1
|
Pan R, Koo C, Su W, You Q, Guo H, Liu B. Circular RNAs modulate cell death in cardiovascular diseases. Cell Death Discov 2025; 11:214. [PMID: 40316538 PMCID: PMC12048724 DOI: 10.1038/s41420-025-02504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/04/2025] Open
Abstract
Cardiovascular diseases (CVDs) remain a global health challenge, with programmed cell death (PCD) mechanisms like apoptosis and necroptosis playing key roles in the progression. Circular RNAs (circRNAs) have recently been recognized as crucial regulators of gene expression, especially in modulating PCD. In current researches, circRNA regulation of apoptosis is the most studied area, followed by autophagy and ferroptosis. Notably, the regulatory role of circRNAs in pyroptosis and necroptosis has also begun to attract attention. From a mechanistic perspective, circRNAs influence cellular processes through several modes of action, including miRNA sponging, protein interactions, and polypeptide translation. Manipulating circRNAs and their downstream targets through inhibition or overexpression offers versatile therapeutic options for CVD treatment. Continued investigation into circRNA-mediated mechanisms may enhance our understanding of CVD pathophysiology and underscore their potential as novel and promising therapeutic targets.
Collapse
Affiliation(s)
- Runfang Pan
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chinying Koo
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenyuan Su
- Sport Medicine & Rehabilitation Center, Shanghai University of Sport, Shanghai, 200438, China
| | - Qianhui You
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Baonian Liu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Ye D, Zhu J, Su S, Yu Y, Zhang J, Yin Y, Lin C, Xie X, Xiang Q, Yu R. Natural small molecules regulating the mitophagy pathway counteract the pathogenesis of diabetes and chronic complications. Front Pharmacol 2025; 16:1571767. [PMID: 40308774 PMCID: PMC12040946 DOI: 10.3389/fphar.2025.1571767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 05/02/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder marked by sustained hyperglycemia. These disturbances contribute to extensive damage across various tissues and organs, giving rise to severe complications such as vision loss, kidney failure, amputations, and higher morbidity and mortality rates. Furthermore, DM imposes a substantial economic and emotional burden on patients, families, and healthcare systems. Mitophagy, a selective process that targets the clearance of damaged or dysfunctional mitochondria, is pivotal for sustaining cellular homeostasis through mitochondrial turnover and recycling. Emerging evidence indicates that dysfunctional mitophagy acts as a key pathogenic driver in the pathogenesis of DM and its associated complications. Natural small molecules are particularly attractive in this regard, offering advantages such as low toxicity, favorable pharmacokinetic profiles, excellent biocompatibility, and a broad range of biochemical activities. This review systematically evaluates the mechanistic roles of natural small molecules-including ginsenosides, resveratrol, and berberine-in enhancing mitophagy and restoring mitochondrial homeostasis via activation of core signaling pathways (e.g., PINK1/Parkin, BNIP3/NIX, and FUNDC1). These pathways collectively ameliorate pathological hallmarks of DM, such as oxidative stress, chronic inflammation, and insulin resistance. Furthermore, the integration of nanotechnology with these compounds optimizes their bioavailability and tissue-specific targeting, thereby establishing a transformative therapeutic platform for DM management. Current evidence demonstrates that mitophagy modulation by natural small molecules not only offers novel therapeutic strategies for DM and its chronic complications but also advances the mechanistic foundation for future drug development targeting metabolic disorders.
Collapse
Affiliation(s)
- Du Ye
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junping Zhu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siya Su
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yunfeng Yu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jun Zhang
- School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuman Yin
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chuanquan Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuejiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qin Xiang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rong Yu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
Han G, Hu K, Luo T, Wang W, Zhang D, Ouyang L, Liu X, Liu J, Wu Y, Liang J, Ling J, Chen Y, Xuan R, Zhang J, Yu P. Research progress of non-coding RNA regulating the role of PANoptosis in diabetes mellitus and its complications. Apoptosis 2025; 30:516-536. [PMID: 39755822 DOI: 10.1007/s10495-024-02066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
Diabetes is a chronic metabolic disease that is endemic worldwide and is characterized by persistent hyperglycemia accompanied by multiple severe complications, including cardiovascular disease, kidney dysfunction, neuropathy, and retinopathy. The pathogenesis of diabetes mellitus and its complications is multifactorial, involving various molecular and cellular pathways. In recent years, research has indicated that mechanisms of cell death play a significant role in the advancement of diabetes and its complications. PANoptosis is a complex phenomenon caused by three cell death pathways: programmed apoptosis, necroptosis and pyroptosis. The contribution of PANoptosis to diabetes and its complications remains incompletely understood. Non-coding RNA, an important molecule in gene expression regulation, has shown significant regulatory functions in a variety of diseases. This paper reviews the underlying mechanisms of diverse types of non-coding RNAs (including lncRNA, miRNA and circRNA) in regulating PANoptosis and their specific contributions in diabetes, aiming to explore how non-coding RNAs influence PANoptosis and their effects in diabetes.
