse
Affiliation(s)
- Joanna M Blodgett
- Institute of Sport Exercise and Health, Division of Surgery and Interventional Science, University College London, London, UK.
| | - Matthew Ahmadi
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Mackenzie Wearables Research Hub, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Emmanuel Stamatakis
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Mackenzie Wearables Research Hub, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Kenneth Rockwood
- Geriatric Medicine Research, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Mark Hamer
- Institute of Sport Exercise and Health, Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
13
|
Nicolas N, Dinet V, Roux E. 3D imaging and morphometric descriptors of vascular networks on optically cleared organs. iScience 2023; 26:108007. [PMID: 37810224 PMCID: PMC10551892 DOI: 10.1016/j.isci.2023.108007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
The vascular system is a multi-scale network whose functionality depends on its structure, and for which structural alterations can be linked to pathological shifts. Though biologists use multiple 3D imaging techniques to visualize vascular networks, the 3D image processing methodologies remain sources of biases, and the extraction of quantitative morphometric descriptors remains flawed. The article, first, reviews the current 3D image processing methodologies, and morphometric descriptors of vascular network images mainly obtained by light-sheet microscopy on optically cleared organs, found in the literature. Second, it proposes operator-independent segmentation and skeletonization methodologies using the freeware ImageJ. Third, it gives more extractable network-level (density, connectivity, fractal dimension) and segment-level (length, diameter, tortuosity) 3D morphometric descriptors and how to statistically analyze them. Thus, it can serve as a guideline for biologists using 3D imaging techniques of vascular networks, allowing the production of more comparable studies in the future.
Collapse
Affiliation(s)
- Nabil Nicolas
- University Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, F-33600 Pessac, France
| | - Virginie Dinet
- University Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, F-33600 Pessac, France
| | - Etienne Roux
- University Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, F-33600 Pessac, France
| |
Collapse
|
14
|
Joshi I, Devine AJ, Joshi R, Smith NJ, Varisco BM. A titratable murine model of progressive emphysema using tracheal porcine pancreatic elastase. Sci Rep 2023; 13:15259. [PMID: 37709810 PMCID: PMC10502133 DOI: 10.1038/s41598-023-41527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Progressive emphysema often leads to end-stage lung disease. Most mouse models of emphysema are typically modest (i.e. cigarette smoke exposure), and changes over time are difficult to quantify. The tracheal porcine pancreatic elastase model (PPE) produces severe injury, but the literature is conflicted as to whether emphysema improves, is stable, or progresses over time. We hypothesized a threshold of injury below which repair would occur and above which emphysema would be stable or progress. We treated 8-week-old C57BL6 mixed sex mice with 0, 0.5, 2, or 4 activity units of PPE in 100 µL PBS and performed lung stereology at 21 and 84 days. There were no significant differences in weight gain or mouse health. Despite minimal emphysema at 21-days in the 0.5 units group (2.8 µm increased mean linear intercept, MLI), MLI increased by 4.6 µm between days 21 and 84 (p = 0.0007). In addition to larger MLI at 21 days in 2- and 4-unit groups, MLI increases from day 21 to 84 were 17.2 and 34 µm respectively (p = 0.002 and p = 0.0001). Total lung volume increased, and alveolar surface area decreased with time and injury severity. Contrary to our hypothesis, we found no evidence of alveolar repair over time. Airspace destruction was both progressive and accelerative. Future mechanistic studies in lung immunity, mechano-biology, senescence, and cell-specific changes may lead to novel therapies to slow or halt progressive emphysema in humans.
Collapse
Affiliation(s)
- Imani Joshi
- College of Arts and Sciences, Xavier University, Cincinnati, OH, USA
| | - Andrew J Devine
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rashika Joshi
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Noah J Smith
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brian M Varisco
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- University of Arkansas for Medical Sciences, 1 Children's Way Slot 663, Little Rock, AR, 72202, USA.
