1
|
Peng J, Cui Y, Liang H, Xu S, Weng L, Ru M, Ali R, Wei Q, Ruan J, Huang J. Integrated transcriptomic hypothalamic-pituitary-ovarian axis network analysis reveals the role of energy availability on egg production in layers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:66-79. [PMID: 39949733 PMCID: PMC11821414 DOI: 10.1016/j.aninu.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 02/16/2025]
Abstract
Energy is a crucial component for maintaining egg production in layers. The hypothalamic-pituitary-ovarian (HPO) axis is an energy-sensitive functional axis for follicle development, synthesis, and secretion of reproductive hormones, and plays a key role in modulating sustained ovulation in layers. To investigate the mechanism of integrated network regulation of the HPO axis under energy fluctuation, ninety Hy-line brown layers (265-day-old, 1.92 ± 0.02 kg) were randomly divided into three groups for a 17-day experiment: a control group (Con group) fed ad libitum from days 1 to 17, an energy-deprived group (ED group) that was fed ad libitum from days 1 to 12 and then underwent a fasting period from days 13 to 17 to induce a pause in laying, and a re-fed group (Rf group) that fasted for seven days (specifically, days 1 to 5, day 7, and day 9), had ad libitum access to feed on days 6 and 8, and was continuously fed from days 10 to 17. Each treatment consisted of 10 replicates with 3 birds per replicate. The study found that energy deprivation significantly decreased reproductive performance such as egg laying rate, ovarian index, number of small yellow follicles (SYF), and normal hierarchical follicles (NHIE) (P < 0.05), which recovered after refeeding, indicating the importance of energy availability for sustained ovulation in layers. In addition, estradiol (E2), estradiol to progesterone (E2/P4) ratio, and luteinizing hormone (LH) displayed changes similar to follicle number, whereas follicle-stimulating hormone (FSH) exhibited a contrasting pattern. Transcriptome analysis revealed that energy deprivation downregulated genes related to energy and appetite-regulated neurotransmitter receptors and neuropeptides in the hypothalamus. These signals combined to inhibit gonadotropin-releasing hormone (GnRH) secretion and subsequently downregulated the crucial genes responsible for synthesizing gonadotropins, gonadotropin-releasing hormone receptor (GnRHR), and glycoprotein hormones alpha chain (CGA). Consequently, this suppression of the hypothalamus and pituitary affected ovarian function through ovarian steroidogenesis and the extracellular matrix (ECM)-receptor interaction. These findings suggest that energy deprivation inhibits the function of the HPO axis, leading to impaired follicle development and reduced egg production, and that refeeding can partially restore these indicators.
Collapse
Affiliation(s)
- Jianling Peng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yong Cui
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haiping Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shenyijun Xu
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Jiangsu 215123, China
| | - Linjian Weng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Ru
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ramlat Ali
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qing Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianzhen Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
2
|
Hall GB, Hildenberger D, Long JA, Diehl K. Evaluating ovarian follicles and their steroid hormone gene expression patterns in a high egg-producing research turkey line. Poult Sci 2025; 104:104592. [PMID: 39616679 PMCID: PMC11647615 DOI: 10.1016/j.psj.2024.104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025] Open
Abstract
Low egg-producing turkeys reduce the profitability of a flock by limiting the number of poults that can be hatched. Understanding the biological mechanics behind egg-production rates will greatly benefit the industry. Two lines with vastly different egg production rates are the Ohio State University E line, and its unselected counterpart, the random-bred control one (RBC1). Differences between E Line and RBC1 hens (n = 4 per line) were investigated by measuring egg production traits, ovarian and follicle anatomical characteristics, and gene expression for reproductively important genes within different follicle types. Data were analyzed by an ANOVA mixed model procedure in SAS. The E line hens produced 20% more eggs than the RBC1 hens, even though they had similar numbers of preovulatory follicles in their ovaries. This was accomplished by increasing clutch length and keeping the pause length the same. On the gene expression side small white follicles (SWF) within E line hens had less LHCGR expression which coincided with downregulation of CYP11A1 and CYP17A1. Along with an upregulation of PRLR in small yellow follicles (SYF) which also coincided with downregulation of CYP17A1. In both cases changes in pituitary hormone receptor transcription levels appeared to affect the steroid hormone synthesis pathway. In SWF from E line hens ESR2 was downregulated, however in the large white follicles and selected follicles ESR1 was the estradiol receptor which was downregulated. The similarity in preovulatory numbers suggests that E line hens aren't selecting more follicles to grow, but instead, follicles are growing faster. Based on the gene expression patterns, the reduction of steroid hormone synthesis might hint at the follicles putting more energy into growth and differentiation. At the same time, the decrease in estradiol receptor might limit the negative effects of estradiol on granulosa cells and allow for more rapid growth, suggesting a possible mechanism for the higher egg production trait of the E line.
Collapse
Affiliation(s)
- George B Hall
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, 10300 Baltimore Ave, BARC-East, Beltsville, MD 20705, United States
| | - Diane Hildenberger
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, 10300 Baltimore Ave, BARC-East, Beltsville, MD 20705, United States
| | - Julie A Long
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, 10300 Baltimore Ave, BARC-East, Beltsville, MD 20705, United States
| | - Kristen Diehl
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, 10300 Baltimore Ave, BARC-East, Beltsville, MD 20705, United States.
| |
Collapse
|
3
|
Zhang X, Li Y, Li Q, Zhang T, Sun Y, Shi F, Chen J. Research Note: Genetic parameters estimation of egg quality traits in Rhode Island Red and White Leghorn chickens. Poult Sci 2024; 103:104263. [PMID: 39278112 DOI: 10.1016/j.psj.2024.104263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
The continuous increasing demand for egg quality and quantity, and the expanding market share have enabled the egg industry to achieve significant benefits through genetic improvement. This study aims to estimate the genetic parameters and explore selectable breeding traits in the purebred Rhode Island Red (RIR) and White Leghorn (WL), which are 2 high-yielding layer breeds, and better understand their underlying genetic basis and accelerate genetic progress. The DMU software was utilized to analyze 12 egg quality traits, including egg length (EL), egg width (EW), egg shape index (ESI), egg weight (EWT), albumen height (AH), yolk color (YC), Haugh unit (HU), yolk weight (YW), albumen weight (AW), albumen-to-egg weight ratio (AWR), yolk-to-albumen ratio (YAR), and yolk-to-egg weight ratio (YWR). In RIR, the heritability of egg quality traits ranged from 0.196 to 0.427, while the repeatability ranged from 0.395 to 0.668. In WL, the heritability of egg quality traits ranged from 0.203 to 0.347, and the repeatability ranged from 0.424 to 0.656. In both RIR and WL, highly strong genetic correlations were observed between AW and EW, as well as between AW and EWT. The genetic correlations for AW and EW were 0.902 in RIR and 0.864 in WL, while the genetic correlations for AW and EWT were 0.981 in RIR and 0.960 in WL. The egg quality traits in both breeds showed moderate heritability, indicating great genetic potential for improvement through selective breeding. This can help breeders meet the increasingly diverse egg preferences of consumers through genetic selection. Additionally, there is a highly strong correlation between egg width/egg weight, and albumen weight in both breeds. In practical production, it is feasible to estimate albumen weight by measuring egg width and egg weight, which can simplify the method for measuring albumen weight. In conclusions, our finding provided valuable insights into the genetic architecture of egg quality traits in RIR and WL chickens. They help our understanding of the potential for genetic improvement of these traits through selective breeding programs.