Collapse
Affiliation(s)
- Guangyu Han
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Kaibo Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Tianfeng Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Wenting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 571199, China
| | - Deju Zhang
- Ood and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liu Ouyang
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA, 30303, USA
| | - Xiao Liu
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jianqi Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Rui Xuan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
4
|
Wang F, Liu L, Wang J, Zhou Y, Feng X, Liu K. Therapeutic Potential of Curcumin in Diabetic Cardiomyopathy: Modulation of Pyroptosis Pathways. Cardiovasc Drugs Ther 2025:10.1007/s10557-024-07644-3. [PMID: 39786506 DOI: 10.1007/s10557-024-07644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE Cardiac inflammation is a basic pathological process of diabetic cardiomyopathy (DCM). Inflammatory response is closely related to pyroptosis, which is a recently identified programmed cell death type. Curcumin (CUR) is a polyphenol extracted from turmeric and has been reported to be crucial in alleviating pyroptosis in DCM. However, the exact mechanism by which CUR improves pyroptosis remains unclear. Therefore, we aimed to investigate the effect of CUR on pyroptosis in DCM and explore the potential mechanisms. METHODS The molecular docking (MOD) analysis was performed using AutoDock Tools to evaluate the binding patterns and affinities between CUR and tripartite motif containing 21 (TRIM21), as well as between TRIM21 and gasdermin D (GSDMD). Subsequently, DCM models were established in Sprague-Dawley (SD) rats (in vivo) by administering streptozotocin (STZ) and feeding them a high-fat diet. In addition, H9C2 cells were cultured in a high glucose and palmitate environment to construct in vitro models of DCM. Rats or cells were treated by CUR directly. Subsequently, body weight (BW), heart weight (HW)/BW ratio, fasting blood glucose level, and lipid metabolism were measured. Pathological changes were analyzed using hematoxylin and eosin (H&E) and Masson staining. Small interfering RNA (si-RNA) was used to knockdown TRIM21 expression, and the pyroptosis protein expression and cellular activity were evaluated in different groups. RESULTS MOD analysis revealed that CUR had a strong binding affinity with TRIM21, and TRIM21 showed a robust interaction with GSDMD. STZ-induced diabetic SD rats showed metabolic abnormalities, structural changes in the ventricle, and the expression of TRIM21 and pyroptosis markers, including nod-like receptor protein-3 (NLRP3), Caspase-1, and GSDMD, were upregulated. CUR reduced cardiac remodeling and improved cardiac function in vivo. CUR inhibited pyroptosis by regulating TRIM21 through in vivo and in vitro studies. CONCLUSION CUR improves DCM by regulating TRIM21 expression to inhibit pyroptosis. Furthermore, this study provides novel approaches and experimental evidence for the research and treatment of DCM and presents new insights into its potential mechanisms.
Collapse
Affiliation(s)
- Fei Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China
| | - Lehan Liu
- Medical School of Nantong University, Nantong, 226000, Jiangsu, China
| | - Jiaxin Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China
| | - Yizhu Zhou
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China
| | - Xiaochun Feng
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China.
| | - Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China.
| |
Collapse
|
5
|
Jiao A, Liu H, Wang H, Yu J, Gong L, Zhang H, Fu L. piR112710 attenuates diabetic cardiomyopathy through inhibiting Txnip/NLRP3-mediated pyroptosis in db/db mice. Cell Signal 2024; 122:111333. [PMID: 39102928 DOI: 10.1016/j.cellsig.2024.111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
PIWI-interacting RNAs (piRNAs) are involved in the regulation of hypertrophic cardiomyopathy, heart failure and myocardial methylation. However, their functions and the underlying molecular mechanisms in diabetic cardiomyopathy (DCM) have yet to be fully elucidated. In the present study, a pyroptosis-associated piRNA (piR112710) was identified that ameliorates cardiac remodeling through targeting the activation of inflammasomes and mitochondrial dysfunction that are mediated via the thioredoxin-interacting protein (Txnip)/NLRP3 signaling axis. Subsequently, the cardioprotective effects of piR112710 on both the myocardium from db/db mice and cardiomyocytes from neonatal mice that were incubated with a high concentration of glucose combined with palmitate were examined. piR112710 was found to significantly improve cardiac dysfunction in db/db mice, characterized by improved echocardiography, lower levels of fibrosis, attenuated expression levels of inflammatory factors and pyroptosis-associated proteins (namely, Txnip, ASC, NLRP3, caspase-1 and GSDMD-N), and enhanced myocardial mitochondrial respiratory functions. In cultured neonatal mice cardiomyocytes, piR112710 deficiency and high glucose along with palmitate treatment led to significantly upregulated expression levels of pyroptosis associated proteins and collagens, oxidative stress, mitochondrial dysfunction and increased levels of inflammatory factors. Supplementation with piR112710, however, led to a reversal of the aforementioned changes induced by high glucose and palmitate. Mechanistically, the cardioprotective effect of piR112710 appears to be dependent upon effective elimination of reactive oxygen species and inactivation of the Txnip/NLRP3 signaling axis. Taken together, the findings of the present study have revealed that the piRNA-mediated inhibitory mechanism involving the Txnip/NLRP3 axis may participate in the regulation of pyroptosis, which protects against DCM both in vivo and in vitro. piR112710 may therefore be a potential therapeutic target for the reduction of myocardial injury caused by cardiomyocyte pyroptosis in DCM.
Collapse
Affiliation(s)
- Ande Jiao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Huaxing Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Huihui Wang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar, Heilongjiang 161041, China
| | - Jiaqi Yu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, China
| | - Lu Gong
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, China
| | - Honglian Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161003, China
| | - Lu Fu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
6
|
Wang J, Xue H, He J, Deng L, Tian J, Jiang Y, Feng J. Therapeutic potential of finerenone for diabetic cardiomyopathy: focus on the mechanisms. Diabetol Metab Syndr 2024; 16:232. [PMID: 39289758 PMCID: PMC11409712 DOI: 10.1186/s13098-024-01466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a kind of myocardial disease that occurs in diabetes patients and cannot be explained by hypertensive heart disease, coronary atherosclerotic heart disease and other heart diseases. Its pathogenesis may be closely related to programmed cell death, oxidative stress, intestinal microbes and micro-RNAs. The excessive activation of mineralocorticoid receptors (MR) in DCM can cause damage to the heart and kidneys. The third-generation non-steroidal mineralocorticoid receptor antagonist (MRA), finerenone, can effectively block MR, thus playing a role in protecting the heart and kidneys. This review mainly introduces the classification of MRA, and the mechanism of action, applications and limitations of finerenone in DCM, in order to provide reference for the study of treatment plans for DCM patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China
| | - Haojie Xue
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China
| | - Jinyu He
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Julong Tian
- Department of Cardiology, The Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Yang Jiang
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China.
| | - Jian Feng
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China.