| |
Collapse
|
15
|
Vestal BE, Ghosh D, Estépar RSJ, Kechris K, Fingerlin T, Carlson NE. Quantifying the spatial clustering characteristics of radiographic emphysema explains variability in pulmonary function. Sci Rep 2023; 13:13862. [PMID: 37620507 PMCID: PMC10449810 DOI: 10.1038/s41598-023-40950-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
Quantitative assessment of emphysema in CT scans has mostly focused on calculating the percentage of lung tissue that is deemed abnormal based on a density thresholding strategy. However, this overall measure of disease burden discards virtually all the spatial information encoded in the scan that is implicitly utilized in a visual assessment. This simplification is likely grouping heterogenous disease patterns and is potentially obscuring clinical phenotypes and variable disease outcomes. To overcome this, several methods that attempt to quantify heterogeneity in emphysema distribution have been proposed. Here, we compare three of those: one based on estimating a power law for the size distribution of contiguous emphysema clusters, a second that looks at the number of emphysema-to-emphysema voxel adjacencies, and a third that applies a parametric spatial point process model to the emphysema voxel locations. This was done using data from 587 individuals from Phase 1 of COPDGene that had an inspiratory CT scan and plasma protein abundance measurements. The associations between these imaging metrics and visual assessment with clinical measures (FEV[Formula: see text], FEV[Formula: see text]-FVC ratio, etc.) and plasma protein biomarker levels were evaluated using a variety of regression models. Our results showed that a selection of spatial measures had the ability to discern heterogeneous patterns among CTs that had similar emphysema burdens. The most informative quantitative measure, average cluster size from the point process model, showed much stronger associations with nearly every clinical outcome examined than existing CT-derived emphysema metrics and visual assessment. Moreover, approximately 75% more plasma biomarkers were found to be associated with an emphysema heterogeneity phenotype when accounting for spatial clustering measures than when they were excluded.
Collapse
Affiliation(s)
- Brian E Vestal
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA.
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Raúl San José Estépar
- Applied Chest Imaging Laboratory (ACIL), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Tasha Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Nichole E Carlson
- Department of Biostatistics and Informatics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
16
|
Paramore SV, Goodwin K, Devenport D, Nelson CM. Mesenchymal Vangl facilitates airway elongation and widening independently of the planar cell polarity complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547543. [PMID: 37461477 PMCID: PMC10349956 DOI: 10.1101/2023.07.03.547543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
A hallmark of mammalian lungs is the fractal nature of the bronchial tree. In the adult, each successive generation of airways is a fraction of the size of the parental branch. This fractal structure is physiologically beneficial, as it minimizes the energy needed for breathing. Achieving this pattern likely requires precise control of airway length and diameter, as the branches of the embryonic airways initially lack the fractal scaling observed in those of the adult lung. In epithelial monolayers and tubes, directional growth can be regulated by the planar cell polarity (PCP) complex. Here, we comprehensively characterized the roles of PCP-complex components in airway initiation, elongation, and widening during branching morphogenesis of the murine lung. Using tissue-specific knockout mice, we surprisingly found that branching morphogenesis proceeds independently of PCP-component expression in the developing airway epithelium. Instead, we found a novel, Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme. Specifically, mesenchymal loss of Vangl1/2 leads to defects in branch initiation, elongation, and widening. At the cellular level, we observe changes in the shape of smooth muscle cells that indicate a potential defect in collective mesenchymal rearrangements, which we hypothesize are necessary for lung morphogenesis. Our data thus reveal an explicit function for Vangl that is independent of the core PCP complex, suggesting a functional diversification of PCP components in vertebrate development. These data also reveal an essential role for the embryonic mesenchyme in generating the fractal structure of airways of the mature lung.
Collapse
Affiliation(s)
| | | | | | - Celeste M Nelson
- Department of Molecular Biology
- Department of Chemical & Biological Engineering
| |
Collapse
|
17
|
Bărbulescu A. Fractal Characterization of the Mass Loss of Bronze by Erosion-Corrosion in Seawater. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103877. [PMID: 37241504 DOI: 10.3390/ma16103877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The fractal approach is one of the nondestructive techniques for analyzing corrosion's effects on different materials. This article utilizes it to analyze the erosion-corrosion produced by cavitation on two types of bronze introduced into an ultrasonic cavitation field to investigate the differences between their behavior in saline water. The aim is to check the hypothesis that the fractal/multifractal measures significantly differ for the studied materials that belong to the same class (bronze) as a step in applying fractal techniques to distinguish between two materials. The study emphasizes the multifractal characteristics of both materials. While the fractal dimensions do not significantly differ, the highest multifractal dimensions correspond to the sample of bronze with Sn.