Collapse
Affiliation(s)
- Xiaoke Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, P.R.China
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Qin Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Tao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Fangxiong Shi
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, P.R.China
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China.
| |
Collapse
|
4
|
Zhan XZ, Luo P, Zhang C, Zhang LJ, Shen X, Jiang DL, Liu WJ. Age-related changes in the mitochondrial, synthesis of steroids, and cellular homeostasis of the chicken ovary. Anim Reprod Sci 2024; 267:107540. [PMID: 38908171 DOI: 10.1016/j.anireprosci.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
In poultry reproduction, the decline of ovarian function due to aging is related to dysfunction of mitochondria exacerbated by a reduction in antioxidant capacity, ultimately leading to follicle atresia and decreased egg production. However, the mechanisms of mitochondrial dysfunction in the chicken ovary in aging have remained to be understood. Hence, this study aims to investigate the effects of aging on mitochondrial function and cellular homeostasis. We collect ovarian tissue, small white follicles (SWF), large white follicles (LWF), and small yellow follicles (SYF) from three different laying periods of hens. The transmission electron microscopy (TEM) results showed that mitochondrial damage occurred in ovarian tissue during the late laying period (LP), characterized by structural swelling, scattered mitochondrial cristae, and an increase in the vacuoles. At the same time, with age, the synthesis of steroid hormones in the ovaries and follicular tissues is reduced. The levels of autophagy and cell apoptosis in ovarian tissues were both increased in the LP. In addition, aging adversely impacts mitochondrial function, leading to a decrease in mitochondrial unfolded protein response (UPRmt) functions. This study will expand the knowledge about regressing ovarian aging in hens and increasing egg production in older layers for poultry production.
Collapse
Affiliation(s)
- Xiao-Zhi Zhan
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Pei Luo
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Chen Zhang
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Liu-Jun Zhang
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Xu Shen
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Dan-Li Jiang
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Wen-Jun Liu
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China.
| |
Collapse
|
5
|
Xin Q, Jiao H, Wang X, Zhao J, Liu M, Li H, Zhou Y, Lin H. Effect of energy level of pullet diet and age on laying performance and expression of hypothalamus-pituitary-gonadal related genes in laying hens. Poult Sci 2024; 103:103873. [PMID: 38833747 PMCID: PMC11190712 DOI: 10.1016/j.psj.2024.103873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Dietary energy density influences feed intake (FI) and development of layer-type pullets. A total of 384 nine-wk-old Hy-Line Brown pullets were randomly assigned to one of 3 dietary treatments: fed a diet with 2,600, 2,750, and 2,900 Kcal metabolizable energy/kg (ME/kg) from 10 to 21 wk of age. The results showed that the 2,900 and 2,600 ME groups had lower feed and ME intake (P < 0.01) from 10 to 21 wk of age. The 2,600 ME pullets had heavier body weight (BW) and longer shank length (P < 0.05) at 21 wk of age than the 2,750 ME group. The eggshell percentage was increased by the 2,600 and 2,900 kcal/kg treatments (P = 0.002). Serum concentration of 17-β-estradiol (E2), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) decreased at 70 wk of age (P < 0.05). Pullet diet and its interaction with age had a significant influence (P < 0.001) on the expression of gonadotropin-releasing hormone 1 (GnRH-1) and gonadotropin-inhibitory hormone (GnIH) in the hypothalamus and of gonadotropin releasing hormone 1 receptor (GnRH-1R) and gonadotropin-inhibitory hormone receptor (GnIHR) in the pituitary. In the hypothalamus, GnRH-1 expression increased from 9 to 40 wk of age and then decreased; however, GnIH expression was highest at 70 wk of age. Follicle-stimulating hormone receptor (FSHR) expression increased (P < 0.001) at wk 40 and decreased at wk 70 compared to wk 21 at various follicular stages. In conclusion, the energy level of pullet diet had no unfavorable influence on feed intake, laying rate, egg mass, and FCR, whereas change egg weight and mortality during the laying period from 21 to 70 wk of age. during the laying period. These results suggest that pullet dietary energy can activate the expression of genes related to reproduction in the hypothalamus, whereas it plays a minor role in the regulation of genes in the pituitary and ovary. Age-induced gene expression in the hypothalamus-pituitary-gonadal (HPG) axis is associated with laying performance in hens.
Collapse
Affiliation(s)
- Qian Xin
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province 271018, PR China
| | - Hongchao Jiao
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province 271018, PR China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province 271018, PR China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province 271018, PR China
| | - Min Liu
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province 271018, PR China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Taian City, Shandong Province 271018, PR China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian City, Shandong Province 271018, PR China
| | - Hai Lin
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province 271018, PR China.
| |
Collapse
|
6
|
Xie P, Wang L, Zhu J, Liu Y, Wei M, Gong D, Liu T. Effects of different stocking densities on the development of reproductive and immune functions in young breeder pigeons during the rearing period. Br Poult Sci 2024; 65:213-222. [PMID: 38334444 DOI: 10.1080/00071668.2024.2308273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/05/2023] [Indexed: 02/10/2024]
Abstract
1. Stocking density (SD) is closely related to animal performance. This experiment was designed to evaluate the development of reproductive and immune functions of young pigeons under different SDs.2. A total of 288 (half male and half female) 40-day-old pigeons (body weight 400 ± 15 g) were allocated into four groups: High stocking density (HSD; 0.308 m3/bird), standard stocking density (SD; 0.616 m3/bird), and low stocking density (LSD; 1.232 m3/bird) and a caged (control; 0.04125 m3/bird). Every group had six replicates of the same sex.3. The results showed that caged male pigeons had the highest testis index, testosterone content, and gene expression of the androgen receptor gene. LSD treatment induced the highest concentrations of oestradiol, progesterone and mRNA levels of reproductive hormone receptor genes in female pigeons. In male pigeons, the spleen index (organ weight calculated as a percentage of total body weight) showed a peak level (0.09 ± 0.020) in the LSD group, and the thymus index peaked (0.23 ± 0.039) in SD group. However, the index for ovary, spleen, thymus and bursa of Fabricius in female pigeons showed no significant changes among different groups.4. The IL-1β, IL-8, IFN-γ, TGF-β and toll-like receptor 2 (TLR-2) mRNA levels reached their maximum values in both male and female pigeon spleens in the LSD group.5. Young male pigeons housed in cages showed increased testicular development while low stocking density increased the development of reproductive function in young female pigeons. A larger activity space could help enhance the immune function of both male and female pigeons.
