1
|
Ngou E, Kim KH, Liang W. Extracellular matrix cues regulate cardiac pacemaker cell induction from ventricular myocytes. Am J Physiol Heart Circ Physiol 2025; 328:H1144-H1145. [PMID: 40209756 DOI: 10.1152/ajpheart.00217.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Affiliation(s)
- Ernest Ngou
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Wenbin Liang
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Amitrano MJ, Cho M, Coughlin EM, Palecek SP, Murphy WL. Synthetic hydrogels support robust and reproducible cardiomyocyte differentiation. Biomater Sci 2025; 13:2142-2151. [PMID: 40091790 DOI: 10.1039/d4bm01636j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cardiomyocyte manufacturing from human pluripotent stem cells is limited by the variability of differentiation efficiencies, partly attributed to the widespread use of the tumor-derived substrate Matrigel. Here, we describe a screening approach to identify fully-defined synthetic PEG hydrogels that support iPSC-derived cardiac progenitor cell (iPSC-CPC) adhesion, survival, and differentiation into iPSC-derived cardiomyocytes (iPSC-CMs). Our PEG hydrogels supported superior iPSC-CM differentiation efficiency, with a 24% increase in cTnT expression, and greater reproducibility when compared to cells cultured on Matrigel. By combining our 5-level, 3-variable full factorial screening approach with multi-variate analysis, we showed that all substrate variables manipulated here (adhesion ligand type/concentration, stiffness) had a significant influence on iPSC-CPC confluency and that iPSC-CM differentiation was significantly influenced by adhesion ligands. These results highlight the benefit of synthetic, tunable cell culture substrates and multi-variate screening studies to identify substrate formulations for a targeted cell behavior.
Collapse
Affiliation(s)
- Margot J Amitrano
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Avenue Room 5405, 53705, Madison, WI, USA.
| | - Mina Cho
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eva M Coughlin
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Avenue Room 5405, 53705, Madison, WI, USA.
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Avenue Room 5405, 53705, Madison, WI, USA.
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Choi YH, Leng J, Fan J, Ramirez RJ, Cho HC. Tissue elasticity modulates cardiac pacemaker cell automaticity. Am J Physiol Heart Circ Physiol 2025; 328:H978-H990. [PMID: 40080390 DOI: 10.1152/ajpheart.00813.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/17/2024] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Tissue elasticity is essential to a broad spectrum of cell biology and organ function including the heart. Routine cell culture models on rigid polystyrene dishes are limited in studying the impact of tissue elasticity in distinct regions of the myocardium such as the cardiac conduction system. Gelatin, a derivative of collagen, is a simple and tunable platform for modeling tissue elasticity. We sought to study the effects of increasing tissue stiffness on cardiac pacemaker cell function by using transcription factor-reprogrammed pacemaker cells cultured on gelatin hydrogels with specific elasticity. Our data indicate that automaticity of the pacemaker cells, measured in rhythmic contractions and oscillating intracellular Ca2+ transients, was enhanced when cultured on a stiffer matrix of 14 kPa. This was accompanied by increased expression of cardiac pacemaker ion channel, Hcn4, and a reciprocal decrease in Cx43 expression compared with control conditions. Propagation of Ca2+ transients was slower in the pacemaker cell monolayers compared with control, which recapitulates a hallmark feature in the native pacemaker tissue. Ca2+ transient propagation of pacemaker cell monolayer was slower on stiffer than on softer hydrogel, and this was dependent on enhanced proliferation of cardiac fibroblasts rather than differences in gap junctional coupling. Culturing the pacemaker cells on rigid plastic plates led to irregular or loss of synchronous contractions as well as unusually long Ca2+ transient durations. Taken together, our data demonstrate that automaticity of pacemaker cells is augmented by stiffer extracellular matrix substrates within the elasticity range of the healthy myocardium. This simple approach presents a physiological in vitro model to study mechanoelectric feedback of cardiomyocytes including the conduction system cells.NEW & NOTEWORTHY The major achievement of this work is development of a robust and straightforward approach to model cardiac conduction system cells with a range of cardiac tissue elasticity with a goal to understand the impact of tissue stiffness on cardiac pacing. Our data provide a framework for further investigation of the heart rhythm in health and disease in the context of fibrosis.
Collapse
Affiliation(s)
- Young Hwan Choi
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Jing Leng
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Jinqi Fan
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Rafael J Ramirez
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Hee Cheol Cho
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, Maryland, United States
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Akter MZ, Tufail F, Ahmad A, Oh YW, Kim JM, Kim S, Hasan MM, Li L, Lee DW, Kim YS, Lee SJ, Kim HS, Ahn Y, Choi YJ, Yi HG. Harnessing native blueprints for designing bioinks to bioprint functional cardiac tissue. iScience 2025; 28:111882. [PMID: 40177403 PMCID: PMC11964760 DOI: 10.1016/j.isci.2025.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Cardiac tissue lacks regenerative capacity, making heart transplantation the primary treatment for end-stage heart failure. Engineered cardiac tissues developed through three-dimensional bioprinting (3DBP) offer a promising alternative. However, reproducing the native structure, cellular diversity, and functionality of cardiac tissue requires advanced cardiac bioinks. Major obstacles in CTE (cardiac tissue engineering) include accurately characterizing bioink properties, replicating the cardiac microenvironment, and achieving precise spatial organization. Optimizing bioink properties to closely mimic the extracellular matrix (ECM) is essential, as deviations may result in pathological effects. This review encompasses the rheological and electromechanical properties of bioinks and the function of the cardiac microenvironment in the design of functional cardiac constructs. Furthermore, it focuses on improving the rheological characteristics, printability, and functionality of bioinks, offering valuable perspectives for developing new bioinks especially designed for CTE.