Collapse
Affiliation(s)
- Alina Bărbulescu
- Department of Civil Engineering, Transilvania University of Brașov, 5, Turnului Street, 900152 Brașov, Romania
| |
Collapse
|
18
|
Terada S, Tanabe N, Maetani T, Shiraishi Y, Sakamoto R, Shima H, Oguma T, Sato A, Kanasaki M, Masuda I, Sato S, Hirai T. Association of age with computed tomography airway tree morphology in male and female never smokers without lung disease history. Respir Med 2023; 214:107278. [PMID: 37196749 DOI: 10.1016/j.rmed.2023.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/09/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Sex and aging may affect the airway tree structure in patients with airway diseases and even healthy subjects. Using chest computed tomography (CT), this study sought to determine whether age is associated with airway morphological features differently in healthy males and females. METHODS This retrospective cross-sectional study consecutively incorporated lung cancer screening CT data of asymptomatic never smokers (n = 431) without lung disease history. Luminal areas were measured at the trachea, main bronchi, bronchus intermedius, segmental and subsegmental bronchus, and the ratio of their geometric mean to total lung volume (airway-to-lung size ratio, ALR) was determined. Airway fractal dimension (AFD) and total airway count (TAC) were calculated for the segmented airway tree resolved on CT. RESULTS The lumen areas of the trachea, main bronchi, segmental and subsegmental airways, AFD and TAC visible on CT were smaller in females (n = 220) than in males (n = 211) after adjusting for age, height, and body mass index, while ALR or count of the 1st to 5th generation airways did not differ. Furthermore, in males but not in females, older age was associated with larger lumen sizes of the main bronchi, segmental and subsegmental airways, and ALR. In contrast, neither male nor female had any associations between age and AFD or TAC on CT. CONCLUSION Older age was associated with larger lumen size of the relatively central airways and ALR exclusively in males. Aging may have a more profound effect on airway lumen tree caliber in males than in females.
Collapse
Affiliation(s)
- Satoru Terada
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Rehabilitation Unit, Kyoto University Hospital, Kyoto, Japan.
| | - Tomoki Maetani
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Hiroshi Shima
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | - Izuru Masuda
- Medical Examination Center, Takeda Hospital, Kyoto, Japan; Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, National Hospital Organization, Kyoto Medical Center, Japan.
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
19
|
Maetani T, Tanabe N, Terada S, Shiraishi Y, Shima H, Kaji S, Sakamoto R, Oguma T, Sato S, Masuda I, Hirai T. Physiological impacts of computed tomography airway dysanapsis, fractal dimension, and branch count in asymptomatic never smokers. J Appl Physiol (1985) 2023; 134:20-27. [PMID: 36269294 DOI: 10.1152/japplphysiol.00385.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dysanapsis, a mismatch between airway tree caliber and lung size, contributes to a large variation in lung function on spirometry in healthy subjects. However, it remains unclear whether other morphological features of the airway tree could be associated with the variation in lung function independent of dysanapsis. This study used lung cancer screening chest computed tomography (CT) and spirometry data from asymptomatic never smokers. Dysanapsis and the complexity of airway tree geometry were quantified on CT by measuring airway to lung ratio (ALR) and airway fractal dimension (AFD). Moreover, total airway count (TAC), ratio of airway luminal surface area to volume (SA/V), longitudinal tapering and irregularity of the radius of the internal lumen from the central to peripheral airways (Tapering index and Irregularity index) were quantified. In 431 asymptomatic never smokers without a history of lung diseases, lower ALR was associated with lower forced expiratory volume in 1 s (FEV1) and FEV1/forced vital capacity (FEV1/FVC). The associations of ALR with AFD and TAC (r = 0.41 and 0.13) were weaker than the association between TAC and AFD (r = 0.64). In multivariable models adjusted for age, sex, height, and mean lung density, lower AFD and TAC were associated with lower FEV1 and FEV1/FVC independent of ALR, whereas SA/V and Tapering index were not. These results suggest that the smaller airway tree relative to a given lung size and the lower complexity of airway tree shape, including lower branch count, are independently associated with lower lung function in healthy subjects.NEW & NOTEWORTHY This study showed that fractal dimension and total airway count of the airway tree on computed tomography are associated with lung function on spirometry independent of a smaller airway for a given lung size (dysanapsis) in asymptomatic never smokers without a history of lung diseases. In addition to dysanapsis, the morphometric complexity of the airway tree and the airway branch count may cause a substantial variation of lung function in these subjects.