Collapse
Affiliation(s)
- P Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
| | - L Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - J Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Y Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
| | - M Wei
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
| | - D Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - T Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
| |
Collapse
|
7
|
Arulnathan V, Turner I, Bamber N, Ferdous J, Grassauer F, Doyon M, Pelletier N. A systematic review of potential productivity, egg quality, and animal welfare implications of extended lay cycles in commercial laying hens in Canada. Poult Sci 2024; 103:103475. [PMID: 38364604 PMCID: PMC10877952 DOI: 10.1016/j.psj.2024.103475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/18/2024] Open
Abstract
Lay cycle lengths in the Canadian egg industry are currently 50 to 52 wk (68-70 wk of age). In light of increased productivity in commercial laying hens over the last few decades, the much longer lay cycle lengths already implemented in other countries, extending lay cycle lengths in Canada, should be considered with careful attention to potential environmental, economic, and animal welfare implications. However, there is a lack of information in the public domain that provides robust evidence of performance levels and potential trade-offs to support comprehensive consideration of the desirability of extending lay cycles beyond current Canadian norms. Hence, a systematic literature review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was undertaken. Data collection focused primarily on information related to feed-, flock management-, and hen genetics/physiology-related interventions that were studied in literature to support extension of lay cycles (review objective 1), and compiling and analyzing productivity, egg quality, and animal welfare outcomes reported at 70 wk of age or beyond (review objective 2). Several feed-related interventions such as high-protein diets, and probiotics supplements, and flock management interventions such split-feeding were found to potentially improve productivity, and especially egg quality, outcomes in the late laying phase. More studies with bigger flock sizes and in commercial lay facilities need to be undertaken before any of these interventions can be definitively recommended for commercial egg production. Under objective 2, productivity was found to be at acceptable levels well beyond 70 wk of age. Performance on most egg quality traits and animal welfare indicators were also at acceptable levels past 70 wk of age but increased variability was observed beyond ∼80 wk of age. There were also inconclusive indications on how hens in caged housing and white laying hens fare relative to hens in noncaged housing and brown-type layers during the late laying phase. Economic data were limited but suggested that lay cycle lengths beyond 90 wk might not generated net economic benefits.
Collapse
Affiliation(s)
- Vivek Arulnathan
- FIP 226, Food Systems PRISM Lab, Fipke Centre for Innovative Research, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada.
| | - Ian Turner
- FIP 226, Food Systems PRISM Lab, Fipke Centre for Innovative Research, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Nicole Bamber
- FIP 226, Food Systems PRISM Lab, Fipke Centre for Innovative Research, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Jannatul Ferdous
- FIP 226, Food Systems PRISM Lab, Fipke Centre for Innovative Research, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Florian Grassauer
- FIP 226, Food Systems PRISM Lab, Fipke Centre for Innovative Research, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Maurice Doyon
- Paul-Comtois, Laval University, Quebec City, QC, G1V 0A6, Canada
| | - Nathan Pelletier
- FIP 226, Food Systems PRISM Lab, Fipke Centre for Innovative Research, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
8
|
Raziq F, Hussain J, Ahmad S, Hussain MA, Khan MT, Ullah A, Qumar M, Wadood F, Gull-e-Faran. Effect of body weight at photostimulation on productive performance and welfare aspects of commercial layers. Anim Biosci 2024; 37:500-508. [PMID: 36915928 PMCID: PMC10915190 DOI: 10.5713/ab.22.0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/01/2023] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
OBJECTIVE Due to current selection practices for increased egg production and peak persistency, the production profile, age at maturity, and body weight criteria for commercial layers are constantly changing. Body weight and age at the time of photostimulation will thus always be the factors that need to be adequately addressed among various production systems. The current study was carried out to determine the effects of pullets' body weight (low, medium, and heavy) on their performance, welfare, physiological response, and hormonal profile. METHODS With regard to live weight, 150 16-week-old pullets were divided into three groups using a completely randomized design (CRD) and held until the 50th week. One-way analysis of variance was used to evaluate the data under the CRD, and the least significant difference test was used to distinguish between treatment means. RESULTS In comparison to the medium and light birds, the heavy birds had higher body weight at maturity, an earlier age at maturity, and higher egg weight, eggshell weight, eggshell thickness, egg yolk index, breaking strength, egg surface area, egg shape index, egg volume, and hormonal profile except corticosterone. However, the medium and light birds had lower feed consumption rates per dozen eggs and per kilogram of egg mass than the heavy birds. Light birds showed greater body weight gain, egg production, and egg specific gravity than the other categories. At 20 weeks of age, physiological response, welfare aspects, and catalase were non-significant; however, at 50 weeks of age, all these factors-aside from catalase-were extremely significant. CONCLUSION The findings of this study indicate that layers can function at lower body weights during photostimulation; hence, dietary regimens that result in lighter pullets may be preferable. Additionally, the welfare of the birds was not compromised by the lighter weight group.
Collapse
Affiliation(s)
- Fazal Raziq
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore-54000,
Pakistan
| | - Jibran Hussain
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore-54000,
Pakistan
| | - Sohail Ahmad
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore-54000,
Pakistan
| | - Muhammad Asif Hussain
- College of Animal Husbandry and Veterinary Sciences, Abdul Wali khan University, Mardan-23200,
Pakistan
| | - Muhammad Tahir Khan
- Department of Poultry Science, Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur-63100,
Pakistan
| | - Assad Ullah
- Civil Veterinary Hospital Gumbat, Kohat-26120,
Pakistan
| | - Muhammad Qumar
- Department of Animal Nutrition, Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur-63100,
Pakistan
| | - Fazal Wadood
- Department of Theriogenology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur-63100,
Pakistan
| | - Gull-e-Faran
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur-63100,
Pakistan
| |
Collapse
|
9
|
Miao DZ, Liu C, Deng ZY, Zhang C, Guo ZY, Li WQ, Wang Y, Yang HM, Wang ZY. Characterization of reproductive hormones and related gene expression in the hypothalamus and pituitary gland in the egg-laying interval in White King pigeon. Poult Sci 2024; 103:103422. [PMID: 38228063 PMCID: PMC10823133 DOI: 10.1016/j.psj.2024.103422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024] Open
Abstract
The egg-laying interval (LI) directly reflects the laying performance of breeding pigeons, influenced by reproductive hormones. This study aimed to assess reproductive hormone levels in serum and the expression of related genes and their receptors in the hypothalamus and pituitary gland in 4 stages: first (LI1), third (LI3), fifth (LI5), and seventh (LI7) days. The results showed that serum gonadotropin-releasing hormone (GnRH) level decreased from LI1 to LI7 (P < 0.01) and peaked in LI1. The serum follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels stayed at high levels from LI1 to LI5. The FSH level decreased slightly from LI5 to LI7 (P > 0.05), but the LH level decreased rapidly (P < 0.01). The prolactin (PRL) levels significantly increased in LI5 (P < 0.01) compared with LI1 and then stayed at a high level. The GnRH1 expression in the hypothalamus had no significant change in LI (P > 0.05). However, the GnRHR first decreased from LI1 to LI3 (P < 0.05) and then increased. The FSH mRNA level in the pituitary gland decreased from LI1 to LI3 and slightly increased in LI5 (P > 0.05). The change pattern of FSHR was similar to that of FSH and peaked in LI5 (P < 0.05). The LH expression level was the highest in LI5 and significantly higher than that in LI3 and LI7 (P < 0.05). However, the LHR mRNA level decreased in LI (P < 0.05). The expression patterns of PRL and PRLR were similar; they were upregulated in LI and peaked in LI7 (P < 0.01). The expression pattern of GnRHR was similar to that of FSH, LH, and FSHR, suggesting the critical role of GnRHR in LI. Furthermore, the expression levels of these genes peaked in LI5, closely correlating with the maturation of the first largest follicle in pigeons. PRL-PRLR signaling inhibited GnRH activity to promote ovulation. This study provided a basis for further investigating the molecular mechanisms underlying the regulation of reproduction in pigeons.
