1
|
Porczak AE, Feng NY. Hibernation as a model for skeletal muscle preservation. Ann N Y Acad Sci 2025. [PMID: 40490972 DOI: 10.1111/nyas.15389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Hibernation is an extreme adaptation that enables a diverse array of mammalian species to survive long-term nutrient deprivation. In many seasonal hibernators, winter hibernation is characterized by prolonged periods of immobility and starvation, conditions that induce muscular atrophy in nonhibernating animals. In humans, factors that contribute to muscle atrophy include muscle disuse under conditions of bedrest, casting, paralysis, microgravity, as well as aging. In laboratory mice and rats, muscle disuse can be induced by hindlimb unloading or casting-experimental paradigms that have revealed the molecular basis of muscle atrophy. Remarkably, hibernating mammals experience reduced atrophy and maintain muscle ultrastructure and function despite months of immobility and starvation, serving as excellent models for investigating protective mechanisms for muscular atrophy resistance. In this review, we explore skeletal muscle homeostasis at multiple levels of biological organization, from function, neural innervation, gross anatomy, cellular differentiation, ultrastructure, to biochemical pathways regulating regeneration, growth, and degeneration. At each level, we compare known mechanisms in hibernators, laboratory rodents, and humans. Finally, we highlight gaps in knowledge and propose future areas of investigation for elucidating mechanisms of muscle atrophy resistance in hibernation.
Collapse
Affiliation(s)
| | - Ni Y Feng
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
- Program in Neuroscience and Behavior, Wesleyan University, Middletown, Connecticut, USA
- College of Integrative Sciences, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
2
|
Naëgel A, Viallon M, Ratiney H, Nguyen T, Leporq B, Kennouche D, Grenier T, Grundler F, Mesnage R, Guy J, Schultze R, Wilhelmi de Toledo F, Croisille P. Impact of Long-Term Fasting on Skeletal Muscle: Structure, Energy Metabolism and Function Using 31P/ 1H MRS and MRI. J Cachexia Sarcopenia Muscle 2025; 16:e13773. [PMID: 40211897 PMCID: PMC11986369 DOI: 10.1002/jcsm.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 01/14/2025] [Accepted: 02/10/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Fasting shows promise for public health, but concerns about muscle loss hinder its acceptance, particularly among the elderly. We explored the impact of long-term fasting (12 days, 250 kcal/day) on muscle structure, metabolism and performance. METHODS We prospectively assessed muscle volume, composition, relaxometry data and lipid metabolism in 32 subjects (16 men; 50% over 50 years old) before fasting, at the end of fasting and 1 month post-fasting. Techniques included high-resolution 3D Dixon MR imaging, multiecho CSE and single-voxel MR spectroscopy. Dynamic 31P-MRS, quantitative MRI, maximal voluntary contraction (MVC) measurements and exercise testing (VO2peak) were repeated throughout the protocol. RESULTS Although the average body weight loss was 5.9 kg (7.4%, p < 0.001), the skeletal muscle volume change measured on the right calf muscle was 271 mL (5.4%, p < 0.001). This closely aligns with expected losses of glycogen (1%-2%) and bound water (3%-4%), estimated to total 404-505 mL. MVC (anaerobic lactic metabolism) remained preserved in both thighs and calf muscles, regardless of sex or age. Unchanged T2 showed that fasting did not induce structural or inflammatory changes. MRI/MRS revealed fat redistribution among tissues, with subcutaneous fat decrease (by 417.2 cm3, p < 0.01) and total fat fraction increase (by 0.2%, p < 0.05) in muscle. The intramyocellular lipid pool increased by 2.2 times (p < 0.05), whereas the extracellular lipid pool decreased to 1.4 times (p < 0.05), revealing rapid lipid trafficking and adaptation. During fasting, the T2* value increased by 1.2 ms (p < 0.001), likely because of changes in the configuration of intracellular lipid droplets, with an increased proportion of lipid droplets of smaller size, optimizing accessibility of lipid fuels and mitochondrial FA. Exercise testing (VO2peak) showed no change in maximal oxygen uptake, but fat oxidation improved with a 10% decrease in the exercise respiratory exchange ratio (p < 0.001). Mitochondrial oxidative capacity and PCr resynthesis rates in muscle were maintained. Females improved their mitochondrial function by D + 12, with τPCr decreasing to 29.61 s (p < 0.01), surpassing males and demonstrating better fat oxidation capabilities. CONCLUSIONS Long-term fasting did not alter muscle metabolism or performance, nor induced structural or inflammatory changes. The decrease in muscle volume is minor when accounting for glycogen and water depletion during fasting. Fat is relocated to the intracellular compartment of myocytes. Both anaerobic and aerobic metabolic pathways remain unchanged after 12 days of fasting in both sexes and older subjects. This suggests that human muscles, like those in animals, have evolved to withstand seasonal food shortages and endure long fasting periods.