Collapse
Affiliation(s)
- Mst Zobaida Akter
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Fatima Tufail
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ashfaq Ahmad
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoon Wha Oh
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Min Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seoyeon Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Md Mehedee Hasan
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Longlong Li
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Weon Lee
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Su-jin Lee
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Youngkeun Ahn
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Yeong-Jin Choi
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
- Advanced Materials Engineering, Korea National University of Science and Technology (UST), Changwon, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
5
|
Wang YH, Liu TT, Guo YP, Zhu SJ, Liao ZM, Song JM, Zhu XM, Liang JL, Nasser MI, Liu NB, Chang DH, Zhu P, Yao B. Integrating melt electrospinning writing and microfluidics to engineer a human cardiac microenvironment for high-fidelity drug screening. Bioact Mater 2025; 45:551-566. [PMID: 39759533 PMCID: PMC11696762 DOI: 10.1016/j.bioactmat.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025] Open
Abstract
The preclinical evaluation of drug-induced cardiotoxicity is critical for developing novel drug, helping to avoid drug wastage and post-marketing withdrawal. Although human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and the engineered heart organoid have been used for drug screening and mimicking disease models, they are always limited by the immaturity and lack of functionality of the cardiomyocytes. In this study, we constructed a Cardiomyocytes-on-a-Chip (CoC) that combines micro-grooves (MGs) and circulating mechanical stimulation to recapitulate the well-organized structure and stable beating of myocardial tissue. The phenotypic changes and maturation of CMs cultured on the CoC have been verified and can be used for the evaluation of cardiotoxicity and cardioprotective drug responses. Taken together, these results highlight the ability of our myocardial microarray platform to accurately reflect clinical behaviour, underscoring its potential as a powerful pre-clinical tool for assessing drug response and toxicity.
Collapse
Affiliation(s)
- Yu-hong Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong, 510100, China
| | - Ting-ting Liu
- Department of Laboratory Diagnosis, The 971th Hospital, Qingdao, China
| | - Yan-ping Guo
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong, 510100, China
- School of Medicine, South China University of Technology, 510641, China
| | - Shuo-ji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong, 510100, China
- Department of Cardiac Surgery, The University of Tokyo Hospital, Tokyo, 113-8654, Japan
| | - Zi-ming Liao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China
| | - Jia-mei Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China
| | - Xi-ming Zhu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China
| | - Jia-liang Liang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong, 510100, China
| | - Moussa Ide Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong, 510100, China
| | - Nan-bo Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong, 510100, China
| | - De-hua Chang
- Department of Cell Therapy in Regenerative Medicine, University of Tokyo Hospital, Tokyo, 113-8654, Japan
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong, 510100, China
| | - Bin Yao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China
| |
Collapse
|
6
|
House A, Santillan A, Correa E, Youssef V, Guvendiren M. Cellular Alignment and Matrix Stiffening Induced Changes in Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. Adv Healthc Mater 2025; 14:e2402228. [PMID: 39468891 DOI: 10.1002/adhm.202402228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Biological processes are inherently dynamic, necessitating biomaterial platforms capable of spatiotemporal control over cellular organization and matrix stiffness for accurate study of tissue development, wound healing, and disease. However, most in vitro platforms remain static. In this study, a dynamic biomaterial platform comprising a stiffening hydrogel is introduced and achieved through a stepwise approach of addition followed by light-mediated crosslinking, integrated with an elastomeric substrate featuring strain-responsive lamellar surface patterns. Employing this platform, the response of human induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CMs) is investigated to dynamic stiffening from healthy to fibrotic tissue stiffness. The results demonstrate that culturing hIPSC-CMs on physiologically relevant healthy stiffness significantly enhances their function, as evidenced by increased sarcomere fraction, wider sarcomere width, significantly higher connexin-43 content, and elevated cell beating frequency compared to cells cultured on fibrotic matrix. Conversely, dynamic matrix stiffening negatively impacts hIPSC-CM function, with earlier stiffening events exerting a more pronounced hindering effect. These findings provide valuable insights into material-based approaches for addressing existing challenges in hIPSC-CM maturation and have broader implications across various tissue models, including muscle, tendon, nerve, and cornea, where both cellular alignment and matrix stiffening play pivotal roles in tissue development and regeneration.
Collapse
Affiliation(s)
- Andrew House
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Anjeli Santillan
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Evan Correa
- Federated Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Victoria Youssef
- Federated Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Murat Guvendiren
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| |
Collapse
|
7
|
Gionet-Gonzales M, Gathman G, Rosas J, Kunisaki KY, Inocencio DGP, Hakami N, Milburn GN, Pitenis AA, Campbell KS, Pruitt BL, Stowers RS. Stress relaxation rates of myocardium from failing and non-failing hearts. Biomech Model Mechanobiol 2025; 24:265-280. [PMID: 39741200 PMCID: PMC11846740 DOI: 10.1007/s10237-024-01909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/06/2024] [Indexed: 01/02/2025]
Abstract
The heart is a dynamic pump whose function is influenced by its mechanical properties. The viscoelastic properties of the heart, i.e., its ability to exhibit both elastic and viscous characteristics upon deformation, influence cardiac function. Viscoelastic properties change during heart failure (HF), but direct measurements of failing and non-failing myocardial tissue stress relaxation under constant displacement are lacking. Further, how consequences of tissue remodeling, such as fibrosis and fat accumulation, alter the stress relaxation remains unknown. To address this gap, we conducted stress relaxation tests on porcine myocardial tissue to establish baseline properties of cardiac tissue. We found porcine myocardial tissue to be fast relaxing, characterized by stress relaxation tests on both a rheometer and microindenter. We then measured human left ventricle (LV) epicardium and endocardium tissue from non-failing, ischemic HF and non-ischemic HF patients by microindentation. Analyzing by patient groups, we found that ischemic HF samples had slower stress relaxation than non-failing endocardium. Categorizing the data by stress relaxation times, we found that slower stress relaxing tissues were correlated with increased collagen deposition and increased α-smooth muscle actin (α-SMA) stress fibers, a marker of fibrosis and cardiac fibroblast activation, respectively. In the epicardium, analyzing by patient groups, we found that ischemic HF had faster stress relaxation than non-ischemic HF and non-failing. When categorizing by stress relaxation times, we found that faster stress relaxation correlated with Oil Red O staining, a marker for adipose tissue. These data show that changes in stress relaxation vary across the different layers of the heart during ischemic versus non-ischemic HF. These findings reveal how the viscoelasticity of the heart changes, which will lead to better modeling of cardiac mechanics for in vitro and in silico HF models.