| |
Collapse
|
7
|
Zhao X, Zhang J, Xu F, Shang L, Liu Q, Shen C. TAK-242 alleviates diabetic cardiomyopathy via inhibiting pyroptosis and TLR4/CaMKII/NLRP3 pathway. Open Life Sci 2024; 19:20220957. [PMID: 39290498 PMCID: PMC11406225 DOI: 10.1515/biol-2022-0957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is identified as a progressive disease that may lead to irreparable heart failure. Toll-like receptor (TLR) signaling is believed to be implicated in the pathogenesis of DCM. This study intended to explore the potential impact of Toll-like receptor 4 (TLR4) on DCM in vitro and in vivo. Streptozotocin and HG medium were utilized to induce diabetes in animal and cell models, respectively. Selective TLR4 inhibitor TAK-242 and calcium/calmodulin-dependent protein kinase-II (CaMKII) inhibitor KN-93 were employed to explore the involvement of TLR4/CaMKII in DCM. TLR4 expression was increased in DCM hearts, while inhibition of TLR4 activation by TAK-242 improved cardiac function, attenuated heart hypertrophy, and fibrosis, as well as reduced oxidative stress and proinflammatory cytokine levels in rats, which were confirmed by Doppler echocardiography, hematoxylin and eosin staining, and Masson Trichome staining and specific enzyme-linked immunosorbent assay kits. Besides, the expression of hypertrophy-related molecules and oxidative stress damage were also inhibited by TAK-242. Furthermore, TAK-242 treatment reduced CaMKII phosphorylation accompanied by decreased expression of NOD-like pyrin domain-containing protein 3, gasdermin D (GSDMD), The N-terminal domain of Gasdermin D (GSDMD-N), apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and Caspase-1 both in vivo and in vitro. Similar positive impacts on HG-induced pyroptosis were also observed with KN-93 treatment, and this was achieved without affecting TLR4 expression. Collectively, our work suggested that TAK-242 demonstrated substantial benefits against DCM both in vivo and in vitro, potentially attributed to the suppression of the TLR4-mediated CaMKII/NLRP3 pathway activity.
Collapse
Affiliation(s)
- Xiaolong Zhao
- School of Graduates, Dalian Medical University, Dalian, China
| | - Jing Zhang
- Medical Department, The Second Hospital of Dalian Medical University, Dalian City, China
| | - Feng Xu
- School of Graduates, Dalian Medical University, Dalian, China
| | - Longqi Shang
- Department of Nursing, The Second Affiliated Hospital of Shenyang Medical College, Shenyang City, China
| | - Qingquan Liu
- Department of Cardiothoracic Surgery, The Fourth People's Hospital of Shenyang, No. 20 Huanghe South Street, Shenyang, 110000, Liaoning, China
| | - Chunjian Shen
- Department of Cardiothoracic Surgery, The Fourth People's Hospital of Shenyang, No. 20 Huanghe South Street, Shenyang, 110000, Liaoning, China
| |
Collapse
|
8
|
Luo Y, Zhu J, Hu Z, Luo W, Du X, Hu H, Peng S. Progress in the Pathogenesis of Diabetic Encephalopathy: The Key Role of Neuroinflammation. Diabetes Metab Res Rev 2024; 40:e3841. [PMID: 39295168 DOI: 10.1002/dmrr.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a severe complication that occurs in the central nervous system (CNS) and leads to cognitive impairment. DE involves various pathophysiological processes, and its pathogenesis is still unclear. This review summarised current research on the pathogenesis of diabetic encephalopathy, which involves neuroinflammation, oxidative stress, iron homoeostasis, blood-brain barrier disruption, altered gut microbiota, insulin resistance, etc. Among these pathological mechanisms, neuroinflammation has been focused on. This paper summarises some of the molecular mechanisms involved in neuroinflammation, including the Mammalian Target of Rapamycin (mTOR), Lipocalin-2 (LCN-2), Pyroptosis, Advanced Glycosylation End Products (AGEs), and some common pro-inflammatory factors. In addition, we discuss recent advances in the study of potential therapeutic targets for the treatment of DE against neuroinflammation. The current research on the pathogenesis of DE is progressing slowly, and more research is needed in the future. Further study of neuroinflammation as a mechanism is conducive to the discovery of more effective treatments for DE in the future.
Collapse
Affiliation(s)
- Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Galis P, Bartosova L, Farkasova V, Bartekova M, Ferenczyova K, Rajtik T. Update on clinical and experimental management of diabetic cardiomyopathy: addressing current and future therapy. Front Endocrinol (Lausanne) 2024; 15:1451100. [PMID: 39140033 PMCID: PMC11319149 DOI: 10.3389/fendo.2024.1451100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a severe secondary complication of type 2 diabetes mellitus (T2DM) that is diagnosed as a heart disease occurring in the absence of any previous cardiovascular pathology in diabetic patients. Although it is still lacking an exact definition as it combines aspects of both pathologies - T2DM and heart failure, more evidence comes forward that declares DCM as one complex disease that should be treated separately. It is the ambiguous pathological phenotype, symptoms or biomarkers that makes DCM hard to diagnose and screen for its early onset. This re-view provides an updated look on the novel advances in DCM diagnosis and treatment in the experimental and clinical settings. Management of patients with DCM proposes a challenge by itself and we aim to help navigate and advice clinicians with early screening and pharmacotherapy of DCM.
Collapse
Affiliation(s)
- Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Kristina Ferenczyova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
10
|
Liu M, Zeng C, Zhang Y, Xin Y, Deng S, Hu X. Protective role of hydrogen sulfide against diabetic cardiomyopathy by inhibiting pyroptosis and myocardial fibrosis. Biomed Pharmacother 2024; 175:116613. [PMID: 38657502 DOI: 10.1016/j.biopha.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) contributes significantly to the heightened mortality rate observed among diabetic patients, with myocardial fibrosis (MF) being a pivotal element in the disease's progression. Hydrogen sulfide (H2S) has been shown to mitigate MF, but the specific underlying mechanisms have yet to be thoroughly understood. A connection has been established between the evolution of DCM and the incidence of cardiomyocyte pyroptosis. Our research offers insights into H2S protective impact and its probable mode of action against DCM, analyzed through the lens of MF. In this study, a diabetic rat model was developed using intraperitoneal injections of streptozotocin (STZ), and hyperglycemia-stimulated cardiomyocytes were employed to replicate the cellular environment of DCM. There was a marked decline in the expression of cystathionine γ-lyase (CSE), a catalyst for H2S synthesis, in both the STZ-induced diabetic rats and hyperglycemia-stimulated cardiomyocytes. Experimental results in vivo indicated that H2S ameliorates MF and enhances cardiac functionality in diabetic rats by mitigating cardiomyocyte pyroptosis. In vitro assessments highlighted the induction of cardiomyocyte pyroptosis and the subsequent decline in cell viability under hyperglycemic conditions. However, the administration of sodium hydrosulfide (NaHS) curtailed cardiomyocyte pyroptosis and augmented cell viability. In contrast, propargylglycine (PAG), a CSE inhibitor, reversed the effects rendered by NaHS administration. Additional exploration indicated that the mitigating effect of H2S on cardiomyocyte pyroptosis is modulated through the ROS/NLRP3 pathway. In essence, our findings corroborate the potential of H2S in alleviating MF in diabetic subjects. This therapeutic effect is likely attributable to the regulation of cardiomyocyte pyroptosis via the ROS/NLRP3 pathway. This discovery furnishes a prospective therapeutic target for the amelioration and management of MF associated with diabetes.