Collapse
Affiliation(s)
- Antoine Naëgel
- Univ Lyon, UJM‐Saint‐Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATISSaint‐EtienneFrance
- Siemens Healthcare SASSaint‐DenisFrance
| | - Magalie Viallon
- Univ Lyon, UJM‐Saint‐Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATISSaint‐EtienneFrance
- Department of RadiologyUniversity Hospital Saint‐EtienneSaint‐EtienneFrance
| | - Hélène Ratiney
- Univ Lyon, UJM‐Saint‐Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATISSaint‐EtienneFrance
| | - Thu Nguyen
- Univ Lyon, UJM‐Saint‐Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATISSaint‐EtienneFrance
| | - Benjamin Leporq
- Univ Lyon, UJM‐Saint‐Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATISSaint‐EtienneFrance
| | - Djahid Kennouche
- Laboratoire Interuniversitaire de Biologie de la MotricitéUniversité Jean Monnet Saint‐Etienne, Lyon 1, Université Savoie Mont‐BlancSaint‐EtienneFrance
| | - Thomas Grenier
- Univ Lyon, UJM‐Saint‐Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATISSaint‐EtienneFrance
| | | | - Robin Mesnage
- Buchinger Wilhelmi ClinicÜberlingenGermany
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | | | - Robin Schultze
- Mettnau, Werner‐Messmer‐KlinikRadolfzell am BodenseeGermany
| | | | - Pierre Croisille
- Univ Lyon, UJM‐Saint‐Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATISSaint‐EtienneFrance
- Department of RadiologyUniversity Hospital Saint‐EtienneSaint‐EtienneFrance
| |
Collapse
|
3
|
Abstract
Among vertebrates, birds undertake the longest, fastest and highest migrations of any taxonomic group, largely due to their unique cardiorespiratory system, which permits for very large rates of gas exchange. Managing resultant elevated production of reactive oxygen species, and thus oxidative stress, has meant that birds can largely avoid pathologies relating to major medical challenges that now probably account for the majority of global healthcare spending. Hypoxia underlies most critical illnesses faced by humans, but the avian cardiorespiratory system can supply far more oxygen per unit of time than any mammal. Birds have high circulating glucose levels, but have adaptations to cope with the elevated production of oxidative stress brought about by hyperglycaemia. Birds also avoid the inflammatory responses brought about by obesity in humans when they seasonally gain huge fat stores. Lastly, birds live four times longer than similarly sized mammals, with seasonal endogenous muscle hypertrophy, and some birds even increase telomere length with age. A new frontier of 'physiologging' is emerging, making use of technologies for medical use, but that provide novel parameters for better understanding the biomechanics, energetics and ecology of a range of species. These physiologging tools are likely to provide insight into avian physiology, biomechanics and ecology including their ability to spread disease, as well as each of the medical challenges detailed in this Commentary. By virtue of their physiological capacity, the study of avian physiology is a critical area for future discovery and research using applied and interdisciplinary areas of biomechanics, ecology and physiology.
Collapse
Affiliation(s)
- Lucy A. Hawkes
- University of Exeter, Faculty of Health and Life Sciences, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK
| |
Collapse
|
4
|
De Napoli C, Schmidt L, Montesel M, Cussonneau L, Sanniti S, Marcucci L, Germinario E, Kindberg J, Evans AL, Gauquelin-Koch G, Narici M, Bertile F, Lefai E, Krüger M, Nogara L, Blaauw B. Reduced ATP turnover during hibernation in relaxed skeletal muscle. Nat Commun 2025; 16:80. [PMID: 39747078 PMCID: PMC11696273 DOI: 10.1038/s41467-024-55565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Hibernating brown bears, due to a drastic reduction in metabolic rate, show only moderate muscle wasting. Here, we evaluate if ATPase activity of resting skeletal muscle myosin can contribute to this energy sparing. By analyzing single muscle fibers taken from the same bears, either during hibernation or in summer, we find that fibers from hibernating bears have a mild decline in force production and a significant reduction in ATPase activity. Single fiber proteomics, western blotting, and immunohistochemical analyses reveal major remodeling of the mitochondrial proteome during hibernation. Furthermore, using bioinformatical approaches and western blotting we find that phosphorylated myosin light chain, a known stimulator of basal myosin ATPase activity, is decreased in hibernating and disused muscles. These results suggest that skeletal muscle limits energy loss by reducing myosin ATPase activity, indicating a possible role for myosin ATPase activity modulation in multiple muscle wasting conditions.
Collapse
Affiliation(s)
- Cosimo De Napoli
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Biomedical Sciences, 35131, University of Padova, Padova, Italy
| | - Luisa Schmidt
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Mauro Montesel
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Biomedical Sciences, 35131, University of Padova, Padova, Italy
| | - Laura Cussonneau
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Biomedical Sciences, 35131, University of Padova, Padova, Italy
| | - Samuele Sanniti
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, 35131, University of Padova, Padova, Italy
| | - Elena Germinario
- Department of Biomedical Sciences, 35131, University of Padova, Padova, Italy
| | - Jonas Kindberg
- Norwegian Institute for Nature Research, Trondheim, Norway
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Alina Lynn Evans
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Biotechnology, Inland Norway University of Applied Sciences, Koppang, Norway
| | | | - Marco Narici
- Department of Biomedical Sciences, 35131, University of Padova, Padova, Italy
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, 7, Strasbourg, Cedex 2, France
- National Proteomics Infrastructure, ProFi, Strasbourg, France
| | - Etienne Lefai
- Université Clermont Auvergne, INRAE, UNH UMR 1019, CRNH Auvergne, Clermont-Ferrand, France
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.
- Department of Biomedical Sciences, 35131, University of Padova, Padova, Italy.
- Department of Pharmaceutical Sciences, 35131, University of Padova, Padova, Italy.
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.
- Department of Biomedical Sciences, 35131, University of Padova, Padova, Italy.