Collapse
Affiliation(s)
- Marissa Gionet-Gonzales
- Bioengineering, University of California, Santa Barbara, Santa Barbara, United States
- Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, United States
| | - Gianna Gathman
- Bioengineering, University of California, Santa Barbara, Santa Barbara, United States
| | - Jonah Rosas
- Materials, University of California, Santa Barbara, Santa Barbara, United States
| | - Kyle Y Kunisaki
- Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, United States
| | | | - Niki Hakami
- Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, United States
| | | | - Angela A Pitenis
- Materials, University of California, Santa Barbara, Santa Barbara, United States
| | | | - Beth L Pruitt
- Bioengineering, University of California, Santa Barbara, Santa Barbara, United States.
- Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, United States.
| | - Ryan S Stowers
- Bioengineering, University of California, Santa Barbara, Santa Barbara, United States.
- Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, United States.
| |
Collapse
|
8
|
Wang X, Tian H, Pan W, Du B, Chen Z, Zhang R, Zhou P. Applications of carbon dot-mediated cardiomyocyte maturation in regenerative medicine: a review. Nanomedicine (Lond) 2025; 20:319-328. [PMID: 39719674 PMCID: PMC11792849 DOI: 10.1080/17435889.2024.2443378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
The maturation of cardiomyocytes (CMs) plays key roles in regenerative medicine and the treatment of cardiovascular diseases via stem cell-derived CMs. Carbon dots (CDs) have good biocompatibility, optical properties, and electrophysical properties and have been widely applied in bioimaging, biosensors, and biotherapy. In this review, we comprehensively summarize recent advances in promoting the maturation of CMs, mainly human pluripotent stem cell-derived CMs, and related regenerative medicine. Moreover, we explore the innovative application of CDs to enhance the maturation of these CMs. Finally, we look forward to the future design and application of CDs in the maturation of CMs in terms of cell therapies.
Collapse
Affiliation(s)
- Xinyuan Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Hao Tian
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Wen Pan
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Binhong Du
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Zhen Chen
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Rongzhi Zhang
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu ProvinceChina
| | - Ping Zhou
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
9
|
Maaref Y, Jannati S, Jayousi F, Lange P, Akbari M, Chiao M, Tibbits GF. Developing a soft micropatterned substrate to enhance maturation of human induced pluripotent stem cell-derived cardiomyocytes. Acta Biomater 2024:S1742-7061(24)00621-4. [PMID: 39490605 DOI: 10.1016/j.actbio.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSCCMs) offer numerous advantages as a biological model, yet their inherent immaturity compared to adult cardiomyocytes poses significant limitations. This study addresses hiPSCCM immaturity by introducing a physiologically relevant micropatterned substrate for long-term culture and maturation. An innovative microfabrication methodology combining laser etching and casting creates a micropatterned polydimethylsiloxane (PDMS) substrate with varying stiffness, from 2 to 50 kPa, mimicking healthy and fibrotic cardiac tissue. Platinum electrodes were integrated into the cell culture chamber enable pacing of cells at various frequencies. Subsequently, cells were transferred to the incubator for time-course analysis, ensuring contamination-free conditions. Cell contractility, cytosolic Ca2+ transient, sarcomere orientation, and nucleus aspect ratio were analyzed in a 2D hiPSCCM monolayer up to 90 days post-replating in relation to substrate micropattern dimensions. Culturing hiPSCCMs for three weeks on a micropatterned PDMS substrate (2.5-5 µm deep, 20 µm center-to-center spacing of grooves, 2-5 kPa stiffness) emerges as optimal for cardiomyocyte alignment, contractility, and cytosolic Ca2+ transient. The study provides insights into substrate stiffness effects on hiPSCCM contractility and Ca2+ transient at immature and mature states. Maximum contractility and fastest Ca2+transient kinetics occur in mature hiPSCCMs cultured for two to four weeks, with the optimum at three weeks, on a soft micropatterned PDMS substrate. MS proteomic analysis further revealed that hiPSCCMs cultured on soft micropatterned substrates exhibit advanced maturation, marked by significant upregulation of key structural, electrophysiological, and metabolic proteins. This new substrate offers a promising platform for disease modeling and therapeutic interventions. STATEMENT OF SIGNIFICANCE: Human induced pluripotent stem cell derived cardiomyocytes (hiPSCCMs) have been transformative to disease-in-a-dish modeling, drug discovery and testing, and autologous regeneration for human hearts and their role will continue to expand dramatically. However, one of the major limitations of hiPSCCMs is that without intervention, the cells are immature and represent those in the fetal heart. We developed protocols for the fabrication of the PDMS matrices that includes variations in its stiffness and micropatterning. Growing our hiPSCCMs on matrices of comparable stiffness to a healthy heart (5 kPa) and grooves of 20 μm, generate heart cells typical of the healthy adult human heart.