Collapse
Affiliation(s)
- Maojun Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital,Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011,China
| | - Cheng Zeng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital,Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011,China
| | - Yifeng Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital,Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011,China
| | - Ying Xin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital,Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011,China
| | - Simin Deng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital,Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011,China
| | - Xinqun Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital,Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011,China.
| |
Collapse
|
11
|
Liu T, Xu S, Yang J, Xing X. Roles of LncRNAs in the Pathogenesis of Pulmonary Hypertension. Rev Cardiovasc Med 2024; 25:217. [PMID: 39076325 PMCID: PMC11270120 DOI: 10.31083/j.rcm2506217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 07/31/2024] Open
Abstract
Pulmonary hypertension (PH) is a persistently progressive, incurable, multifactorial associated fatal pulmonary vascular disease characterized by pulmonary vascular remodeling. Long noncoding RNAs (lncRNAs) are involved in regulating pathological processes such as pulmonary vasoconstriction, thickening, remodeling, and inflammatory cell infiltration in PH by acting on different cell types. Because of their differential expression in PH patients, as demonstrated by the observation that some lncRNAs are significantly upregulated while others are significantly downregulated in PH patients, lncRNAs are potentially useful biomarkers for assessing disease progression and diagnosis or prognosis in PH patients. This article provides an overview of the different mechanisms by which lncRNAs are involved in the pathogenesis of PH.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of
Yunnan University, 650021 Kunming, Yunnan, China
- Graduate School, Kunming Medical University,
650500 Kunming, Yunnan, China
| | - Shuanglan Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of
Yunnan University, 650021 Kunming, Yunnan, China
| | - Jiao Yang
- Department of Pulmonary and Critical Care Medicine, First Affiliated
Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Xiqian Xing
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of
Yunnan University, 650021 Kunming, Yunnan, China
| |
Collapse
|
12
|
Yao P, Yang X, Qiao Y. A Review on the Natural Products in Treatment of Diabetic Cardiomyopathy (DCM). Rev Cardiovasc Med 2024; 25:165. [PMID: 39076497 PMCID: PMC11267204 DOI: 10.31083/j.rcm2505165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 07/31/2024] Open
Abstract
Diabetic cardiomyopathy is an insidious and fatal disease, imposing major financial and social burdens on affected individuals. Among the various methods proposed for the treatment of diabetic cardiomyopathy (DCM), treatments with natural products have achieved promising results due to their high efficiency and minimal side-effects. Literature was searched, analyzed, and collected using databases, including PubMed, Web of Science, Excerpt Medica, Science Direct, and Springer. In this study, we reviewed the DCM-related studies on 72 representative natural products. These natural products have been confirmed to be applicable in the therapeutic intervention of DCM, acting through various mechanisms such as the amelioration of metabolic abnormalities, protecting the mitochondrial structure and function, anti-oxidant stress, anti-inflammatory, anti-fibrosis, regulation of Ca 2 + homeostasis and regulation of programmed cell death. The nuclear factor kappa B (NF- κ B), nuclear factor erythroid 2-related factor 2 (Nrf-2), and transforming growth factor- β (TGF- β ) have been extensively studied as high frequency signaling pathways for natural product intervention in DCM. The effectiveness of natural products in treating DCM has been revealed and studied, which provides a reference for DCM-specific drug discovery.
Collapse
Affiliation(s)
- Pengyu Yao
- Department of Traditional Chinese Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000 Jinan, Shandong, China
| | - Xiaoni Yang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), 250014 Jinan, Shandong, China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| |
Collapse
|
13
|
Ivin Y, Butusova A, Gladneva E, Gmyl A, Ishmukhametov A. Comprehensive Elucidation of the Role of L and 2A Security Proteins on Cell Death during EMCV Infection. Viruses 2024; 16:280. [PMID: 38400055 PMCID: PMC10892303 DOI: 10.3390/v16020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The EMCV L and 2A proteins are virulence factors that counteract host cell defense mechanisms. Both L and 2A exhibit antiapoptotic properties, but the available data were obtained in different cell lines and under incomparable conditions. This study is aimed at checking the role of these proteins in the choice of cell death type in three different cell lines using three mutants of EMCV lacking functional L, 2A, and both proteins together. We have found that both L and 2A are non-essential for viral replication in HeLa, BHK, and RD cell lines, as evidenced by the viability of the virus in the absence of both functional proteins. L-deficient infection led to the apoptotic death of HeLa and RD cells, and the necrotic death of BHK cells. 2A-deficient infection induced apoptosis in BHK and RD cells. Infection of HeLa cells with the 2A-deficient mutant was finalized with exclusive caspase-dependent death with membrane permeabilization, morphologically similar to pyroptosis. We also demonstrated that inactivation of both proteins, along with caspase inhibition, delayed cell death progression. The results obtained demonstrate that proteins L and 2A play a critical role in choosing the path of cell death during infection, but the result of their influence depends on the properties of the host cells.