Collapse
Affiliation(s)
- D Z Miao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - C Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Z Y Deng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - C Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Z Y Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - W Q Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Y Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China.
| | - H M Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Z Y Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| |
Collapse
|
10
|
Yin L, Chen Q, Huang Q, Wang X, Zhang D, Lin Z, Wang Y, Liu Y. Physiological role of dietary energy in the sexual maturity: clues of body size, gonad development, and serum biochemical parameters of Chinese indigenous chicken. Poult Sci 2023; 102:103157. [PMID: 37862869 PMCID: PMC10590745 DOI: 10.1016/j.psj.2023.103157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023] Open
Abstract
Sexual maturity is a crucial factor in the formation and development of poultry reproductive capacity. The nutritional status has been confirmed to play an important role in the regulation of sexual maturity. To investigate the effect of dietary energy levels on sexual maturity in chicken, diets with 3 energy levels (group L: 2,573 kcal/kg, group C: 2,836 kcal/kg, group H: 3,122 kcal/kg) were implemented to feed Guangyuan Gray chickens. During this trial, body weight, body size, organ development, sexual maturity, reproductive performance and blood biochemical parameters were monitored. The earlier sexual maturity was observed in group H, as well as a heavier first egg weight, larger interpubic distance and higher total cholesterol (T-CHO) content at sexual maturity. The dietary energy levels had no significant effect on body weight at first egg and egg production at 300 d of age. Although dietary energy levels had a significant effect on body weight, comb length, tibia length and girth, abdominal fat weight, oviduct weight and length, T-CHO, triglyceride (TG) content and estradiol (E2) level during the rearing period. No significant difference of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) level among 3 groups was observed during the trial. The dietary energy levels had effects on mRNA expression of GnRH, estrogen receptor 1 (ESR1), estrogen receptor 2 (ESR2) in hypothalamus, gonadotropin inhibitory hormone receptor (GnIHR) in pituitary and luteinizing hormone receptor (LHR), ESR2 in ovary. The GnIHR/GnRHR ratio in pituitary was higher before sexual maturity and decreased at sexual maturity. The results of correlations analysis found that all the body size, carcass traits, serum biochemical parameters negatively correlated with age at first egg except for interpubic distance and serum blood glucose content. Collectively, dietary energy levels had effects on sexual maturity of chicken, which may be achieved by affecting body weight, gonad development, endocrine and the mRNA expression of genes related to hypothalamus-pituitary-gonad axis. These results further set our understanding of how dietary energy regulates sexual maturity.
Collapse
Affiliation(s)
- Lingqian Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinke Huang
- Guangyuan Municipal Bureau of Agriculture and Rural Affairs, Guangyuan 628000, Sichuan, China
| | - Xinyu Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Donghao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
11
|
Zhou X, Jiang D, Xu Y, Pan J, Xu D, Tian Y, Shen X, Huang Y. Endocrine and molecular regulation mechanisms of follicular development and egg-laying in quails under different photoperiods. Anim Biotechnol 2023; 34:4809-4818. [PMID: 37022011 DOI: 10.1080/10495398.2023.2196551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Photoperiod is a key environmental factor in regulating bird reproduction and induces neuroendocrine changes through the hypothalamic-pituitary-gonadal (HPG) axis. OPN5, as a deep-brain photoreceptor, transmits light signals to regulate follicular development through TSH-DIO2/DIO3. However, the mechanism among OPN5, TSH-DIO2/DIO3, and VIP/PRL in the HPG axis underlying the photoperiodic regulation of bird reproduction is unclear. In this study, 72 laying quails with 8-week-old were randomly divided into the long-day (LD) group [16 light (L): 8 dark (D)] and the short-day (SD) group (8 L:16 D), and then samples were collected on d 1, d 11, d 22, and d 36 of the experiment. The results showed that compared with the LD group, the SD group significantly inhibited follicular development (P < 0.05), decreased the P4, E2, LH, and PRL in serum (P < 0.05), downregulated the expression of GnRHR, VIP, PRL, OPN5, DIO2, and LHβ (P < 0.05), reduced the expression of GnRH and TSHβ (P > 0.05), and promoted DIO3, GnIH gene expression (P < 0.01). The short photoperiod downregulates OPN5, TSHβ, and DIO2 and upregulates DIO3 expression to regulate the GnRH/GnIH system. The downregulation of GnRHR and upregulation of GnIH resulted in a decrease in LH secretion, which withdrew the gonadotropic effects on ovarian follicles development. Slow down of follicular development and egg laying may also arise from lack of PRL potentiation to small follicle development under short days.