| |
Collapse
|
5
|
Wu F, Guo Y, Wang Y, Sui X, Wang H, Zhang H, Xin B, Yang C, Zhang C, Jiang S, Qu L, Feng Q, Dai Z, Shi C, Li Y. Effects of Long-Term Fasting on Gut Microbiota, Serum Metabolome, and Their Association in Male Adults. Nutrients 2024; 17:35. [PMID: 39796469 PMCID: PMC11722564 DOI: 10.3390/nu17010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Long-term fasting demonstrates greater therapeutic potential and broader application prospects in extreme environments than intermittent fasting. METHOD This pilot study of 10-day complete fasting (CF), with a small sample size of 13 volunteers, aimed to investigate the time-series impacts on gut microbiome, serum metabolome, and their interrelationships with biochemical indices. RESULTS The results show CF significantly affected gut microbiota diversity, composition, and interspecies interactions, characterized by an expansion of the Proteobacteria phylum (about six-fold) and a decrease in Bacteroidetes (about 50%) and Firmicutes (about 34%) populations. Notably, certain bacteria taxa exhibited complex interactions and strong correlations with serum metabolites implicated in energy and amino acid metabolism, with a particular focus on fatty acylcarnitines and tryptophan derivatives. A key focus of our study was the effect of Ruthenibacterium lactatiformans, which was highly increased during CF and exhibited a strong correlation with fat metabolic indicators. This bacterium was found to mitigate high-fat diet-induced obesity, glucose intolerance, dyslipidemia, and intestinal barrier dysfunction in animal experiments. These effects suggest its potential as a probiotic candidate for the amelioration of dyslipidemia and for mediating the benefits of fasting on fat metabolism. CONCLUSIONS Our pilot study suggests that alterations in gut microbiota during CF contribute to the shift of energy metabolic substrate and the establishment of a novel homeostatic state during prolonged fasting.
Collapse
Affiliation(s)
- Feng Wu
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 200038, China
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Yihua Wang
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiukun Sui
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Hailong Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Bingmu Xin
- Engineering Research Center of Human Circadian Rhythm and Sleep, Space Science and Technology Institute (Shenzhen), Shenzhen 518000, China
| | - Chao Yang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Cheng Zhang
- Engineering Research Center of Human Circadian Rhythm and Sleep, Space Science and Technology Institute (Shenzhen), Shenzhen 518000, China
| | - Siyu Jiang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Lina Qu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Chunmeng Shi
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 200038, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
6
|
Sadowska J, Carlson KM, Buck CL, Lee TN, Duddleston KN. Microbial urea-nitrogen recycling in arctic ground squirrels: the effect of ambient temperature of hibernation. J Comp Physiol B 2024; 194:909-924. [PMID: 39237834 PMCID: PMC11511772 DOI: 10.1007/s00360-024-01579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/14/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Energy conservation associated with hibernation is maximized at the intersection of low body temperature (Tb), long torpor bouts, and few interbout arousals. In the arctic ground squirrel (Urocitellus parryii), energy conservation during hibernation is best achieved at ambient temperatures (Ta) around 0 °C; however, they spend the majority of hibernation at considerably lower Ta. Because arctic ground squirrels switch to mixed fuel metabolism, including protein catabolism, at extreme low Ta of hibernation, we sought to investigate how microbial urea-nitrogen recycling is used under different thermal conditions. Injecting squirrels with isotopically labeled urea (13C/15N) during hibernation at Ta's of - 16 °C and 2 °C and while active and euthermic allowed us to assess the ureolytic activity of gut microbes and the amount of liberated nitrogen incorporated into tissues. We found greater incorporation of microbially-liberated nitrogen into tissues of hibernating squirrels. Although ureolytic activity appears higher in euthermic squirrels, liberated nitrogen likely makes up a smaller percentage of the available nitrogen pool in active, fed animals. Because non-lipid fuel is a limiting factor for torpor at lower Ta in this species, we hypothesized there would be greater incorporation of liberated nitrogen in animals hibernating at - 16 °C. However, we found higher microbial-ureolytic activity and incorporation of microbially-liberated nitrogen, particularly in the liver, in squirrels hibernating at 2 °C. Likely this is because squirrels hibernating at 2 °C had higher Tb and longer interbout arousals, a combination of factors creating more favorable conditions for gut microbes to thrive and maintain greater activity while giving the host more time to absorb microbial metabolites.
Collapse
Affiliation(s)
- Julita Sadowska
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Białystok, Białystok, Poland
| | - Karen M Carlson
- Department of Biological Sciences, College of Arts and Sciences, University of Alaska Anchorage, Anchorage, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, USA
| | - Trixie N Lee
- Department of Biology, Harding University, Searcy, AR, USA
| | - Khrystyne N Duddleston
- Department of Biological Sciences, College of Arts and Sciences, University of Alaska Anchorage, Anchorage, USA.
| |
Collapse
|
7
|
Le Maho Y, Tasiemski A, Bertile F, Bulet P. Fieldwork on animals living in extreme conditions as a source of biomedical innovation. SCIENCE IN ONE HEALTH 2024; 4:100096. [PMID: 39877680 PMCID: PMC11773462 DOI: 10.1016/j.soh.2024.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/19/2024] [Indexed: 01/31/2025]
Abstract
Most biomedical research on animals is based on the handful of the so-called standard model organisms, i.e. laboratory mice, rats or Drosophila, but the keys to some important biomedical questions may simply not be found in these. However, compared with the high number of molecules originating from plants in clinical use, and with the countless unique adaption mechanisms that animals have developed over the course of evolution to cope with environmental constrains, there is still few investigations on wild animals with biomedical objectives, and field studies are far fewer. A major limitation is insufficient funding, the main causes of which we analyze. We argue, however, that fieldwork is a key driver in generating new scientific knowledge as part of a One Health approach, by observing/documenting and understanding the diverse and largely unexplored biological processes evolved by animals adapted to unusual environmental conditions, which would be extreme conditions for humans. These conditions do not only refer to extreme temperatures, since lack of food or water, high pressures or lack of oxygen, are clearly extreme constraints. To conduct this research, there are serious limitations we propose to address. Specific techniques and methods are requested, not only to work in extreme environments, but also to minimize the ecological footprint of field work. The erosion of biodiversity is a major threat. The reduction of animal disturbance, a key issue, requires specific technologies and expertise. An ethical approach is requested, for the sake of transparency and to comply with the Nagoya Protocol on genetic resources. An interdisciplinary expertise and a meticulous planning are requested to overcome the field constraints and interface the associated laboratory work. We recommend focusing on the major threats to global human health today, which wild animals appear to resist particularly well, such as antibioresistance and diseases associated with lifestyle and senescence.