Collapse
Affiliation(s)
- Yasaman Maaref
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Shayan Jannati
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Farah Jayousi
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Philipp Lange
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Mohsen Akbari
- Mechanical Engineering, University of Victoria, Victoria, BC, Canada; Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Mu Chiao
- Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada; Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Glen F Tibbits
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Boschi A, Iachetta G, Buonocore S, Hubarevich A, Hurtaud J, Moreddu R, Marta d’Amora, Formoso MB, Tantussi F, Dipalo M, De Angelis F. Interferometric Biosensor for High Sensitive Label-Free Recording of HiPS Cardiomyocytes Contraction in Vitro. NANO LETTERS 2024; 24:6451-6458. [PMID: 38776267 PMCID: PMC11157657 DOI: 10.1021/acs.nanolett.3c04291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/24/2024]
Abstract
Heart disease remains a leading cause of global mortality, underscoring the need for advanced technologies to study cardiovascular diseases and develop effective treatments. We introduce an innovative interferometric biosensor for high-sensitivity and label-free recording of human induced pluripotent stem cell (hiPSC) cardiomyocyte contraction in vitro. Using an optical cavity, our device captures interference patterns caused by the contraction-induced displacement of a thin flexible membrane. First, we demonstrate the capability to quantify spontaneous contractions and discriminate between contraction and relaxation phases. We calculate a contraction-induced vertical membrane displacement close to 40 nm, which implies a traction stress of 34 ± 4 mN/mm2. Finally, we investigate the effects of a drug compound on contractility amplitude, revealing a significant reduction in contractile forces. The label-free and high-throughput nature of our biosensor may enhance drug screening processes and drug development for cardiac treatments. Our interferometric biosensor offers a novel approach for noninvasive and real-time assessment of cardiomyocyte contraction.
Collapse
Affiliation(s)
- Alessio Boschi
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department
of Bioengineering, University of Genoa, 16126 Genoa, Italy
| | - Giuseppina Iachetta
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Salvatore Buonocore
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | | | - Julien Hurtaud
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Rosalia Moreddu
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Marta d’Amora
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department
of Biology, University of Pisa, 56127 Pisa, Italy
| | - Maria Blanco Formoso
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Center
for Research in Nanomaterials and Biomedicine, University of Vigo, 36310 Vigo, Spain
| | - Francesco Tantussi
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Michele Dipalo
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Francesco De Angelis
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| |
Collapse
|
11
|
Sugiura T, Shahannaz DC, Ferrell BE. Current Status of Cardiac Regenerative Therapy Using Induced Pluripotent Stem Cells. Int J Mol Sci 2024; 25:5772. [PMID: 38891960 PMCID: PMC11171475 DOI: 10.3390/ijms25115772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Heart failure (HF) is a life-threatening disorder and is treated by drug therapies and surgical interventions such as heart transplantation and left ventricular assist device (LVAD). However, these treatments can lack effectiveness in the long term and are associated with issues such as donor shortage in heart transplantation, and infection, stroke, or gastrointestinal bleeding in LVADs. Therefore, alternative therapeutic strategies are still needed. In this respect, stem cell therapy has been introduced for the treatment of HF and numerous preclinical and clinical studies are employing a range of stem cell varieties. These stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have been shown to improve cardiac function and attenuate left ventricular remodeling. IPSCs, which have a capacity for unlimited proliferation and differentiation into cardiomyocytes, are a promising cell source for myocardial regeneration therapy. In this review, we discuss the following topics: (1) what are iPSCs; (2) the limitations and solutions for the translation of iPSC-CMs practically; and (3) the current therapeutic clinical trials.
Collapse
Affiliation(s)
- Tadahisa Sugiura
- Department of Cardiothoracic and Vascular Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, New York, NY 10467, USA; (D.C.S.); (B.E.F.)
| | | | | |
Collapse
|
12
|
Desa DE, Amitrano MJ, Murphy WL, Skala MC. Optical redox imaging to screen synthetic hydrogels for stem cell-derived cardiomyocyte differentiation and maturation. BIOPHOTONICS DISCOVERY 2024; 1:015002. [PMID: 39036366 PMCID: PMC11258857 DOI: 10.1117/1.bios.1.1.015002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Significance Heart disease is the leading cause of death in the United States, yet research is limited by the inability to culture primary cardiac cells. Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) are a promising solution for drug screening and disease modeling. Aim Induced pluripotent stem cell-derived CM (iPSC-CM) differentiation and maturation studies typically use heterogeneous substrates for growth and destructive verification methods. Reproducible, tunable substrates and touch-free monitoring are needed to identify ideal conditions to produce homogenous, functional CMs. Approach We generated synthetic polyethylene glycol-based hydrogels for iPSC-CM differentiation and maturation. Peptide concentrations, combinations, and gel stiffness were tuned independently. Label-free optical redox imaging (ORI) was performed on a widefield microscope in a 96-well screen of gel formulations. We performed live-cell imaging throughout differentiation and early to late maturation to identify key metabolic shifts. Results Label-free ORI confirmed the expected metabolic shifts toward oxidative phosphorylation throughout the differentiation and maturation processes of iPSC-CMs on synthetic hydrogels. Furthermore, ORI distinguished high and low differentiation efficiency cell batches in the cardiac progenitor stage. Conclusions We established a workflow for medium throughput screening of synthetic hydrogel conditions with the ability to perform repeated live-cell measurements and confirm expected metabolic shifts. These methods have implications for reproducible iPSC-CM generation in biomanufacturing.