Collapse
Affiliation(s)
- Xiaoli Zhou
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science & Technology, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Danli Jiang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science & Technology, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yanglong Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science & Technology, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Jianqiu Pan
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science & Technology, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Danning Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science & Technology, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science & Technology, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Xu Shen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science & Technology, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yunmao Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science & Technology, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| |
Collapse
|
12
|
Tang Y, Yin L, Liu L, Chen Q, Lin Z, Zhang D, Wang Y, Liu Y. Comparative Analysis of Different Proteins and Metabolites in the Liver and Ovary of Local Breeds of Chicken and Commercial Chickens in the Later Laying Period. Int J Mol Sci 2023; 24:14394. [PMID: 37762699 PMCID: PMC10531955 DOI: 10.3390/ijms241814394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The liver and ovary perform a vital role in egg production in hens. In the later laying period, the egg-laying capacity of female hens, particularly that of local breeds, declines significantly. Hence, it is essential to study the features and conditions of the ovary and liver during this period. In this research, we characterized the proteins and metabolites in the liver and ovary of 55-week-old Guangyuan gray chickens (Group G) and Hy-Line gray chickens (Group H) by using liquid chromatography chip/electrospray ionization quadruple time-of-flight/mass spectroscopy (LC-MS/MS). In total, 139 differentially expressed proteins (DEPs) and 186 differential metabolites (DMs) were identified in the liver, and 139 DEPs and 36 DMs were identified in the ovary. The upregulated DEPs and DMs in both the liver and ovary of Group G were primarily enriched in pathways involved in amino acid and carbohydrate metabolism. This suggests that energy metabolism was highly active in the Guangyuan gray chickens. In contrast, the upregulated DEPs and DMs in Group H were mainly enriched in pathways associated with lipid metabolism, which may explain the higher egg production and the higher fatty liver rate in Hy-Line gray hens in the later laying period. Additionally, it was found that the unique protein s-(hydroxymethyl) glutathione dehydrogenase (ADH4) in Group G was implicated in functions such as fatty acid degradation, glycolysis, and pyruvate metabolism, whereas the unique proteins, steroid sulfatase (STS), glucosylceramidase (LOC107050229), and phospholipase A2 Group XV (PLA2G15), in Group H were involved in the metabolism of steroid hormones and glycerol phosphate. In conclusion, variations in how carbohydrates, lipids, and amino acids are processed in the liver and ovary of local breeds of chicken and commercial hens towards the end of their laying period could explain the disparities in their egg production abilities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (L.Y.); (L.L.); (Q.C.); (Z.L.); (D.Z.); (Y.W.)
| |
Collapse
|
13
|
Bahry MA, Hanlon C, Ziezold CJ, Schaus S, Bédécarrats GY. Impact of growth trajectory on sexual maturation in layer chickens. Front Physiol 2023; 14:1174238. [PMID: 37215169 PMCID: PMC10196195 DOI: 10.3389/fphys.2023.1174238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/23/2023] [Indexed: 05/24/2023] Open
Abstract
Recent studies showed that apart from photostimulation, metabolic triggers may independently activate sexual maturation and egg production in chickens. However, the origin, mode of action, and specific target(s) of this metabolic control remain unknown. Beyond body weight (BW), we hypothesize that body composition (BC) and associated specific metabolic signals are involved. Thus, this study was conducted to determine the BW and BC thresholds triggering spontaneous sexual maturation in layer pullets under different growth trajectories. Day-old Lohman LSL lite and Lohman brown lite chicks (n = 210 each) raised in brooding cages under ad libitum (AL) feeding until 8 weeks of age were randomly allocated into individual cages and assigned to one of 3 experimental growth profiles; AL, breeder's target (T), restricted 20% below target (R), (n = 70 birds/profile/strain). Birds had free access to water throughout the trial. All hens were maintained on 10 h of light (10 lux) throughout the rest of the study. Blood and tissue samples were collected throughout the study to measure plasma estradiol (E2) concentrations and organ weights, respectively. Furthermore, carcasses were subjected to Dual-energy X-ray absorptiometry (DEXA) analyses. All analyses were completed with SAS using the MIXED procedure. Results show that R treatment slowed (p < 0.001) growth, delayed age at first egg (FE) and egg production (p < 0.001) and resulted in lower BW at FE (p < 0.001), lower ovary weight and number of follicles (p < 0.001) compared to AL in both strains, whereas, the strain significantly impacted body weight (p < 0.0001), ovary weight (p < 0.001), BW at FE (p < 0.001), age at FE (p < 0.001), egg production (p < 0.0001), E2 (p < 0.0001) and body composition (p < 0.05). For DEXA, AL feeding (p < 0.001) increased fat deposition compared to R. Furthermore, there was a positive correlation between plasma E2 and bone mineral content (p < 0.01) and bone mineral density (p < 0.01). In conclusion, feed allocation impacted growth and BC in a strain dependent manner which resulted in differing age at sexual maturation and egg production. Furthermore, a body fat threshold between 10% to 15% appears to be required for the occurrence of spontaneously sexual maturation in laying hens.
Collapse
Affiliation(s)
- Mohammad A. Bahry
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Poultry Science, College of Agriculture, Auburn University, Auburn, AL, United States
| | - Clara J. Ziezold
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Sierra Schaus
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
14
|
Hanlon C, Zuidhof MJ, Rodriguez A, Takeshima K, Bédécarrats GY. Continuous exposure to red light induces photorefractoriness in broiler breeder pullets. Poult Sci 2023; 102:102542. [PMID: 36842297 PMCID: PMC9974448 DOI: 10.1016/j.psj.2023.102542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/30/2023] Open
Abstract
The management of body weight (BW) in broiler breeder pullets is critical to offset the negative correlation between their growth potential and reproductive success. Therefore, a precision feeding system was developed to allocate feed individually based on real-time BW in more frequent, smaller portions. However, this system requires access beyond the 8 h daylength of the rearing period. Since green and red spectra have been shown to stimulate growth and sexual maturation, respectively, this study aimed to evaluate the impact of continuous supplemental illumination of feeders with monochromatic wavelengths on sexual maturation. Furthermore, the best combination of supplemental and daytime lighting for optimizing the pullet-to-hen transition period was investigated. This study contained a 2 × 4 × 2 factorial arrangement, with 2 daytime lights (dtRED and dtGREEN; n = 2 rooms), 4 supplemental lights (sBLUE, sGREEN, sRED, and sCON; n = 12 pens), and 2 supplemental intensities (High and Low). At 3 wk of age (woa), 480 female Ross 708 chicks were randomly distributed across treatments (n = 10/pen). All birds were feed restricted per management guidelines and maintained under 8 h of dtRED or dtGREEN. Birds were photostimulated at 20 woa with 14L:10D. All birds were weighed weekly, with age at first egg (AFE) and production rate calculated weekly per pen. Birds under sRED were heavier than all other treatments from 27 woa to the end of the study (P < 0.001; 30 woa), resulting in hens that were over 400-g heavier. This resulted from a delayed AFE and lower production rate under sRED, with higher intensity further hindering reproductive performance (P < 0.001). Interestingly, despite the inhibitory effect of continuous red lighting (sRED) on reproduction, dtRED resulted in a 3.15% higher rate of lay than dtGREEN. Therefore, this study suggests that while red light remains superior at stimulating reproduction, continuous red supplemental lighting results in photorefractoriness. Thus, we recommend green light in PF systems.