Collapse
Affiliation(s)
- Yvon Le Maho
- University of Strasbourg, CNRS, Hubert Curien Pluridisciplinary Institute, UMR7178, 67087 Strasbourg, France
| | - Aurélie Tasiemski
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Fabrice Bertile
- University of Strasbourg, CNRS, Hubert Curien Pluridisciplinary Institute, UMR7178, 67087 Strasbourg, France
| | - Philippe Bulet
- CR University Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Grenoble, France
- Plateform BioPark of Archamps, 218 Avenue Marie Curie ArchParc 74160, Archamps, France
| |
Collapse
|
8
|
Martin TG, Leinwand LA. Molecular regulation of reversible cardiac remodeling: lessons from species with extreme physiological adaptations. J Exp Biol 2024; 227:jeb247445. [PMID: 39344503 PMCID: PMC11463965 DOI: 10.1242/jeb.247445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Some vertebrates evolved to have a remarkable capacity for anatomical and physiological plasticity in response to environmental challenges. One example of such plasticity can be found in the ambush-hunting snakes of the genus Python, which exhibit reversible cardiac growth with feeding. The predation strategy employed by pythons is associated with months-long fasts that are arrested by ingestion of large prey. Consequently, digestion compels a dramatic increase in metabolic rate and hypertrophy of multiple organs, including the heart. In this Review, we summarize the post-prandial cardiac adaptations in pythons at the whole-heart, cellular and molecular scales. We highlight circulating factors and cellular signaling pathways that are altered during digestion to affect cardiac form and function and propose possible mechanisms that may drive the post-digestion regression of cardiac mass. Adaptive physiological cardiac hypertrophy has also been observed in other vertebrates, including in fish acclimated to cold water, birds flying at high altitudes and exercising mammals. To reveal potential evolutionarily conserved features, we summarize the molecular signatures of reversible cardiac remodeling identified in these species and compare them with those of pythons. Finally, we offer a perspective on the potential of biomimetics targeting the natural biology of pythons as therapeutics for human heart disease.
Collapse
Affiliation(s)
- Thomas G. Martin
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Leslie A. Leinwand
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
9
|
Ferris E, Gonzalez Murcia JD, Cristina Rodriguez A, Steinwand S, Stacher Hörndli C, Traenkner D, Maldonado-Catala PJ, Gregg C. Genomic Convergence in Hibernating Mammals Elucidates the Genetics of Metabolic Regulation in the Hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600891. [PMID: 38979381 PMCID: PMC11230405 DOI: 10.1101/2024.06.26.600891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Elucidating the genetic basis of mammalian metabolism could help define mechanisms central to health and disease. Here, we define conserved cis-regulatory elements (CREs) and programs for mammalian metabolic control. We delineate gene expression and chromatin responses in the mouse hypothalamus for 7 steps of the Fed-to-Fasted-to-Refed (FFR) response process. Comparative genomics of hibernating versus non-hibernating lineages then illuminates cis-elements showing convergent changes in hibernators. Hibernators accumulated loss-of-function effects for specific CREs regulating hypothalamic FFR responses. Multi-omics approaches pinpoint key CREs, genes, regulatory programs, and cell types in the divergence of hibernating and homeothermic lineages. The refeeding period after extended fasting is revealed as one critical period of chromatin remodeling with convergent genomic changes. This genetic framework is a step toward harnessing hibernator adaptations in medicine.
Collapse
Affiliation(s)
- Elliott Ferris
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | | | | | - Susan Steinwand
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | | | - Dimitri Traenkner
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | - Pablo J Maldonado-Catala
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
- Biomedical Informatics, University of Utah; Salt Lake City, 84105, USA
| | - Christopher Gregg
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
- Human Genetics, University of Utah; Salt Lake City, 84105, USA
| |
Collapse
|
10
|
Krishnan JKS, Rice S, Mikes M, Sugiura MH, Drew KL, Barati Z, Oliver SR. Pre-hibernation diet alters skeletal muscle relaxation kinetics, but not force development in torpid arctic ground squirrels. J Comp Physiol B 2024; 194:65-79. [PMID: 38219236 DOI: 10.1007/s00360-023-01527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 01/16/2024]
Abstract
During the hibernation season, Arctic ground squirrels (AGS) experience extreme temperature fluctuations (body temperature, Tb, as low as - 3 °C), during which they are mostly physically inactive. Once Tb reaches ~ 15 °C during interbout arousals, hibernators recruit skeletal muscle (SkM) for shivering thermogenesis to reach Tb of ~ 35 °C. Polyunsaturated fatty acids (PUFA) in the diet are known to influence SkM function and metabolism. Recent studies in the cardiac muscle of hibernators have revealed that increased levels of ω-6 and the ω-6:ω-3 PUFA ratio correlate with sarco/endoplasmic reticulum calcium ATPase (SERCA) activity and hibernation status. We hypothesized that diet (increased ω-6:ω-3 PUFA ratio) and torpor status are important in the regulation of the SERCA pump and that this may improve SkM performance during hibernation. Ex vivo functional assays were used to characterize performance changes in SkM (diaphragm) from AGS fed the following diets. (1) Standard rodent chow with an ω-6:ω-3 ratio of 5:1, or (2) a balanced diet with an ω-6:ω-3 ratio of 1:1 that roughly mimics wild diet. We collected diaphragms at three different stages of hibernation (early torpor, late torpor, and arousal) and evaluated muscle function under hypothermic temperature stress at 4 °C, 15 °C, 25 °C, and 37 °C to determine functional resilience. Our data show that torpid animals fed standard rodent chow have faster SkM relaxation when compared to the balanced diet animals. Furthermore, we discovered that standard rodent chow AGS during torpor has higher SkM relaxation kinetics, but this effect of torpor is eliminated in balanced diet AGS. Interestingly, neither diet nor torpor influenced the rate of force development (rate of calcium release). This is the first study to show that increasing the dietary ω-6:ω-3 PUFA ratio improves skeletal muscle performance during decreased temperatures in a hibernating animal. This evidence supports the interpretation that diet can change some functional properties of the SkM, presumably through membrane lipid composition, ambient temperature, and torpor interaction, with an impact on SkM performance.