Collapse
Affiliation(s)
- Danielle E. Desa
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Margot J. Amitrano
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - William L. Murphy
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
- University of Wisconsin-Madison, Department of Orthopedics and Rehabilitation, Madison, Wisconsin, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
13
|
Jilberto J, DePalma SJ, Lo J, Kobeissi H, Quach L, Lejeune E, Baker BM, Nordsletten D. A data-driven computational model for engineered cardiac microtissues. Acta Biomater 2023; 172:123-134. [PMID: 37879587 PMCID: PMC10938557 DOI: 10.1016/j.actbio.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Engineered heart tissues (EHTs) present a potential solution to some of the current challenges in the treatment of heart disease; however, the development of mature, adult-like cardiac tissues remains elusive. Mechanical stimuli have been observed to improve whole-tissue function and cardiomyocyte (CM) maturation, although our ability to fully utilize these mechanisms is hampered, in part, by our incomplete understanding of the mechanobiology of EHTs. In this work, we leverage experimental data, produced by a mechanically tunable experimental setup, to introduce a tissue-specific computational modeling pipeline of EHTs. Our new modeling pipeline generates simulated, image-based EHTs, capturing ECM and myofibrillar structure as well as functional parameters estimated directly from experimental data. This approach enables the unique estimation of EHT function by data-based estimation of CM active stresses. We use this experimental and modeling pipeline to study different mechanical environments, where we contrast the force output of the tissue with the computed active stress of CMs. We show that the significant differences in measured experimental forces can largely be explained by the levels of myofibril formation achieved by the CMs in the distinct mechanical environments, with active stress showing more muted variations across conditions. The presented model also enables us to dissect the relative contributions of myofibrils and extracellular matrix to tissue force output, a task difficult to address experimentally. These results highlight the importance of tissue-specific modeling to augment EHT experiments, providing deeper insights into the mechanobiology driving EHT function. STATEMENT OF SIGNIFICANCE: Engineered heart tissues (EHTs) have the potential to revolutionize the way heart disease is treated. However, developing mature cardiomyocytes (CM) in these tissues remains a challenge due, in part, to our incomplete understanding of the fundamental biomechanical mechanisms that drive EHT development. This work integrates the experimental data of an EHT platform developed to study the influence of mechanics in CM maturation with computational biomechanical models. This approach is used to augment conclusions obtained in-vitro - by measuring quantities such as cell stress and strain - and to dissect the relevance of each component in the whole tissue performance. Our results show how a combination of specialized in-silico and in-vitro approaches can help us better understand the mechanobiology of EHTs.
Collapse
Affiliation(s)
- Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan, MI, USA.
| | - Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - Jason Lo
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - Hiba Kobeissi
- Department of Mechanical Engineering, Boston University, MA, USA
| | - Lani Quach
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, MA, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan, MI, USA; Department of Cardiac Surgery, University of Michigan, MI, USA; Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
14
|
Yang H, Yang Y, Kiskin FN, Shen M, Zhang JZ. Recent advances in regulating the proliferation or maturation of human-induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2023; 14:228. [PMID: 37649113 PMCID: PMC10469435 DOI: 10.1186/s13287-023-03470-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
In the last decade, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM)-based cell therapy has drawn broad attention as a potential therapy for treating injured hearts. However, mass production of hiPSC-CMs remains challenging, limiting their translational potential in regenerative medicine. Therefore, multiple strategies including cell cycle regulators, small molecules, co-culture systems, and epigenetic modifiers have been used to improve the proliferation of hiPSC-CMs. On the other hand, the immaturity of these proliferative hiPSC-CMs could lead to lethal arrhythmias due to their limited ability to functionally couple with resident cardiomyocytes. To achieve functional maturity, numerous methods such as prolonged culture, biochemical or biophysical stimulation, in vivo transplantation, and 3D culture approaches have been employed. In this review, we summarize recent approaches used to promote hiPSC-CM proliferation, and thoroughly review recent advances in promoting hiPSC-CM maturation, which will serve as the foundation for large-scale production of mature hiPSC-CMs for future clinical applications.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Fedir N Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
15
|
Tani H, Kobayashi E, Yagi S, Tanaka K, Kameda-Haga K, Shibata S, Moritoki N, Takatsuna K, Moriwaki T, Sekine O, Umei TC, Morita Y, Soma Y, Kishino Y, Kanazawa H, Fujita J, Hattori S, Fukuda K, Tohyama S. Heart-derived collagen promotes maturation of engineered heart tissue. Biomaterials 2023; 299:122174. [PMID: 37285642 DOI: 10.1016/j.biomaterials.2023.122174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Although the extracellular matrix (ECM) plays essential roles in heart tissue engineering, the optimal ECM components for heart tissue organization have not previously been elucidated. Here, we focused on the main ECM component, fibrillar collagen, and analyzed the effects of collagens on heart tissue engineering, by comparing the use of porcine heart-derived collagen and other organ-derived collagens in generating engineered heart tissue (EHT). We demonstrate that heart-derived collagen induces better contraction and relaxation of human induced pluripotent stem cell-derived EHT (hiPSC-EHT) and that hiPSC-EHT with heart-derived collagen exhibit more mature profiles than those with collagens from other organs. Further, we found that collagen fibril formation and gel stiffness influence the contraction, relaxation, and maturation of hiPSC-EHT, suggesting the importance of collagen types III and type V, which are relatively abundant in the heart. Thus, we demonstrate the effectiveness of organ-specific collagens in tissue engineering and drug discovery.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Cardiology, Japan; Joint Research Laboratory for Medical Innovation in Heart Disease, Japan
| | - Eiji Kobayashi
- Department of Organ Fabrication, Japan; Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Shinomi Yagi
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Keisuke Tanaka
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | | | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku, Tokyo, Japan; Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Nobuko Moritoki
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | | | | | | | | | - Yuika Morita
- Department of Cardiology, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kawasaki, Kanagawa, Japan
| | | | | | | | - Jun Fujita
- Department of Cardiology, Japan; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Shunji Hattori
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
16
|
Vuorenpää H, Björninen M, Välimäki H, Ahola A, Kroon M, Honkamäki L, Koivumäki JT, Pekkanen-Mattila M. Building blocks of microphysiological system to model physiology and pathophysiology of human heart. Front Physiol 2023; 14:1213959. [PMID: 37485060 PMCID: PMC10358860 DOI: 10.3389/fphys.2023.1213959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Microphysiological systems (MPS) are drawing increasing interest from academia and from biomedical industry due to their improved capability to capture human physiology. MPS offer an advanced in vitro platform that can be used to study human organ and tissue level functions in health and in diseased states more accurately than traditional single cell cultures or even animal models. Key features in MPS include microenvironmental control and monitoring as well as high biological complexity of the target tissue. To reach these qualities, cross-disciplinary collaboration from multiple fields of science is required to build MPS. Here, we review different areas of expertise and describe essential building blocks of heart MPS including relevant cardiac cell types, supporting matrix, mechanical stimulation, functional measurements, and computational modelling. The review presents current methods in cardiac MPS and provides insights for future MPS development with improved recapitulation of human physiology.