Collapse
Affiliation(s)
- Charlene Hanlon
- Department of Poultry Science, College of Agriculture, Auburn University, Auburn, AL 38649, USA; Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada.
| | - Martin J Zuidhof
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Adriana Rodriguez
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Kayo Takeshima
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Grégoy Y Bédécarrats
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
15
|
da Nóbrega IPT, Reis MDP, Lizana RR, de Moura TF, Teofilo GFDS, Bittencourt LC, Sakomura NK. Response of Laying Hens to Repletion and Depletion in Dietary Balanced Protein. Animals (Basel) 2022; 12:ani12192567. [PMID: 36230308 PMCID: PMC9559677 DOI: 10.3390/ani12192567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study was carried out to investigate the response of laying hens given a repletion or depletion in dietary balanced protein (BP) during the laying phase period. At the beginning of the rearing period (eight w-old), four-hundred pullets were equally distributed and received one of two experimental feeds: 1-Low BP (L) and 2-High BP (H). For the laying period (19 to 102 w-old), four feeding programs were designed based on the same treatments for rearing phases (LL, HH, LH, HL), where subsequent letters indicate the feed received during the rearing and laying period, respectively. The performance responses, egg quality, and body composition were periodically collected during the laying period. Two-way ANOVA repeated measures analysis was applied to evaluate the data. Nonlinear regression models with groups were used to compare treatments in the laying phase, with the treatments being the group evaluated. All performance traits were somehow influenced by the level of BP in the feed (p < 0.050). Hens subjected to the repletion treatment (LH) demonstrated a recovery in performance after 38 w-old. The opposite result was observed for hens on the depletion treatment (HL). All egg components were affected by dietary BP (p < 0.050). Laying hens demonstrated a limited capacity to overcome a reduction in dietary BP during production, but they were able to recover from a previous deficient feed once they were given an opportunity to do so.
Collapse
Affiliation(s)
- Ingryd Palloma Teodósio da Nóbrega
- Department of Animal Sciences, Faculty of Agrarian and Veterinary Science, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Matheus de Paula Reis
- Department of Animal Sciences, Faculty of Agrarian and Veterinary Science, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Rony Riveros Lizana
- Department of Animal Sciences, Faculty of Agrarian and Veterinary Science, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Thaila Fernanda de Moura
- Department of Animal Sciences, Faculty of Agrarian and Veterinary Science, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | | | | | - Nilva Kazue Sakomura
- Department of Animal Sciences, Faculty of Agrarian and Veterinary Science, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Correspondence: ; Tel.: +55-163-209-7448
| |
Collapse
|
16
|
Özkan S, Yalçın S, Bayraktar ÖH, Bilgen G, Dayıoğlu M, Bolhuis JE, Rodenburg TB. Effects of incubation lighting with green or white light on brown layers: Hatching performance, feather pecking and hypothalamic expressions of genes related with photoreception, serotonin and stress systems. Poult Sci 2022; 101:102114. [PMID: 36088819 PMCID: PMC9468462 DOI: 10.1016/j.psj.2022.102114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to evaluate the effect of 16L:8D photoperiod with green (GREEN) or white (WHITE) lights during incubation on hatching performance, blood melatonin, corticosterone, and serotonin levels, hypothalamic expressions of genes related to photoreception, serotonin, and stress systems in layers in relation with feather pecking behavior. Dark incubation (DARK) was the control. Eggs (n = 1,176) from Brown Nick breeders in 2 batches (n = 588/batch) were incubated in the experiment. A total of 396 female chicks and 261 hens were used at rearing and laying periods until 40 wk. Incubation lighting did not affect hatchability, day-old chick weight, and length, but resulted in a more synchronized hatch as compared with the DARK. The effect of incubation lighting on blood hormones was not significant except for reduced serotonin in the GREEN group at the end of the experiment. There was no effect of incubation lighting on gentle, severe, and aggressive pecking of birds during the early rearing period. From 16 wk, GREEN hens showed increased gentle pecking with increasing age. WHITE hens had the highest gentle pecking frequency at 16 wk while they performed less gentle but higher severe and aggressive pecks at 24 and 32 wk. At hatching, the hypothalamic expression of CRH, 5-HTR1A, and 5-HTR1B was higher for the WHITE group compared with both GREEN and DARK, however, 5-HTT expression was higher in GREEN than WHITE which was similar to DARK. Except for the highest VA opsin expression obtained for WHITE hens at 40 wk of age, there was no change in hypothalamic expression levels of rhodopsin, VA opsin, red, and green opsins at any age. Although blood hormone levels were not consistent, results provide preliminary evidence that incubation lighting modulates the pecking tendencies of laying hens, probably through the observed changes in hypothalamic expression of genes related to the serotonin system and stress. Significant correlations among the hypothalamic gene expression levels supplied further evidence for the associations among photoreception, serotonin, and stress systems.
Collapse
|
17
|
Mehlhorn J, Höhne A, Baulain U, Schrader L, Weigend S, Petow S. Estradiol-17ß Is Influenced by Age, Housing System, and Laying Performance in Genetically Divergent Laying Hens ( Gallus gallus f.d.). Front Physiol 2022; 13:954399. [PMID: 35936910 PMCID: PMC9353941 DOI: 10.3389/fphys.2022.954399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
The estrogen estradiol-17ß is known as one of the major gonadal steroid hormones with different functions in reproduction. In this study we analyzed estradiol-17ß concentration in laying hens of four pure bred chicken laying lines at four different time intervals of the laying period (17th-19th week of age, 33rd-35th week of age, 49th-51st week of age, and 72nd week of age). The high performing white egg (WLA) and brown egg (BLA) layer lines as well as the low performing white (R11) and brown (L68) layer lines were kept in both single cages and a floor housing system. We investigated whether there were differences in estradiol -17ß concentrations between lines at different ages that could be related to selection for high egg production or phylogenetic origin of the animals, and whether there was an influence of housing conditions on estradiol-17ß. Estradiol-17ß concentrations differed between high and low performing layer lines at all time intervals studied. High performing hens showed higher estradiol-17ß concentrations compared to low performing hens. In all lines, highest estradiol-17ß concentration was measured at their 49th to their 51st week of age, whereas the peak of laying intensity was observed at their 33rd to their 35th week of age. Additionally, hens with fewer opportunities for activity housed in cages showed higher estradiol-17ß concentrations than hens kept in a floor housing system with more movement possibilities. We could show that laying performance is strongly linked with estradiol -17ß concentration. This concentration changes during laying period and is also influenced by the housing system.