Collapse
Affiliation(s)
- Tomoki Maetani
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Terada
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Shima
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shizuo Kaji
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Izuru Masuda
- Medical Examination Center, Takeda Hospital, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Kimura H, Shimizu K, Tanabe N, Makita H, Taniguchi N, Kimura H, Suzuki M, Abe Y, Matsumoto-Sasaki M, Oguma A, Takimoto-Sato M, Takei N, Matsumoto M, Goudarzi H, Sato S, Ono J, Izuhara K, Hirai T, Nishimura M, Konno S. Further evidence for association of YKL-40 with severe asthma airway remodeling. Ann Allergy Asthma Immunol 2022; 128:682-688.e5. [PMID: 35342020 DOI: 10.1016/j.anai.2022.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The chitinase-like protein YKL-40 is associated with airflow limitation on spirometry and airway remodeling in patients with asthma. It remains unclear whether YKL-40 is associated with morphologic changes in the airways and parenchyma or with future progression of airflow limitation in severe asthma. OBJECTIVE To evaluate the association of circulating YKL-40 levels with morphologic changes in the airways and parenchyma and with longitudinal progression of airflow limitation. METHODS The patients were participants in the Hokkaido Severe Asthma Cohort Study (n = 127), including smokers. This study consisted of 2 parts. In analysis 1, we analyzed associations between circulating YKL-40 levels and several asthma-related indices, including computed tomography-derived indices of proximal wall area percentage, the complexity of the airways (airway fractal dimension), and the parenchyma (exponent D) cross-sectionally (n = 97). In analysis 2, we evaluated the impact of circulating YKL-40 levels on forced expiratory volume in 1 second (FEV1) decline longitudinally for a 5-year follow-up (n = 103). RESULTS Circulating YKL-40 levels were significantly associated with proximal wall area percentage and airway fractal dimension (r = 0.25, P = .01; r = -0.22, P = .04, respectively), but not with exponent D. The mean annual change in FEV1 was -33.7 (± 23.3) mL/y, and the circulating YKL-40 level was a significant independent factor associated with annual FEV1 decline (β = -0.24, P = .02), even after controlling for exponent D (β = -0.26, P = .01). CONCLUSION These results provide further evidence for the association of YKL-40 with the pathogenesis of airway remodeling in severe asthma.
Collapse
Affiliation(s)
- Hirokazu Kimura
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan.
| | - Kaoruko Shimizu
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Tanabe
- Graduate School of Medicine, Department of Respiratory Medicine, Kyoto University, Kyoto, Japan
| | - Hironi Makita
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Natsuko Taniguchi
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroki Kimura
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Suzuki
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Abe
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | | | - Akira Oguma
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Michiko Takimoto-Sato
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Nozomu Takei
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Munehiro Matsumoto
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Houman Goudarzi
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Susumu Sato
- Graduate School of Medicine, Department of Respiratory Medicine, Kyoto University, Kyoto, Japan
| | - Junya Ono
- R&D Center, Shino-Test Corporation, Kanagawa, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Toyohiro Hirai
- Graduate School of Medicine, Department of Respiratory Medicine, Kyoto University, Kyoto, Japan
| | - Masaharu Nishimura
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan; Hokkaido Medical Research Institute for Respiratory Diseases, Sapporo, Japan
| | - Satoshi Konno
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Campbell OL, Weber AM. Monofractal analysis of functional magnetic resonance imaging: An introductory review. Hum Brain Mapp 2022; 43:2693-2706. [PMID: 35266236 PMCID: PMC9057087 DOI: 10.1002/hbm.25801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/11/2022] Open
Abstract
The following review will aid readers in providing an overview of scale-free dynamics and monofractal analysis, as well as its applications and potential in functional magnetic resonance imaging (fMRI) neuroscience and clinical research. Like natural phenomena such as the growth of a tree or crashing ocean waves, the brain expresses scale-invariant, or fractal, patterns in neural signals that can be measured. While neural phenomena may represent both monofractal and multifractal processes and can be quantified with many different interrelated parameters, this review will focus on monofractal analysis using the Hurst exponent (H). Monofractal analysis of fMRI data is an advanced analysis technique that measures the complexity of brain signaling by quantifying its degree of scale-invariance. As such, the H value of the blood oxygenation level-dependent (BOLD) signal specifies how the degree of correlation in the signal may mediate brain functions. This review presents a brief overview of the theory of fMRI monofractal analysis followed by notable findings in the field. Through highlighting the advantages and challenges of the technique, the article provides insight into how to best conduct fMRI fractal analysis and properly interpret the findings with physiological relevance. Furthermore, we identify the future directions necessary for its progression towards impactful functional neuroscience discoveries and widespread clinical use. Ultimately, this presenting review aims to build a foundation of knowledge among readers to facilitate greater understanding, discussion, and use of this unique yet powerful imaging analysis technique.