Collapse
Affiliation(s)
- Hanna Vuorenpää
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Miina Björninen
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Hannu Välimäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Ahola
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mart Kroon
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Honkamäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi T. Koivumäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mari Pekkanen-Mattila
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
17
|
Patel L, Worch JC, Dove AP, Gehmlich K. The Utilisation of Hydrogels for iPSC-Cardiomyocyte Research. Int J Mol Sci 2023; 24:9995. [PMID: 37373141 PMCID: PMC10298477 DOI: 10.3390/ijms24129995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiac fibroblasts' (FBs) and cardiomyocytes' (CMs) behaviour and morphology are influenced by their environment such as remodelling of the myocardium, thus highlighting the importance of biomaterial substrates in cell culture. Biomaterials have emerged as important tools for the development of physiological models, due to the range of adaptable properties of these materials, such as degradability and biocompatibility. Biomaterial hydrogels can act as alternative substrates for cellular studies, which have been particularly key to the progression of the cardiovascular field. This review will focus on the role of hydrogels in cardiac research, specifically the use of natural and synthetic biomaterials such as hyaluronic acid, polydimethylsiloxane and polyethylene glycol for culturing induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The ability to fine-tune mechanical properties such as stiffness and the versatility of biomaterials is assessed, alongside applications of hydrogels with iPSC-CMs. Natural hydrogels often display higher biocompatibility with iPSC-CMs but often degrade quicker, whereas synthetic hydrogels can be modified to facilitate cell attachment and decrease degradation rates. iPSC-CM structure and electrophysiology can be assessed on natural and synthetic hydrogels, often resolving issues such as immaturity of iPSC-CMs. Biomaterial hydrogels can thus provide a more physiological model of the cardiac extracellular matrix compared to traditional 2D models, with the cardiac field expansively utilising hydrogels to recapitulate disease conditions such as stiffness, encourage alignment of iPSC-CMs and facilitate further model development such as engineered heart tissues (EHTs).
Collapse
Affiliation(s)
- Leena Patel
- Institute of Cardiovascular Science, University of Birmingham, Birmingham B15 2TT, UK;
| | - Joshua C. Worch
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK; (J.C.W.); (A.P.D.)
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK; (J.C.W.); (A.P.D.)
| | - Katja Gehmlich
- Institute of Cardiovascular Science, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
18
|
Ketabat F, Maris T, Duan X, Yazdanpanah Z, Kelly ME, Badea I, Chen X. Optimization of 3D printing and in vitro characterization of alginate/gelatin lattice and angular scaffolds for potential cardiac tissue engineering. Front Bioeng Biotechnol 2023; 11:1161804. [PMID: 37304145 PMCID: PMC10248470 DOI: 10.3389/fbioe.2023.1161804] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background: Engineering cardiac tissue that mimics the hierarchical structure of cardiac tissue remains challenging, raising the need for developing novel methods capable of creating structures with high complexity. Three-dimensional (3D)-printing techniques are among promising methods for engineering complex tissue constructs with high precision. By means of 3D printing, this study aims to develop cardiac constructs with a novel angular structure mimicking cardiac architecture from alginate (Alg) and gelatin (Gel) composite. The 3D-printing conditions were optimized and the structures were characterized in vitro, with human umbilical vein endothelial cells (HUVECs) and cardiomyocytes (H9c2 cells), for potential cardiac tissue engineering. Methods: We synthesized the composites of Alg and Gel with varying concentrations and examined their cytotoxicity with both H9c2 cells and HUVECs, as well as their printability for creating 3D structures of varying fibre orientations (angular design). The 3D-printed structures were characterized in terms of morphology by both scanning electron microscopy (SEM) and synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT), and elastic modulus, swelling percentage, and mass loss percentage as well. The cell viability studies were conducted via measuring the metabolic activity of the live cells with MTT assay and visualizing the cells with live/dead assay kit. Results: Among the examined composite groups of Alg and Gel, two combinations with ratios of 2 to 1 and 3 to 1 (termed as Alg2Gel1 and Alg3Gel1) showed the highest cell survival; they accordingly were used to fabricate two different structures: a novel angular and a conventional lattice structure. Scaffolds made of Alg3Gel1 showed higher elastic modulus, lower swelling percentage, less mass loss, and higher cell survival compared to that of Alg2Gel1. Although the viability of H9c2 cells and HUVECs on all scaffolds composed of Alg3Gel1 was above 99%, the group of the constructs with the angular design maintained significantly more viable cells compared to other investigated groups. Conclusion: The group of angular 3D-ptinted constructs has illustrated promising properties for cardiac tissue engineering by providing high cell viability for both endothelial and cardiac cells, high mechanical strength as well as appropriate swelling, and degradation properties during 21 days of incubation. Statement of Significance: 3D-printing is an emerging method to create complex constructs with high precision in a large scale. In this study, we have demonstrated that 3D-printing can be used to create compatible constructs from the composite of Alg and Gel with endothelial cells and cardiac cells. Also, we have demonstrated that these constructs are able to enhance the viability of cardiac and endothelial cells via creating a 3D structure mimicking the alignment and orientation of the fibers in the native heart.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Titouan Maris