Collapse
Affiliation(s)
- Julia Mehlhorn
- Institute for Anatomy I, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anja Höhne
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| | - Ulrich Baulain
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Mariensee, Germany
| | - Lars Schrader
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| | - Steffen Weigend
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Mariensee, Germany
| | - Stefanie Petow
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| |
Collapse
|
18
|
Hanlon C, Ziezold CJ, Bédécarrats GY. The Diverse Roles of 17β-Estradiol in Non-Gonadal Tissues and Its Consequential Impact on Reproduction in Laying and Broiler Breeder Hens. Front Physiol 2022; 13:942790. [PMID: 35846017 PMCID: PMC9283702 DOI: 10.3389/fphys.2022.942790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Estradiol-17β (E2) has long been studied as the primary estrogen involved in sexual maturation of hens. Due to the oviparous nature of avian species, ovarian production of E2 has been indicated as the key steroid responsible for activating the formation of the eggshell and internal egg components in hens. This involves the integration and coordination between ovarian follicular development, liver metabolism and bone physiology to produce the follicle, yolk and albumen, and shell, respectively. However, the ability of E2 to be synthesized by non-gonadal tissues such as the skin, heart, muscle, liver, brain, adipose tissue, pancreas, and adrenal glands demonstrates the capability of this hormone to influence a variety of physiological processes. Thus, in this review, we intend to re-establish the role of E2 within these tissues and identify direct and indirect integration between the control of reproduction, metabolism, and bone physiology. Specifically, the sources of E2 and its activity in these tissues via the estrogen receptors (ERα, ERβ, GPR30) is described. This is followed by an update on the role of E2 during sexual differentiation of the embryo and maturation of the hen. We then also consider the implications of the recent discovery of additional E2 elevations during an extended laying cycle. Next, the specific roles of E2 in yolk formation and skeletal development are outlined. Finally, the consequences of altered E2 production in mature hens and the associated disorders are discussed. While these areas of study have been previously independently considered, this comprehensive review intends to highlight the critical roles played by E2 to alter and coordinate physiological processes in preparation for the laying cycle.
Collapse
|
19
|
Liufu S, Pan J, Sun J, Shen X, Jiang D, Ouyang H, Xu D, Tian Y, Huang Y. OPN5 Regulating Mechanism of Follicle Development Through the TSH-DIO2/DIO3 Pathway in Mountain Ducks Under Different Photoperiods. Front Physiol 2022; 13:813881. [PMID: 35733985 PMCID: PMC9208676 DOI: 10.3389/fphys.2022.813881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract: Photoperiod is an important environmental factor that influence seasonal reproduction behavior in bird. Birds translates photoperiodic information into neuroendocrine signals through deep brain photoreceptors (DBPs). OPN5 has been considered as candidate DBPs involving in regulation of seasonal reproduction in birds. However, little is known about the effect of OPN5 in non-seasonal breeding birds. Thus, we pondered on whether OPN5 regulating follicular development through TSH-DIO2/DIO3 system responds to different photoperiods in non-seasonal laying ducks. As an ideal non-seasonal breeding bird, a total of 120 mountain ducks were randomly divided into three groups and treated respectively to a different photoperiod: group S (8 L:16D), group C (17 L:7D), and group L (24 L:0D). The ducks were caged in a fully enclosed shelter with the same feeding conditions for each group, free water and limited feeding (150 g per duck each day). Samples were collected from each group at d 0, d 5, d 8, d 20, and d 35 (n = 8). The ducks in 24 h photoperiod had the highest laying rate and the lowest feed-to-egg ratio, while the ducks in 8 h photoperiod had the lowest laying rate and the highest feed-to-egg ratio. Long-day photoperiod for 24 h significantly increased the ovarian index and GnRH, LH, E2, and P4 levels in serum; short-day photoperiod for 8 h increased testosterone levels in serum. Compared with 8 h photoperiod, long-day photoperiod significantly or highly significantly increased the mRNA level and protein expression of OPN5 in the hypothalamus of long-day photoperiod on d 35 (p < 0.05). The gene or protein expression patterns of GnRH, TRH, TSHβ, DIO2, THRβ, VIP, and PRL were positively correlated with OPN5, whereas the gene expression patterns of GnIH and DI O 3 were negatively correlated with OPN5. The results revealed that OPN5 mediated the effect of light on follicular development through the TSH-DIO2/DIO3 pathway, the expression of OPN5 increased with light duration and improved the efficiency of the HPG axis to promote follicular development in mountain ducks.
Collapse
Affiliation(s)
- Sui Liufu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Jianqiu Pan
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Junfeng Sun
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Xu Shen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Danli Jiang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Hongjia Ouyang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Danning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
- *Correspondence: Yunbo Tian, ; Yunmao Huang,
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
- *Correspondence: Yunbo Tian, ; Yunmao Huang,
| |
Collapse
|
20
|
Hanlon C, Takeshima K, Kiarie EG, Bédécarrats GY. Bone and eggshell quality throughout an extended laying cycle in three strains of layers spanning 50 years of selection. Poult Sci 2022; 101:101672. [PMID: 35074590 PMCID: PMC8789532 DOI: 10.1016/j.psj.2021.101672] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Decades of intensive genetic selection in commercial layers has resulted in earlier maturation, while sustaining high production rates to 100 wks of age (woa). To support eggshell formation while maintaining a healthy skeletal frame, substantial adaptations of calcium metabolism in the hen are necessary. Thus, skeletal growth, bone density, and egg quality were compared in 3 strains of layers, with the Lohmann LSL-lite as the current commercial strain, the heritage Shaver white leghorn as the mid-2000s strain, and the white-leghorn derived Smoky Joes as the non-selected 1960s strain. Tibia and Femur (n = 4/strain) were collected at 12, 17, 20, 25, 45, 60, 75, and 100 woa. Bones were measured and weighed, with bone mineral density assessed within medullary (mBMD) and cortical (cBMD) regions of the tibia using micro-Computed Tomography. Egg analyses including weight, eggshell thickness (EST) and eggshell breaking strength (EBS), were conducted throughout lay. Blood samples were collected to measure plasma calcium immediately prior to lay (18 woa) and periodically throughout the laying cycle. Femur and tibia weight, or size, did not increase beyond 12 woa, indicating that all hens reached maximum skeletal size by this time. An interaction (P = 0.005) was observed between strain and tibia mBMD, as all three strains demonstrated an accumulation of medullary bone from 12 to 100 woa. Regarding egg weight, while Lohmann hen eggs displayed the highest quality at 26 woa, an elevation in egg weight in Lohmann and Shaver hens (P < 0.001) resulted in a decline in EST and EBS over time (P < 0.01). Yet, at 100 woa, no strain differed in EST or EBS, despite larger variations in cumulative egg numbers (P < 0.001). Plasma calcium levels were significantly elevated between the immature state and peak of lay but remained unchanged throughout lay in all strains. In conclusion, our results show that although genetic selection of layer hens resulted in tremendous improvement in productivity, no detrimental effects on cBMD or mBMD were observed throughout an extended laying period up to 100 woa.