Collapse
Affiliation(s)
- Yury Ivin
- FSASI “M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)”, 118819 Moscow, Russia; (A.B.); (E.G.); (A.I.)
| | - Anna Butusova
- FSASI “M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)”, 118819 Moscow, Russia; (A.B.); (E.G.); (A.I.)
| | - Ekaterina Gladneva
- FSASI “M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)”, 118819 Moscow, Russia; (A.B.); (E.G.); (A.I.)
| | - Anatoly Gmyl
- FSASI “M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)”, 118819 Moscow, Russia; (A.B.); (E.G.); (A.I.)
| | - Aydar Ishmukhametov
- FSASI “M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)”, 118819 Moscow, Russia; (A.B.); (E.G.); (A.I.)
- Institute of Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
14
|
Cai L, Tan Y, Holland B, Wintergerst K. Diabetic Cardiomyopathy and Cell Death: Focus on Metal-Mediated Cell Death. Cardiovasc Toxicol 2024; 24:71-84. [PMID: 38321349 PMCID: PMC11517829 DOI: 10.1007/s12012-024-09836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Cardiac myocyte death is an essential initiator of the pathogenesis and progression of various etiological cardiomyopathies, including diabetic cardiomyopathy (DCM), a disease that has been reported since 1972. Cardiac cell death has been detected in the hearts of patients with diabetes and in animal models, and the role of cell death in the pathogenesis of DCM has been extensively investigated. The first review by the authors, specifically focusing on "Cell death and diabetic cardiomyopathy," was published in the journal, Cardiovascular Toxicology in 2003. Over the past two decades, studies investigating the role of cardiac cell death in the pathogenesis of DCM have gained significant attention, resulting in the discovery of several new kinds of cell death involving different mechanisms, including apoptosis, necroptosis, pyroptosis, autophagy, ferroptosis, and cuproptosis. After the 20th anniversary of the review published in 2003, we now provide an update with a focus on the potential role of metal-mediated cell death, ferroptosis, and cuproptosis in the development of DCM in compliance with this special issue. The intent of our review is to further stimulate work in the field to advance the body of knowledge and continue to drive efforts to develop more advanced therapeutic approaches to prevent cell death, particularly metal-dependent cell death, and, ultimately, to reduce or prevent the development of DCM.
Collapse
Affiliation(s)
- Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, 570 S. Preston Street, Baxter I, Rm: 304F, Louisville, KY, USA.
- Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, USA.
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Yi Tan
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, 570 S. Preston Street, Baxter I, Rm: 304F, Louisville, KY, USA
- Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, USA
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Brian Holland
- Division of Cardiology, Department of Pediatrics, Norton Children's Hospital, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kupper Wintergerst
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, 570 S. Preston Street, Baxter I, Rm: 304F, Louisville, KY, USA
- Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, Norton Children's Hospital, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
15
|
Pan Q, Chen C, Yang YJ. Top Five Stories of the Cellular Landscape and Therapies of Atherosclerosis: Current Knowledge and Future Perspectives. Curr Med Sci 2024; 44:1-27. [PMID: 38057537 DOI: 10.1007/s11596-023-2818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/22/2023] [Indexed: 12/08/2023]
Abstract
Atherosclerosis (AS) is characterized by impairment and apoptosis of endothelial cells, continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells, which is documented as the traditional cellular paradigm. However, the mechanisms appear much more complicated than we thought since a bulk of studies on efferocytosis, transdifferentiation and novel cell death forms such as ferroptosis, pyroptosis, and extracellular trap were reported. Discovery of novel pathological cellular landscapes provides a large number of therapeutic targets. On the other side, the unsatisfactory therapeutic effects of current treatment with lipid-lowering drugs as the cornerstone also restricts the efforts to reduce global AS burden. Stem cell- or nanoparticle-based strategies spurred a lot of attention due to the attractive therapeutic effects and minimized adverse effects. Given the complexity of pathological changes of AS, attempts to develop an almighty medicine based on single mechanisms could be theoretically challenging. In this review, the top stories in the cellular landscapes during the initiation and progression of AS and the therapies were summarized in an integrated perspective to facilitate efforts to develop a multi-targets strategy and fill the gap between mechanism research and clinical translation. The future challenges and improvements were also discussed.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
16
|
Tang X, Shen Y, Lu Y, He W, Nie Y, Fang X, Cai J, Si X, Zhu Y. Identification and validation of pyroptosis-related genes as potential biomarkers for hypertrophic cardiomyopathy: A comprehensive bioinformatics analysis. Medicine (Baltimore) 2024; 103:e36799. [PMID: 38277535 PMCID: PMC10817039 DOI: 10.1097/md.0000000000036799] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/06/2023] [Indexed: 01/28/2024] Open
Abstract
Pyroptosis plays a key role in the death of cells including cardiomyocytes, and it is associated with a variety of cardiovascular diseases. However, the role of pyroptosis-related genes (PRGs) in hypertrophic cardiomyopathy (HCM) is not well characterized. This study aimed to identify key biomarkers and explore the molecular mechanisms underlying the functions of the PRGs in HCM. The differentially expressed genes were identified by GEO2R, and the differentially expressed pyroptosis-related genes (DEPRGs) of HCM were identified by combining with PRGs. Enrichment analysis was performed using the "clusterProfiler" package of the R software. Protein-protein interactions (PPI) network analysis was performed using the STRING database, and hub genes were screened using cytoHubba. TF-miRNA coregulatory networks and protein-chemical interactions were analyzed using NetworkAnalyst. RT-PCR/WB was used for expression validation of HCM diagnostic markers. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western Blot (WB) were used to measure and compare the expression of the identified genes in the cardiac hypertrophy model and the control group. A total of 20 DEPRGs were identified, which primarily showed enrichment for the positive regulation of cytokine production, regulation of response to biotic stimulus, tumor necrosis factor production, and other biological processes. These processes primarily involved pathways related to Renin-angiotensin system, Adipocytokine signaling pathway and NF-kappa B signaling pathway. Then, a PPI network was constructed, and 8 hub genes were identified. After verification analysis, the finally identified HCM-related diagnostic markers were upregulated gene protein tyrosine phosphatase non-receptor type 11 (PTPN11), downregulated genes interleukin-1 receptor-associated kinase 3 (IRAK3), and annexin A2 (ANXA2). Further GSEA analysis revealed these 3 biomarkers primarily related to cardiac muscle contraction, hypertrophic cardiomyopathy, fatty acid degradation and ECM - receptor interaction. Moreover, we also elucidated the interaction network of these biomarkers with the miRNA network and known compounds, respectively. RT-PCR/WB results indicated that PTPN11 expression was significantly increased, and IRAK3 and ANXA2 expressions were significantly decreased in HCM. This study identified PTPN11, IRAK3, and ANXA2 as pyroptosis-associated biomarkers of HCM, with the potential to reveal the development and pathogenesis of HCM and could be potential therapeutic targets.