Collapse
Affiliation(s)
- Jishnu K S Krishnan
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Sarah Rice
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Monica Mikes
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - M Hoshi Sugiura
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Zeinab Barati
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - S Ryan Oliver
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA.
- Department of Chemistry, United States Naval Academy, Annapolis, MD, USA.
| |
Collapse
|
11
|
Bertile F, Matallana-Surget S, Tholey A, Cristobal S, Armengaud J. Diversifying the concept of model organisms in the age of -omics. Commun Biol 2023; 6:1062. [PMID: 37857885 PMCID: PMC10587087 DOI: 10.1038/s42003-023-05458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
In today's post-genomic era, it is crucial to rethink the concept of model organisms. While a few historically well-established organisms, e.g. laboratory rodents, have enabled significant scientific breakthroughs, there is now a pressing need for broader inclusion. Indeed, new organisms and models, from complex microbial communities to holobionts, are essential to fully grasp the complexity of biological principles across the breadth of biodiversity. By fostering collaboration between biology, advanced molecular science and omics communities, we can collectively adopt new models, unraveling their molecular functioning, and uncovering fundamental mechanisms. This concerted effort will undoubtedly enhance human health, environmental quality, and biodiversity conservation.
Collapse
Affiliation(s)
- Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, 67037, Strasbourg Cedex 2, France.
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping, 581 85, Sweden
- Ikerbasque, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa, 48940, Spain
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| |
Collapse
|
12
|
Strandvik B, Qureshi AR, Painer J, Backman-Johansson C, Engvall M, Fröbert O, Kindberg J, Stenvinkel P, Giroud S. Elevated plasma phospholipid n-3 docosapentaenoic acid concentrations during hibernation. PLoS One 2023; 18:e0285782. [PMID: 37294822 PMCID: PMC10256182 DOI: 10.1371/journal.pone.0285782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/28/2023] [Indexed: 06/11/2023] Open
Abstract
Factors for initiating hibernation are unknown, but the condition shares some metabolic similarities with consciousness/sleep, which has been associated with n-3 fatty acids in humans. We investigated plasma phospholipid fatty acid profiles during hibernation and summer in free-ranging brown bears (Ursus arctos) and in captive garden dormice (Eliomys quercinus) contrasting in their hibernation patterns. The dormice received three different dietary fatty acid concentrations of linoleic acid (LA) (19%, 36% and 53%), with correspondingly decreased alpha-linolenic acid (ALA) (32%, 17% and 1.4%). Saturated and monounsaturated fatty acids showed small differences between summer and hibernation in both species. The dormice diet influenced n-6 fatty acids and eicosapentaenoic acid (EPA) concentrations in plasma phospholipids. Consistent differences between summer and hibernation in bears and dormice were decreased ALA and EPA and marked increase of n-3 docosapentaenoic acid and a minor increase of docosahexaenoic acid in parallel with several hundred percent increase of the activity index of elongase ELOVL2 transforming C20-22 fatty acids. The highest LA supply was unexpectantly associated with the highest transformation of the n-3 fatty acids. Similar fatty acid patterns in two contrasting hibernating species indicates a link to the hibernation phenotype and requires further studies in relation to consciousness and metabolism.
Collapse
Affiliation(s)
- Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, Stockholm, Sweden
| | | | - Johanna Painer
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | - Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
- Department of Clinical Medicine, Aarhus University Health, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- StenoDiabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Kindberg
- Department of Wildlife, Fish and Environmental Studies, University of Agricultural Sciences, Umeå, Sweden
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Peter Stenvinkel
- Division of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
13
|
Miyazaki M, Shimozuru M, Kitaoka Y, Takahashi K, Tsubota T. Regulation of protein and oxidative energy metabolism are down-regulated in the skeletal muscles of Asiatic black bears during hibernation. Sci Rep 2022; 12:19723. [PMID: 36385156 PMCID: PMC9668988 DOI: 10.1038/s41598-022-24251-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hibernating animals exhibit an unexplained physiological characteristic of skeletal muscles being atrophy resistance, in which case muscle mass and strength remain almost unchanged both before and after hibernation. In this study, we examined the alterations in the regulatory systems of protein and energy metabolism in the skeletal muscles of Asiatic black bears during hibernation. Skeletal muscle samples (vastus lateralis muscle) were collected from identical individuals (n = 8) during the active (July) and hibernating (February) periods, while histochemical and biochemical analyses were performed. We observed no significant alterations in body weight, muscle fiber size, and fiber type composition during the active and hibernating periods, indicating that the skeletal muscles of bears are very well preserved during hibernation. In hibernating bear skeletal muscles, both regulatory pathways of muscle protein synthesis (Akt/mechanistic target of rapamycin and mitogen-activated protein kinase systems) and proteolysis (ubiquitin-proteasome and autophagy systems) were down-regulated. Gene expression levels of factors regulating oxidative metabolism were also decreased in hibernating bear skeletal muscles. This is likely an adaptive strategy to minimize the energy wasting of amino acids and lipids during hibernation, which is accompanied by a prolonged period of disuse and starvation.