Collapse
Affiliation(s)
- Olivia Lauren Campbell
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander Mark Weber
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Bayat S, Broche L, Dégrugilliers L, Porra L, Paiva M, Verbanck S. Fractal analysis reveals functional unit of ventilation in the lung. J Physiol 2021; 599:5121-5132. [PMID: 34647325 DOI: 10.1113/jp282093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
Ventilation is inhomogeneous in the lungs across species. It has been hypothesized that ventilation inhomogeneity is largely determined by the design of the airway branching network. Because exchange of gases at the alveolar barrier is more efficient when gas concentrations are evenly distributed at subacinar length scales, it is assumed that a 'functional unit' of ventilation exists within the lung periphery, where gas concentration becomes uniform. On the other hand, because the morphology of pulmonary airways and alveoli, and the distribution of inhaled fluorescent particles show self-similar fractal properties over a wide range of length scales, it has been predicted that fractal dimension of ventilation approaches unity within an internally homogeneous functional unit of ventilation. However, the existence of such a functional unit has never been demonstrated experimentally due to lack of in situ gas concentration measurements of sufficient spatial resolution in the periphery of a complex bifurcating network. Here, using energy-subtractive synchrotron radiation tomography, we measured the distribution of an inert gas (Xe) in the in vivo rabbit lung during Xe wash-in breathing manoeuvres. The effects of convective flow rate, diffusion and cardiac motion were also assessed. Fractal analysis of resulting gas concentration and tissue density maps revealed that fractal dimension was always smaller for Xe than for tissue density, and that only for the gas, a length scale existed where fractal dimension approached unity. The length scale where this occurred was seen to correspond to that of a rabbit acinus, the terminal structure comprising only alveolated airways. KEY POINTS: Gas ventilation is inhomogeneous in the lung of many species. However, it is not known down to what length scales this inhomogeneity persists. It is generally assumed that ventilation becomes homogeneous at subacinar length scales, beyond the spatial resolution of commonly available imaging techniques, hence this has not been demonstrated experimentally. Here we measured the distribution of inhaled Xe gas in the rabbit lung using synchrotron radiation energy-subtractive imaging and used fractal analysis to show that ventilation becomes internally uniform within regions about the size of rabbit lung acini.
Collapse
Affiliation(s)
- Sam Bayat
- Department of Pulmonology and Physiology, Grenoble University Hospital, Grenoble, France.,Univ. Grenoble Alpes, STROBE Laboratory Inserm UA07, Grenoble, France
| | - Ludovic Broche
- Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble, France
| | - Loïc Dégrugilliers
- Department of Paediatric Intensive Care, Amiens University Hospital, Amiens, France
| | - Liisa Porra
- Department of Physics, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland
| | - Manuel Paiva
- University Hospital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sylvia Verbanck
- Respiratory Division, University Hospital UZ Brussel, Vrije Universiteit Brussel, Brussels, Belguim
| |
Collapse
|
23
|
Shimizu K, Tanabe N, Oguma A, Kimura H, Suzuki M, Yokota I, Makita H, Sato S, Hirai T, Nishimura M, Konno S. Parenchymal destruction in asthma: Fixed airflow obstruction and lung function trajectory. J Allergy Clin Immunol 2021; 149:934-942.e8. [PMID: 34437923 DOI: 10.1016/j.jaci.2021.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/03/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Fixed airflow obstruction (FAO) in asthma, particularly in nonsmokers, is generally believed to be caused by airway remodeling. However, parenchymal destruction may also contribute to FAO and longitudinal decline in forced expiratory volume in 1 second (FEV1). OBJECTIVES To evaluate parenchymal destruction, we used emphysema indices, exponent D, and low-attenuation area percentage (LAA%) on computed tomography (CT), and test whether the parenchymal destruction and airway disease are independently associated with FAO and FEV1 decline in both smoking and nonsmoking asthma. METHODS Exponent D, LAA%, wall area percentage at segmental airways, and airway fractal dimension (AFD) in those with asthma were measured on inspiratory CT and compared to those in patients with chronic obstructive pulmonary disease (COPD). RESULTS Exponent D was lower and LAA% was higher in COPD (n = 42) and asthma with FAO (n = 101) than in asthma without FAO (n = 88). The decreased exponent D and increased LAA% were associated with FAO regardless of smoking status or asthma severity. In multivariable analysis, decreased exponent D and increased LAA% were associated with an increased odds ratio of FAO and decreased FEV1, irrespective of wall area percentage and airway fractal dimension. Moreover, decreased exponent D affected the longitudinal decline in FEV1 in those with severe asthma, independent of smoking status. CONCLUSIONS Patients with asthma with FAO showed parenchymal destruction regardless of smoking status and asthma severity. Parenchymal destruction was associated with an accelerated FEV1 decline, suggesting the involvements of both airway and parenchyma in the pathophysiology of a subgroup of asthma.
Collapse
Affiliation(s)
- Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Oguma
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hirokazu Kimura
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Isao Yokota
- Department of Biostatistics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hironi Makita
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Hokkaido Institute of Respiratory Diseases, Sapporo, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaharu Nishimura
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Hokkaido Institute of Respiratory Diseases, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|