Collapse
Affiliation(s)
- Xin Tang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yi Shen
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yun Lu
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Wanya He
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Ying Nie
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Xue Fang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jinghui Cai
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Xiaoyun Si
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yan Zhu
- School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
17
|
Luo R, Li L, Han Q, Fu J, Xiao F. HAGLR, stabilized by m6A modification, triggers PTEN-Akt signaling cascade-mediated RPE cell pyroptosis via sponging miR-106b-5p. J Biochem Mol Toxicol 2024; 38:e23596. [PMID: 38088496 DOI: 10.1002/jbt.23596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Consistent hyperglycaemia on retinal microvascular tissues is recognized as a vital inducer of diabetic retinopathy (DR) pathogenesis. In view of the essential functionality of long noncoding RNAs (lncRNAs) in multiple human diseases, we aim to figure out the exact role and underlying mechanisms of lncRNA HOXD Cluster Antisense RNA 1 (HAGLR) in DR pathogenesis. Serum specimens from patients with proliferative DR and healthy volunteers were collected for measuring HAGLR levels. Human primary retinal pigment epithelium (HRPE) cells kept in high glucose (HG) condition were applied to simulating hyperglycaemia of DR pathology in vitro. Cell proliferation, apoptosis, either pyroptosis was assess using Cell Counting Kit-8 TUNEL, flow cytometry, and enzyme-linked immunoassay assays. Bioinformatics analysis was subjected to examine the interaction between HAGLR and N6-methyladenosine (m6A)-bind protein IGF2BP2, as determined using RNA immunoprecipitation and RNA pull-down. Luciferase reporter assay was performed to assess the HAGLR-miR-106b-5p-PTEN axis. Levels of pyroptosis-associated biomarkers were detected using western blotting. Aberrantly overexpressed HAGLR was uncovered in the serum samples of DR patients and HG-induced HRPE cells, of which knockdown attenuated HG-induced cytotoxic impacts on cell apoptosis and pyroptosis. Whereas, reinforced HAGLR further aggravated these effects. IGF2BP2 positively regulated HAGLR in a m6A-dependent manner. HAGLR served as a sponge for miR-106b-5p to upregulate PTEN, thereby activating Akt signaling cascade. Rescue assays demonstrated that PTEN overexpression abolished the inhibition of silenced HAGLR on pyroptosis in HRPE cells. HAGLR, epigenetically modified by IGF2BP2 in an m6A-dependent manner, functioned as a sponge for miR-106b-5p, thereby activating PTEN/Akt signaling cascade to accelerate DR pathology.
Collapse
Affiliation(s)
- Rong Luo
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Lan Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Qingluan Han
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Jingsong Fu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Fan Xiao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Liu Z, Chen Y, Mei Y, Yan M, Liang H. Gasdermin D-Mediated Pyroptosis in Diabetic Cardiomyopathy: Molecular Mechanisms and Pharmacological Implications. Molecules 2023; 28:7813. [PMID: 38067543 PMCID: PMC10708146 DOI: 10.3390/molecules28237813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a pathophysiological condition triggered by diabetes mellitus (DM), which can lead to heart failure (HF). One of the most important cellular processes associated with DCM is the death of cardiomyocytes. Gasdermin D (GSDMD) plays a key role in mediating pyroptosis, a type of programmed cell death closely associated with inflammasome activation. Recent studies have revealed that pyroptosis is induced during hyperglycemia, which is crucial to the development of DCM. Although the effects of pyroptosis on DCM have been discussed, the relationship between DCM and GSDMD is not fully clarified. Recent studies gave us the impetus for clarifying the meaning of GSDMD in DCM. The purpose of this review is to summarize new and emerging insights, mainly discussing the structures of GSDMD and the mechanism of pore formation, activation pathways, molecular mechanisms of GSDMD-mediated pyroptosis, and the therapeutic potential of GSDMD in DCM. The implications of this review will pave the way for a new therapeutic target in DCM.
Collapse
Affiliation(s)
- Zhou Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yifan Chen
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yu Mei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Meiling Yan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Haihai Liang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| |
Collapse
|
19
|
Zhang Y. The essential role of glutamine metabolism in diabetic cardiomyopathy: A review. Medicine (Baltimore) 2023; 102:e36299. [PMID: 38013301 PMCID: PMC10681453 DOI: 10.1097/md.0000000000036299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a pathophysiological condition caused by diabetes mellitus and is the leading cause of diabetes mellitus-related mortality. The pathophysiology of DCM involves various processes, such as oxidative stress, inflammation, ferroptosis, and abnormal protein modification. New evidence indicates that dysfunction of glutamine (Gln) metabolism contributes to the pathogenesis of DCM by regulating these pathophysiological mechanisms. Gln is a conditionally essential amino acid in the human body, playing a vital role in maintaining cell function. Although the precise molecular mechanisms of Gln in DCM have yet to be fully elucidated, recent studies have shown that supplementing with Gln improves cardiac function in diabetic hearts. However, excessive Gln may worsen myocardial injury in DCM by generating a large amount of glutamates or increasing O-GlcNacylation. To highlight the potential therapeutic method targeting Gln metabolism and its downstream pathophysiological mechanisms, this article aims to review the regulatory function of Gln in the pathophysiological mechanisms of DCM.