Collapse
Affiliation(s)
- Mitsunori Miyazaki
- grid.257022.00000 0000 8711 3200Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553 Japan ,grid.412021.40000 0004 1769 5590Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Michito Shimozuru
- grid.39158.360000 0001 2173 7691Laboratory of Wildlife Biology and Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Yu Kitaoka
- grid.411995.10000 0001 2155 9872Department of Human Sciences, Kanagawa University, Kanagawa, Japan
| | - Kenya Takahashi
- grid.26999.3d0000 0001 2151 536XDepartment of Sports Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshio Tsubota
- grid.39158.360000 0001 2173 7691Laboratory of Wildlife Biology and Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
14
|
Charlanne LM, Vetter S, Einwaller J, Painer J, Gilbert C, Giroud S. Sticking Together: Energetic Consequences of Huddling Behavior in Hibernating Juvenile Garden Dormice. Physiol Biochem Zool 2022; 95:400-415. [PMID: 35930826 DOI: 10.1086/721184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
AbstractHibernation, or multiday torpor, allows individuals to save energy via substantial reductions of metabolism and body temperature but is regularly interrupted by euthermic phases called arousals. Social thermoregulation, or "huddling," can act in synergy with torpor in reducing individuals' energy and heat losses. In the wild, the garden dormouse (Eliomys quercinus) combines both strategies, which are crucial for winter survival of juveniles with limited prehibernation body fat reserves. We investigated via thermographic and temperature measurements (i) the energetic impact of huddling during an arousal from deep torpor, (ii) the dynamics of huddling behavior during hibernation, and (iii) its consequences during the entire winter in juvenile garden dormice. Thermographic images revealed a significant effect of huddling on torpor energetics, as it reduced heat exchange and mass loss by two-thirds in huddling versus single individuals during arousal. Our investigation of the dynamics of huddling further revealed a "random-like mechanistic" behavior during winter hibernation, as arousals from torpor were not always initiated by the same individuals. Animals took turns in initiating rewarming within a group, and the individual with highest body temperature during arousal entered into torpor later than the others within the huddle. The animals share both costs and benefits of huddling during arousals, without any energetic benefit of huddling over the entire winter on an individual level. We conclude that the dynamics of social thermoregulation during hibernation seems to counterbalance its benefit of reducing energetic costs associated against the energy-demanding process of rewarming from torpor.
Collapse
|
15
|
Imig JD. Frontiers in metabolic physiology grand challenges. Front Physiol 2022; 13:879617. [PMID: 36035475 PMCID: PMC9399398 DOI: 10.3389/fphys.2022.879617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
|
16
|
Chen J, Li Z, Zhang Y, Zhang X, Zhang S, Liu Z, Yuan H, Pang X, Liu Y, Tao W, Chen X, Zhang P, Chen GQ. Mechanism of reduced muscle atrophy via ketone body (D)-3-hydroxybutyrate. Cell Biosci 2022; 12:94. [PMID: 35725651 PMCID: PMC9208164 DOI: 10.1186/s13578-022-00826-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Muscle atrophy is an increasingly global health problem affecting millions, there is a lack of clinical drugs or effective therapy. Excessive loss of muscle mass is the typical characteristic of muscle atrophy, manifesting as muscle weakness accompanied by impaired metabolism of protein and nucleotide. (D)-3-hydroxybutyrate (3HB), one of the main components of the ketone body, has been reported to be effective for the obvious hemodynamic effects in atrophic cardiomyocytes and exerts beneficial metabolic reprogramming effects in healthy muscle. This study aims to exploit how the 3HB exerts therapeutic effects for treating muscle atrophy induced by hindlimb unloaded mice. RESULTS Anabolism/catabolism balance of muscle protein was maintained with 3HB via the Akt/FoxO3a and the mTOR/4E-BP1 pathways; protein homeostasis of 3HB regulation includes pathways of ubiquitin-proteasomal, autophagic-lysosomal, responses of unfolded-proteins, heat shock and anti-oxidation. Metabolomic analysis revealed the effect of 3HB decreased purine degradation and reduced the uric acid in atrophied muscles; enhanced utilization from glutamine to glutamate also provides evidence for the promotion of 3HB during the synthesis of proteins and nucleotides. CONCLUSIONS 3HB significantly inhibits the loss of muscle weights, myofiber sizes and myofiber diameters in hindlimb unloaded mouse model; it facilitates positive balance of proteins and nucleotides with enhanced accumulation of glutamate and decreased uric acid in wasting muscles, revealing effectiveness for treating muscle atrophy.
Collapse
Affiliation(s)
- Jin Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zihua Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yudian Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shujie Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zonghan Liu
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Huimei Yuan
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiangsheng Pang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yaxuan Liu
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Wuchen Tao
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaoping Chen
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China.
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Peng Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
- MOE Key Lab of Industrial Biocatalysis, Dept of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Chazarin B, Benhaim-Delarbre M, Brun C, Anzeraey A, Bertile F, Terrien J. Molecular Liver Fingerprint Reflects the Seasonal Physiology of the Grey Mouse Lemur ( Microcebus murinus) during Winter. Int J Mol Sci 2022; 23:4254. [PMID: 35457071 PMCID: PMC9028843 DOI: 10.3390/ijms23084254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Grey mouse lemurs (Microcebus murinus) are primates that respond to environmental energetic constraints through strong physiological seasonality. They notably fatten during early winter (EW), and mobilize their lipid reserves while developing glucose intolerance during late winter (LW), when food availability is low. To decipher how the hepatic mechanisms may support such metabolic flexibility, we analyzed the liver proteome of adult captive male mouse lemurs, whose seasonal regulations are comparable to their wild counterparts. We highlight profound hepatic changes that reflect fat accretion in EW at the whole-body level, without triggering an ectopic storage of fat in the liver, however. Moreover, molecular regulations are consistent with the decrease in liver glucose utilization in LW, and therefore with reduced tolerance to glucose. However, no major regulation was seen in insulin signaling/resistance pathways. Fat mobilization in LW appeared possibly linked to the reactivation of the reproductive system while enhanced liver detoxification may reflect an anticipation to return to summer levels of food intake. Overall, these results show that the physiology of mouse lemurs during winter relies on solid molecular foundations in liver processes to adapt fuel partitioning while opposing the development of a pathological state despite large lipid fluxes.