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Institut Catholique des arts et métiers (ICAM)- Site de Toulouse, Toulouse, France
| | - Xiaoman Duan
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zahra Yazdanpanah
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael E. Kelly
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
19
|
Van de Sande D, Ghasemi M, Watters T, Burton F, Pham L, Altrocchi C, Gallacher DJ, Lu H, Smith G. Does Enhanced Structural Maturity of hiPSC-Cardiomyocytes Better for the Detection of Drug-Induced Cardiotoxicity? Biomolecules 2023; 13:676. [PMID: 37189424 PMCID: PMC10135569 DOI: 10.3390/biom13040676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are currently used following the Comprehensive in vitro Proarrhythmic Assay (CiPA) initiative and subsequent recommendations in the International Council for Harmonization (ICH) guidelines S7B and E14 Q&A, to detect drug-induced cardiotoxicity. Monocultures of hiPSC-CMs are immature compared to adult ventricular cardiomyocytes and might lack the native heterogeneous nature. We investigated whether hiPSC-CMs, treated to enhance structural maturity, are superior in detecting drug-induced changes in electrophysiology and contraction. This was achieved by comparing hiPSC-CMs cultured in 2D monolayers on the current standard (fibronectin matrix, FM), to monolayers on a coating known to promote structural maturity (CELLvo™ Matrix Plus, MM). Functional assessment of electrophysiology and contractility was made using a high-throughput screening approach involving the use of both voltage-sensitive fluorescent dyes for electrophysiology and video technology for contractility. Using 11 reference drugs, the response of the monolayer of hiPSC-CMs was comparable in the two experimental settings (FM and MM). The data showed no functionally relevant differences in electrophysiology between hiPSC-CMs in standard FM and MM, while contractility read-outs indicated an altered amplitude of contraction but not changes in time course. RNA profiling for cardiac proteins shows similarity of the RNA expression across the two forms of 2D culture, suggesting that cell-to-matrix adhesion differences may explain account for differences in contraction amplitude. The results support the view that hiPSC-CMs in both 2D monolayer FM and MM that promote structural maturity are equally effective in detecting drug-induced electrophysiological effects in functional safety studies.
Collapse
Affiliation(s)
- Dieter Van de Sande
- Global Safety Pharmacology, Nonclinical Safety, Janssen Pharmaceutical NV, B-2340 Beerse, Belgium
| | - Mohammadreza Ghasemi
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
- Clyde Biosciences Limited, BioCity Scotland, Lanarkshire ML1 5UH, Scotland, UK
| | - Taylor Watters
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
- Clyde Biosciences Limited, BioCity Scotland, Lanarkshire ML1 5UH, Scotland, UK
| | - Francis Burton
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
- Clyde Biosciences Limited, BioCity Scotland, Lanarkshire ML1 5UH, Scotland, UK
| | - Ly Pham
- Global Safety Pharmacology, Nonclinical Safety, Janssen Pharmaceutical NV, B-2340 Beerse, Belgium
| | - Cristina Altrocchi
- Global Safety Pharmacology, Nonclinical Safety, Janssen Pharmaceutical NV, B-2340 Beerse, Belgium
| | - David J. Gallacher
- Global Safety Pharmacology, Nonclinical Safety, Janssen Pharmaceutical NV, B-2340 Beerse, Belgium
| | - Huarong Lu
- Global Safety Pharmacology, Nonclinical Safety, Janssen Pharmaceutical NV, B-2340 Beerse, Belgium
| | - Godfrey Smith
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
- Clyde Biosciences Limited, BioCity Scotland, Lanarkshire ML1 5UH, Scotland, UK
| |
Collapse
|
20
|
Kermani F, Mosqueira M, Peters K, Lemma ED, Rapti K, Grimm D, Bastmeyer M, Laugsch M, Hecker M, Ullrich ND. Membrane remodelling triggers maturation of excitation-contraction coupling in 3D-shaped human-induced pluripotent stem cell-derived cardiomyocytes. Basic Res Cardiol 2023; 118:13. [PMID: 36988697 PMCID: PMC10060306 DOI: 10.1007/s00395-023-00984-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the Ca2+-dependent excitation-contraction (EC) coupling mechanism. Currently, the immature structural and functional features of hiPSC-CM limit the progression towards clinical applications. Here, we show that a specific microarchitecture is essential for functional maturation of hiPSC-CM. Structural remodelling towards a cuboid cell shape and induction of BIN1, a facilitator of membrane invaginations, lead to transverse (t)-tubule-like structures. This transformation brings two Ca2+ channels critical for EC coupling in close proximity, the L-type Ca2+ channel at the sarcolemma and the ryanodine receptor at the sarcoplasmic reticulum. Consequently, the Ca2+-dependent functional interaction of these channels becomes more efficient, leading to improved spatio-temporal synchronisation of Ca2+ transients and higher EC coupling gain. Thus, functional maturation of hiPSC-cardiomyocytes by optimised cell microarchitecture needs to be considered for future cardiac regenerative approaches.