Collapse
Affiliation(s)
- Yiying Zhang
- Department of Cardiovascular Medicine, Wuxi No.2 People’s Hospital, Wuxi City, People’s Republic of China
| |
Collapse
|
20
|
Abo-Saif MA, Ragab AE, Ibrahim AO, Abdelzaher OF, Mehanyd ABM, Saber-Ayad M, El-Feky OA. Pomegranate peel extract protects against the development of diabetic cardiomyopathy in rats by inhibiting pyroptosis and downregulating LncRNA-MALAT1. Front Pharmacol 2023; 14:1166653. [PMID: 37056985 PMCID: PMC10086142 DOI: 10.3389/fphar.2023.1166653] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Background: Pyroptosis is an inflammatory programmed cell death accompanied by activation of inflammasomes and maturation of pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18. Pyroptosis is closely linked to the development of diabetic cardiomyopathy (DC). Pomegranate peel extract (PPE) exhibits a cardioprotective effect due to its antioxidant and anti-inflammatory properties. This study aimed to investigate the underlying mechanisms of the protective effect of PPE on the myocardium in a rat model of DC and determine the underlying molecular mechanism.Methods: Type 1 diabetes (T1DM) was induced in rats by intraperitoneal injection of streptozotocin. The rats in the treated groups received (150 mg/kg) PPE orally and daily for 8 weeks. The effects on the survival rate, lipid profile, serum cardiac troponin-1, lipid peroxidation, and tissue fibrosis were assessed. Additionally, the expression of pyroptosis-related genes (NLRP3 and caspase-1) and lncRNA-MALAT1 in the heart tissue was determined. The PPE was analyzed using UPLC-MS/MS and NMR for characterizing the phytochemical content.Results: Prophylactic treatment with PPE significantly ameliorated cardiac hypertrophy in the diabetic rats and increased the survival rate. Moreover, prophylactic treatment with PPE in the diabetic rats significantly improved the lipid profile, decreased serum cardiac troponin-1, and decreased lipid peroxidation in the myocardial tissue. Histopathological examination of the cardiac tissues showed a marked reduction in fibrosis (decrease in collagen volume and number of TGF-β-positive cells) and preservation of normal myocardial structures in the diabetic rats treated with PPE. There was a significant decrease in the expression of pyroptosis-related genes (NLRP3 and caspase-1) and lncRNA-MALAT1 in the heart tissue of the diabetic rats treated with PPE. In addition, the concentration of IL-1β and caspase-1 significantly decreased in the heart tissue of the same group. The protective effect of PPE on diabetic cardiomyopathy could be due to the inhibition of pyroptosis and downregulation of lncRNA-MALAT1. The phytochemical analysis of the PPE indicated that the major compounds were hexahydroxydiphenic acid glucoside, caffeoylquinic acid, gluconic acid, citric acid, gallic acid, and punicalagin.Conclusion: PPE exhibited a cardioprotective potential in diabetic rats due to its unique antioxidant, anti-inflammatory, and antifibrotic properties and its ability to improve the lipid profile. The protective effect of PPE on DC could be due to the inhibition of the NLRP3/caspase-1/IL-1β signaling pathway and downregulation of lncRNA-MALAT1. PPE could be a promising therapy to protect against the development of DC, but further clinical studies are recommended.
Collapse
Affiliation(s)
- Mariam Ali Abo-Saif
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amany E. Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- *Correspondence: Amany E. Ragab, ; Maha Saber-Ayad,
| | - Amera O. Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | | | - Maha Saber-Ayad
- Department of Clinical Sciences, College of Medicine and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacology, College of Medicine, Cairo University, Giza, Egypt
- *Correspondence: Amany E. Ragab, ; Maha Saber-Ayad,
| | - Ola A. El-Feky
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
21
|
Li JY, Zhao CC, Peng JF, Zhang M, Wang L, Yin G, Zhou P. The Protective Effect of Sheng Mai Yin on Diabetic Cardiomyopathy via NLRP3/Caspase-1 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1234434. [PMID: 36506810 PMCID: PMC9731757 DOI: 10.1155/2022/1234434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
Sheng Mai Yin (SMY) has therapeutic effects on myocardial infarction (MI), heart failure (HF), diabetic cardiomyopathy (DCM), and myocarditis. To study whether SMY can relieve pyroptosis and play a protective role in diabetic cardiomyopathy, a molecular docking technique was used to predict the possible mechanism of SMY against DCM. Then, a DCM rat model was induced by intraperitoneal injection of streptozotocin (STZ), divided into 5 groups: the DM group (model), SMY-L group (2.7 mL/kg SMY), SMY-M group (5.4 mL/kg SMY), SMY-H group (10.8 mL/kg SMY), and Met group (120 mg/kg metformin). Rats in the CTL group (control) and DM group were given normal saline. After 8 weeks, the levels of blood glucose, lipids, and myocardial enzymes were detected according to the kit instructions. Cardiac function was detected by echocardiography. HE and Masson were used to observing the pathological changes, collagen deposition, and collagen volume fraction (CVF). The apoptosis rate of cardiomyocytes was determined by Tunel. The IL-1β level was determined by ELISA and RT-PCR. The expressions of NLRP3, caspase-1, and GSDMD were measured using RT-PCR and Western blotting. The docking results suggested that SMY may act on NLRP3 and its downstream signal pathway. The in vivo results showed that SMY could reduce blood glucose and lipid levels, improve heart function, improve histopathological changes and myocardial enzymes, and alleviate cardiomyocyte apoptosis and myocardial fibrosis. SMY inhibited the mRNA and protein expressions of NLRP3, ASC, Caspase-1, and GSDMD and IL-1β production. SMY can reduce DCM by regulating the NLRP3/caspase-1 signaling pathway, providing a new research direction for the treatment of DCM.