Collapse
Affiliation(s)
- Blandine Chazarin
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS, UMR 7178, 25 Rue Becquerel, 67087 Strasbourg, France; (B.C.); (M.B.-D.); (C.B.)
- Infrastructure Nationale de Protéomique ProFI—FR 2048, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Margaux Benhaim-Delarbre
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS, UMR 7178, 25 Rue Becquerel, 67087 Strasbourg, France; (B.C.); (M.B.-D.); (C.B.)
- Infrastructure Nationale de Protéomique ProFI—FR 2048, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Charlotte Brun
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS, UMR 7178, 25 Rue Becquerel, 67087 Strasbourg, France; (B.C.); (M.B.-D.); (C.B.)
- Infrastructure Nationale de Protéomique ProFI—FR 2048, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Aude Anzeraey
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d’Histoire Naturelle, 1 Avenue du Petit Château, 91800 Brunoy, France;
| | - Fabrice Bertile
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS, UMR 7178, 25 Rue Becquerel, 67087 Strasbourg, France; (B.C.); (M.B.-D.); (C.B.)
- Infrastructure Nationale de Protéomique ProFI—FR 2048, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Jérémy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d’Histoire Naturelle, 1 Avenue du Petit Château, 91800 Brunoy, France;
| |
Collapse
|
18
|
Giroud S, Chery I, Arrivé M, Prost M, Zumsteg J, Heintz D, Evans AL, Gauquelin-Koch G, Arnemo JM, Swenson JE, Lefai E, Bertile F, Simon C, Blanc S. Hibernating brown bears are protected against atherogenic dyslipidemia. Sci Rep 2021; 11:18723. [PMID: 34548543 PMCID: PMC8455566 DOI: 10.1038/s41598-021-98085-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
To investigate mechanisms by which hibernators avoid atherogenic hyperlipidemia during hibernation, we assessed lipoprotein and cholesterol metabolisms of free-ranging Scandinavian brown bears (Ursus arctos). In winter- and summer-captured bears, we measured lipoprotein sizes and sub-classes, triglyceride-related plasma-enzyme activities, and muscle lipid composition along with plasma-levels of antioxidant capacities and inflammatory markers. Although hibernating bears increased nearly all lipid levels, a 36%-higher cholesteryl-ester transfer-protein activity allowed to stabilize lipid composition of high-density lipoproteins (HDL). Levels of inflammatory metabolites, i.e., 7-ketocholesterol and 11ß-prostaglandin F2α, declined in winter and correlated inversely with cardioprotective HDL2b-proportions and HDL-sizes that increased during hibernation. Lower muscle-cholesterol concentrations and lecithin-cholesterol acyltransferase activity in winter suggest that hibernating bears tightly controlled peripheral-cholesterol synthesis and/or release. Finally, greater plasma-antioxidant capacities prevented excessive lipid-specific oxidative damages in plasma and muscles of hibernating bears. Hence, the brown bear manages large lipid fluxes during hibernation, without developing adverse atherogenic effects that occur in humans and non-hibernators.
Collapse
Affiliation(s)
- Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160, Vienna, Austria.
| | - Isabelle Chery
- University of Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France
- CNRS, UMR7178, Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du Loess, 67087, Strasbourg, France
| | - Mathilde Arrivé
- University of Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France
- CNRS, UMR7178, Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du Loess, 67087, Strasbourg, France
| | | | - Julie Zumsteg
- Plant Imaging & Mass Spectrometry (PIMS), Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Dimitri Heintz
- Plant Imaging & Mass Spectrometry (PIMS), Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, 2480, Koppang, Norway
| | | | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, 2480, Koppang, Norway
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Jon E Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, PO Box 5003, 1432, Ås, Norway
| | - Etienne Lefai
- University of Auvergne, INRAE, UNH UMR1019, 63122, Saint-Genès Champanelle, France
| | - Fabrice Bertile
- University of Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France
- CNRS, UMR7178, Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du Loess, 67087, Strasbourg, France
| | - Chantal Simon
- CARMEN, INSERM U1060/University of Lyon / INRA U1235, Oullins, France
| | - Stéphane Blanc
- University of Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France
- CNRS, UMR7178, Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du Loess, 67087, Strasbourg, France
| |
Collapse
|
19
|
Cussonneau L, Boyer C, Brun C, Deval C, Loizon E, Meugnier E, Gueret E, Dubois E, Taillandier D, Polge C, Béchet D, Gauquelin-Koch G, Evans AL, Arnemo JM, Swenson JE, Blanc S, Simon C, Lefai E, Bertile F, Combaret L. Concurrent BMP Signaling Maintenance and TGF-β Signaling Inhibition Is a Hallmark of Natural Resistance to Muscle Atrophy in the Hibernating Bear. Cells 2021; 10:cells10081873. [PMID: 34440643 PMCID: PMC8393865 DOI: 10.3390/cells10081873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Muscle atrophy arises from a multiplicity of physio-pathological situations and has very detrimental consequences for the whole body. Although knowledge of muscle atrophy mechanisms keeps growing, there is still no proven treatment to date. This study aimed at identifying new drivers for muscle atrophy resistance. We selected an innovative approach that compares muscle transcriptome between an original model of natural resistance to muscle atrophy, the hibernating brown bear, and a classical model of induced atrophy, the unloaded mouse. Using RNA sequencing, we identified 4415 differentially expressed genes, including 1746 up- and 2369 down-regulated genes, in bear muscles between the active versus hibernating period. We focused on the Transforming Growth Factor (TGF)-β and the Bone Morphogenetic Protein (BMP) pathways, respectively, involved in muscle mass loss and maintenance. TGF-β- and BMP-related genes were overall down- and up-regulated in the non-atrophied muscles of the hibernating bear, respectively, and the opposite occurred for the atrophied muscles of the unloaded mouse. This was further substantiated at the protein level. Our data suggest TGF-β/BMP balance is crucial for muscle mass maintenance during long-term physical inactivity in the hibernating bear. Thus, concurrent activation of the BMP pathway may potentiate TGF-β inhibiting therapies already targeted to prevent muscle atrophy.