Collapse
Affiliation(s)
- Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G2W1, Canada.
| | - Kayo Takeshima
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Grégoy Y Bédécarrats
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
21
|
Jiang DL, Zhou XL, Xu YL, Liufu S, Fu XL, Xu DN, Tian YB, Shen X, Huang YM. Effects of stocking density on ovarian development and maturation during the rearing period in Shan-ma ducks. Poult Sci 2022; 101:101809. [PMID: 35358924 PMCID: PMC8968648 DOI: 10.1016/j.psj.2022.101809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022] Open
Abstract
Stocking density critically affects the growth and subsequent performance of animals in modern poultry production. This study investigated the effects of stocking density on ovarian development, ovarian maturation, and the mRNA expression of key genes in the reproductive axis during the rearing period of Shan-ma ducks. The experiments involved 180 healthy 7-wk-old Shan-ma ducks and randomly divided into low stocking density (LSD; n = 30, density = 5 birds/m2), medium stocking density (MSD; n = 60, density = 10 birds/m2) and high stocking density groups (HSD; n = 90, density = 15 birds/m2), for rearing. After examining ovarian development and measuring hormone levels in the plasma and expression levels of key regulatory genes in the reproductive axis at 19 wk of rearing, analysis of the gonad index analysis, reflecting stocking density, uncovered statistically significant differences. The gonad index of the LSD group was significantly higher than those of the MSD and HSD groups (P < 0.01), while no significant difference was observed between the MSD and HSD groups. pre-ovulatory follicles (POFs) and small yellow follicles (SYFs) development was only apparent in the LSD group, with the large white follicles (LWFs) number of this group being significantly higher than that of the MSD group (P < 0.05). The blood levels of E2 (estradiol), P4 (progesterone), and T (testosterone) were significantly higher in the LSD group than in the MSD and HSD groups (P < 0.05 or 0.01). Also, the levels of both P4 and T were significantly higher in the MSD group than in the HSD group (P < 0.01). The gene expression levels of GnRHR, FSH, AMHR, and FSHR were significantly increased in the LSD group compared to the MSD and HSD groups (P < 0.05 or 0.01), while the expression levels of GnIHR and GDF9 were significantly decreased in the LSD and MSD groups compared to the HSD group (P < 0.05 or 0.01). Steroid biosynthesis pathway genes such as StAR, CYP11A1, 3β-HSD, CYP19A1, and BMP15 were significantly downregulated at greater stocking densities (P < 0.05 or 0.01). Likewise, the protein expression of StAR, 3β-HSD, and CYP19A1 was also significantly decreased (P < 0.05 or 0.01). These results demonstrate that both medium and high stocking densities suppressed the expression of the key reproduction-promoting factors, while the expression level of the key reproductive inhibitory factors was enhanced. Therefore, rates of ovarian development and maturation could be reduced by a high stocking density leading to a delay in reproduction performance during the rearing period of Shan-ma ducks.
Collapse
Affiliation(s)
- Dan-Li Jiang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China
| | - Xiao-Li Zhou
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China
| | - Yang-Long Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China
| | - Sui Liufu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China
| | - Xin-Liang Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China
| | - Dan-Ning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China
| | - Yun-Bo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China
| | - Xu Shen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China
| | - Yun-Mao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
22
|
Zhang T, Ning Z, Chen Y, Wen J, Jia Y, Wang L, Lv X, Yang W, Qu C, Li H, Wang H, Qu L. Understanding Transcriptomic and Serological Differences between Forced Molting and Natural Molting in Laying Hens. Genes (Basel) 2021; 13:genes13010089. [PMID: 35052428 PMCID: PMC8774386 DOI: 10.3390/genes13010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 01/19/2023] Open
Abstract
Molting is natural adaptation to climate change in all birds, including chickens. Forced molting (FM) can rejuvenate and reactivate the reproductive potential of aged hens, but the effect of natural molting (NM) on older chickens is not clear. To explore why FM has a dramatically different effect on chickens compared with NM, the transcriptome analyses of the hypothalamus and ovary in forced molted and natural molted hens at two periods with feathers fallen and regrown were performed. Additionally, each experimental chicken was tested for serological indices. The results of serological indices showed that growth hormone, thyroid stimulating hormone, and thyroxine levels were significantly higher (p < 0.05) in forced molted hens than in natural molted hens, and calcitonin concentrations were lower in the forced molted than in the natural molted hens. Furthermore, the transcriptomic analysis revealed a large number of genes related to disease resistance and anti-aging in the two different FM and NM periods. These regulatory genes and serological indices promote reproductive function during FM. This study systematically revealed the transcriptomic and serological differences between FM and NM, which could broaden our understanding of aging, rejuvenation, egg production, and welfare issues related to FM in chickens.
Collapse
Affiliation(s)
- Tongyu Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (Z.N.); (J.W.)
| | - Zhonghua Ning
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (Z.N.); (J.W.)
| | - Yu Chen
- Beijing Animal Husbandry and Veterinary Station, Beijing 100107, China; (Y.C.); (L.W.); (X.L.); (W.Y.)
| | - Junhui Wen
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (Z.N.); (J.W.)
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Liang Wang
- Beijing Animal Husbandry and Veterinary Station, Beijing 100107, China; (Y.C.); (L.W.); (X.L.); (W.Y.)
| | - Xueze Lv
- Beijing Animal Husbandry and Veterinary Station, Beijing 100107, China; (Y.C.); (L.W.); (X.L.); (W.Y.)
| | - Weifang Yang
- Beijing Animal Husbandry and Veterinary Station, Beijing 100107, China; (Y.C.); (L.W.); (X.L.); (W.Y.)
| | - Changqing Qu
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Fuyang Normal University, Fuyang 236037, China;
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Huie Wang
- College of Animal Science, Tarim University, Alar 843300, China;
| | - Lujiang Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (Z.N.); (J.W.)
- Correspondence:
| |
Collapse
|
23
|
Bédécarrats GY, Hanlon C, Tsutsui K. Gonadotropin Inhibitory Hormone and Its Receptor: Potential Key to the Integration and Coordination of Metabolic Status and Reproduction. Front Endocrinol (Lausanne) 2021; 12:781543. [PMID: 35095760 PMCID: PMC8792613 DOI: 10.3389/fendo.2021.781543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Since its discovery as a novel gonadotropin inhibitory peptide in 2000, the central and peripheral roles played by gonadotropin-inhibiting hormone (GnIH) have been significantly expanded. This is highlighted by the wide distribution of its receptor (GnIH-R) within the brain and throughout multiple peripheral organs and tissues. Furthermore, as GnIH is part of the wider RF-amide peptides family, many orthologues have been characterized across vertebrate species, and due to the promiscuity between ligands and receptors within this family, confusion over the nomenclature and function has arisen. In this review, we intend to first clarify the nomenclature, prevalence, and distribution of the GnIH-Rs, and by reviewing specific localization and ligand availability, we propose an integrative role for GnIH in the coordination of reproductive and metabolic processes. Specifically, we propose that GnIH participates in the central regulation of feed intake while modulating the impact of thyroid hormones and the stress axis to allow active reproduction to proceed depending on the availability of resources. Furthermore, beyond the central nervous system, we also propose a peripheral role for GnIH in the control of glucose and lipid metabolism at the level of the liver, pancreas, and adipose tissue. Taken together, evidence from the literature strongly suggests that, in fact, the inhibitory effect of GnIH on the reproductive axis is based on the integration of environmental cues and internal metabolic status.
Collapse
Affiliation(s)
- Grégoy Y. Bédécarrats
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- *Correspondence: Grégoy Y. Bédécarrats,
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Kazuyoshi Tsutsui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|