Collapse
Affiliation(s)
- Fatemeh Kermani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Matias Mosqueira
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Kyra Peters
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Enrico D Lemma
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kleopatra Rapti
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Biological information processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Research Bridge (Synthetic Biology), Heidelberg-Karlsruhe Research Partnership (HEiKA), Heidelberg University and Karlsruhe Institute of Technology, Heidelberg, Germany
| | - Magdalena Laugsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Nina D Ullrich
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
- Research Bridge (Synthetic Biology), Heidelberg-Karlsruhe Research Partnership (HEiKA), Heidelberg University and Karlsruhe Institute of Technology, Heidelberg, Germany.
| |
Collapse
|
21
|
Feaster TK, Feric N, Pallotta I, Narkar A, Casciola M, Graziano MP, Aschar-Sobbi R, Blinova K. Acute effects of cardiac contractility modulation stimulation in conventional 2D and 3D human induced pluripotent stem cell-derived cardiomyocyte models. Front Physiol 2022; 13:1023563. [PMID: 36439258 PMCID: PMC9686332 DOI: 10.3389/fphys.2022.1023563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Cardiac contractility modulation (CCM) is a medical device therapy whereby non-excitatory electrical stimulations are delivered to the myocardium during the absolute refractory period to enhance cardiac function. We previously evaluated the effects of the standard CCM pulse parameters in isolated rabbit ventricular cardiomyocytes and 2D human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) monolayers, on flexible substrate. In the present study, we sought to extend these results to human 3D microphysiological systems to develop a robust model to evaluate various clinical CCM pulse parameters in vitro. HiPSC-CMs were studied in conventional 2D monolayer format, on stiff substrate (i.e., glass), and as 3D human engineered cardiac tissues (ECTs). Cardiac contractile properties were evaluated by video (i.e., pixel) and force-based analysis. CCM pulses were assessed at varying electrical ‘doses’ using a commercial pulse generator. A robust CCM contractile response was observed for 3D ECTs. Under comparable conditions, conventional 2D monolayer hiPSC-CMs, on stiff substrate, displayed no contractile response. 3D ECTs displayed enhanced contractile properties including increased contraction amplitude (i.e., force), and accelerated contraction and relaxation slopes under standard acute CCM stimulation. Moreover, 3D ECTs displayed enhanced contractility in a CCM pulse parameter-dependent manner by adjustment of CCM pulse delay, duration, amplitude, and number relative to baseline. The observed acute effects subsided when the CCM stimulation was stopped and gradually returned to baseline. These data represent the first study of CCM in 3D hiPSC-CM models and provide a nonclinical tool to assess various CCM device signals in 3D human cardiac tissues prior to in vivo animal studies. Moreover, this work provides a foundation to evaluate the effects of additional cardiac medical devices in 3D ECTs.
Collapse
Affiliation(s)
- Tromondae K. Feaster
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Nicole Feric
- Valo Health Inc, Alexandria Center for Life Sciences, New York, NY, United States
| | - Isabella Pallotta
- Valo Health Inc, Alexandria Center for Life Sciences, New York, NY, United States
| | - Akshay Narkar
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Maura Casciola
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Michael P. Graziano
- Valo Health Inc, Alexandria Center for Life Sciences, New York, NY, United States
| | - Roozbeh Aschar-Sobbi
- Valo Health Inc, Alexandria Center for Life Sciences, New York, NY, United States
| | - Ksenia Blinova
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
- *Correspondence: Ksenia Blinova,
| |
Collapse
|
22
|
Distress-Mediated Remodeling of Cardiac Connexin-43 in a Novel Cell Model for Arrhythmogenic Heart Diseases. Int J Mol Sci 2022; 23:ijms231710174. [PMID: 36077591 PMCID: PMC9456330 DOI: 10.3390/ijms231710174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gap junctions and their expression pattern are essential to robust function of intercellular communication and electrical propagation in cardiomyocytes. In healthy myocytes, the main cardiac gap junction protein connexin-43 (Cx43) is located at the intercalated disc providing a clear direction of signal spreading across the cardiac tissue. Dislocation of Cx43 to lateral membranes has been detected in numerous cardiac diseases leading to slowed conduction and high propensity for the development of arrhythmias. At the cellular level, arrhythmogenic diseases are associated with elevated levels of oxidative distress and gap junction remodeling affecting especially the amount and sarcolemmal distribution of Cx43 expression. So far, a mechanistic link between sustained oxidative distress and altered Cx43 expression has not yet been identified. Here, we propose a novel cell model based on murine induced-pluripotent stem cell-derived cardiomyocytes to investigate subcellular signaling pathways linking cardiomyocyte distress with gap junction remodeling. We tested the new hypothesis that chronic distress, induced by rapid pacing, leads to increased reactive oxygen species, which promotes expression of a micro-RNA, miR-1, specific for the control of Cx43. Our data demonstrate that Cx43 expression is highly sensitive to oxidative distress, leading to reduced expression. This effect can be efficiently prevented by the glutathione peroxidase mimetic ebselen. Moreover, Cx43 expression is tightly regulated by miR-1, which is activated by tachypacing-induced oxidative distress. In light of the high arrhythmogenic potential of altered Cx43 expression, we propose miR-1 as a novel target for pharmacological interventions to prevent the maladaptive remodeling processes during chronic distress in the heart.
Collapse
|