Collapse
Affiliation(s)
- Laura Cussonneau
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
- Correspondence: (L.C.); (L.C.); Tel.: +(33)4-7362-4824 (Lydie Combaret)
| | - Christian Boyer
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | - Charlotte Brun
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France; (C.B.); (S.B.); (F.B.)
| | - Christiane Deval
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | - Emmanuelle Loizon
- CarMen Laboratory, INSERM 1060, INRAE 1397, University of Lyon, F-69600 Oullins, France; (E.L.); (E.M.); (C.S.)
| | - Emmanuelle Meugnier
- CarMen Laboratory, INSERM 1060, INRAE 1397, University of Lyon, F-69600 Oullins, France; (E.L.); (E.M.); (C.S.)
| | - Elise Gueret
- Institut de Génomique Fonctionnelle (IGF), University Montpellier, CNRS, INSERM, 34094 Montpellier, France; (E.G.); (E.D.)
- Montpellier GenomiX, France Génomique, 34095 Montpellier, France
| | - Emeric Dubois
- Institut de Génomique Fonctionnelle (IGF), University Montpellier, CNRS, INSERM, 34094 Montpellier, France; (E.G.); (E.D.)
- Montpellier GenomiX, France Génomique, 34095 Montpellier, France
| | - Daniel Taillandier
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | - Cécile Polge
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | - Daniel Béchet
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | | | - Alina L. Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480 Koppang, Norway; (A.L.E.); (J.M.A.)
| | - Jon M. Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480 Koppang, Norway; (A.L.E.); (J.M.A.)
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Jon E. Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway;
| | - Stéphane Blanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France; (C.B.); (S.B.); (F.B.)
| | - Chantal Simon
- CarMen Laboratory, INSERM 1060, INRAE 1397, University of Lyon, F-69600 Oullins, France; (E.L.); (E.M.); (C.S.)
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France; (C.B.); (S.B.); (F.B.)
| | - Lydie Combaret
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
- Correspondence: (L.C.); (L.C.); Tel.: +(33)4-7362-4824 (Lydie Combaret)
| |
Collapse
|
20
|
Givre L, Crola Da Silva C, Swenson JE, Arnemo JM, Gauquelin-Koch G, Bertile F, Lefai E, Gomez L. Cardiomyocyte Protection by Hibernating Brown Bear Serum: Toward the Identification of New Protective Molecules Against Myocardial Infarction. Front Cardiovasc Med 2021; 8:687501. [PMID: 34336951 PMCID: PMC8322573 DOI: 10.3389/fcvm.2021.687501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Ischemic heart disease remains one of the leading causes of death worldwide. Despite intensive research on the treatment of acute myocardial infarction, no effective therapy has shown clinical success. Therefore, novel therapeutic strategies are required to protect the heart from reperfusion injury. Interestingly, despite physical inactivity during hibernation, brown bears (Ursus arctos) cope with cardiovascular physiological conditions that would be detrimental to humans. We hypothesized that bear serum might contain circulating factors that could provide protection against cell injury. In this study, we sought to determine whether addition of bear serum might improve cardiomyocyte survival following hypoxia–reoxygenation. Isolated mouse cardiomyocytes underwent 45 min of hypoxia followed by reoxygenation. At the onset of reoxygenation, cells received fetal bovine serum (FBS; positive control), summer (SBS) or winter bear serum (WBS), or adult serums of other species, as indicated. After 2 h of reoxygenation, propidium iodide staining was used to evaluate cell viability by flow cytometry. Whereas, 0.5% SBS tended to decrease reperfusion injury, 0.5% WBS significantly reduced cell death, averaging 74.04 ± 7.06% vs. 79.20 ± 6.53% in the FBS group. This cardioprotective effect was lost at 0.1%, became toxic above 5%, and was specific to the bear. Our results showed that bear serum exerts a therapeutic effect with an efficacy threshold, an optimal dose, and a toxic effect on cardiomyocyte viability after hypoxia–reoxygenation. Therefore, the bear serum may be a potential source for identifying new therapeutic molecules to fight against myocardial reperfusion injury and cell death in general.
Collapse
Affiliation(s)
- Lucas Givre
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Claire Crola Da Silva
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Jon E Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, Norway.,Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Fabrice Bertile
- University of Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Spectrométrie de Masse Bio-Organique, Strasbourg, France
| | - Etienne Lefai
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Ludovic Gomez
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| |
Collapse
|
21
|
Cerri M, Hitrec T, Luppi M, Amici R. Be cool to be far: Exploiting hibernation for space exploration. Neurosci Biobehav Rev 2021; 128:218-232. [PMID: 34144115 DOI: 10.1016/j.neubiorev.2021.03.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 01/08/2023]
Abstract
In mammals, torpor/hibernation is a state that is characterized by an active reduction in metabolic rate followed by a progressive decrease in body temperature. Torpor was successfully mimicked in non-hibernators by inhibiting the activity of neurons within the brainstem region of the Raphe Pallidus, or by activating the adenosine A1 receptors in the brain. This state, called synthetic torpor, may be exploited for many medical applications, and for space exploration, providing many benefits for biological adaptation to the space environment, among which an enhanced protection from cosmic rays. As regards the use of synthetic torpor in space, to fully evaluate the degree of physiological advantage provided by this state, it is strongly advisable to move from Earth-based experiments to 'in the field' tests, possibly on board the International Space Station.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Timna Hitrec
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Marco Luppi
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| |
Collapse
|