Collapse
Affiliation(s)
- Jing-Ya Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chun-Chun Zhao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jian-Fei Peng
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Meng Zhang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Liang Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Gang Yin
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
22
|
Song Y, Jiang Y, Shi L, He C, Zhang W, Xu Z, Yang M, Xu Y. Comprehensive analysis of key m5C modification-related genes in type 2 diabetes. Front Genet 2022; 13:1015879. [PMID: 36276976 PMCID: PMC9582283 DOI: 10.3389/fgene.2022.1015879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background: 5-methylcytosine (m5C) RNA methylation plays a significant role in several human diseases. However, the functional role of m5C in type 2 diabetes (T2D) remains unclear.Methods: The merged gene expression profiles from two Gene Expression Omnibus (GEO) datasets were used to identify m5C-related genes and T2D-related differentially expressed genes (DEGs). Least-absolute shrinkage and selection operator (LASSO) regression analysis was performed to identify optimal predictors of T2D. After LASSO regression, we constructed a diagnostic model and validated its accuracy. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to confirm the biological functions of DEGs. Gene Set Enrichment Analysis (GSEA) was used to determine the functional enrichment of molecular subtypes. Weighted gene co-expression network analysis (WGCNA) was used to select the module that correlated with the most pyroptosis-related genes. Protein-protein interaction (PPI) network was established using the STRING database, and hub genes were identified using Cytoscape software. The competitive endogenous RNA (ceRNA) interaction network of the hub genes was obtained. The CIBERSORT algorithm was applied to analyze the interactions between hub gene expression and immune infiltration.Results: m5C-related genes were significantly differentially expressed in T2D and correlated with most T2D-related DEGs. LASSO regression showed that ZBTB4 could be a predictive gene for T2D. GO, KEGG, and GSEA indicated that the enriched modules and pathways were closely related to metabolism-related biological processes and cell death. The top five genes were identified as hub genes in the PPI network. In addition, a ceRNA interaction network of hub genes was obtained. Moreover, the expression levels of the hub genes were significantly correlated with the abundance of various immune cells.Conclusion: Our findings may provide insights into the molecular mechanisms underlying T2D based on its pathophysiology and suggest potential biomarkers and therapeutic targets for T2D.
Collapse
Affiliation(s)
- Yaxian Song
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Jiang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Shi
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen He
- Department of Geriatric Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenhua Zhang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Xu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mengshi Yang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yushan Xu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yushan Xu,
| |
Collapse
|
23
|
Han R, Huang H, Xia W, Liu J, Luo H, Tang J, Xia Z. Perspectives for Forkhead box transcription factors in diabetic cardiomyopathy: Their therapeutic potential and possible effects of salvianolic acids. Front Cardiovasc Med 2022; 9:951597. [PMID: 36035917 PMCID: PMC9403618 DOI: 10.3389/fcvm.2022.951597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is the primary cause of morbidity and mortality in diabetic cardiovascular complications, which initially manifests as cardiac hypertrophy, myocardial fibrosis, dysfunctional remodeling, and diastolic dysfunction, followed by systolic dysfunction, and eventually end with acute heart failure. Molecular mechanisms underlying these pathological changes in diabetic hearts are complicated and multifactorial, including but not limited to insulin resistance, oxidative stress, lipotoxicity, cardiomyocytes apoptosis or autophagy, inflammatory response, and myocardial metabolic dysfunction. With the development of molecular biology technology, accumulating evidence illustrates that members of the class O of Forkhead box (FoxO) transcription factors are vital for maintaining cardiomyocyte metabolism and cell survival, and the functions of the FoxO family proteins can be modulated by a wide variety of post-translational modifications including phosphorylation, acetylation, ubiquitination, arginine methylation, and O-glycosylation. In this review, we highlight and summarize the most recent advances in two members of the FoxO family (predominately FoxO1 and FoxO3a) that are abundantly expressed in cardiac tissue and whose levels of gene and protein expressions change as DCM progresses, with the goal of providing valuable insights into the pathogenesis of diabetic cardiovascular complications and discussing their therapeutic potential and possible effects of salvianolic acids, a natural product.
Collapse
Affiliation(s)
- Ronghui Han
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hemeng Huang
- Department of Emergency, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Orthopaedics and Traumatology, The Univerisity of Hong Kong, Hong Kong, China
- *Correspondence: Weiyi Xia,
| | - Jingjin Liu
- Department of Cardiology, Shenzhen People’s Hospital and The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Hui Luo
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
| | - Jing Tang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China
- Zhengyuan Xia,
| |
Collapse
|
24
|
Geng X, Li Z, Yang Y. Emerging Role of Epitranscriptomics in Diabetes Mellitus and Its Complications. Front Endocrinol (Lausanne) 2022; 13:907060. [PMID: 35692393 PMCID: PMC9184717 DOI: 10.3389/fendo.2022.907060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 01/13/2023] Open
Abstract
Diabetes mellitus (DM) and its related complications are among the leading causes of disability and mortality worldwide. Substantial studies have explored epigenetic regulation that is involved in the modifications of DNA and proteins, but RNA modifications in diabetes are still poorly investigated. In recent years, posttranscriptional epigenetic modification of RNA (the so-called 'epitranscriptome') has emerged as an interesting field of research. Numerous modifications, mainly N6 -methyladenosine (m6A), have been identified in nearly all types of RNAs and have been demonstrated to have an indispensable effect in a variety of human diseases, such as cancer, obesity, and diabetes. Therefore, it is particularly important to understand the molecular basis of RNA modifications, which might provide a new perspective for the pathogenesis of diabetes mellitus and the discovery of new therapeutic targets. In this review, we aim to summarize the recent progress in the epitranscriptomics involved in diabetes and diabetes-related complications. We hope to provide some insights for enriching the understanding of the epitranscriptomic regulatory mechanisms of this disease as well as the development of novel therapeutic targets for future clinical benefit.
Collapse
Affiliation(s)
- Xinqian Geng
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People’s Hospital of Yunnan Province, Kunming, China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Yang
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
25
|
Li X, Xiao GY, Guo T, Song YJ, Li QM. Potential therapeutic role of pyroptosis mediated by the NLRP3 inflammasome in type 2 diabetes and its complications. Front Endocrinol (Lausanne) 2022; 13:986565. [PMID: 36387904 PMCID: PMC9646639 DOI: 10.3389/fendo.2022.986565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
As a new way of programmed cell death, pyroptosis plays a vital role in many diseases. In recent years, the relationship between pyroptosis and type 2 diabetes (T2D) has received increasing attention. Although the current treatment options for T2D are abundant, the occurrence and development of T2D appear to continue, and the poor prognosis and high mortality of patients with T2D remain a considerable burden in the global health system. Numerous studies have shown that pyroptosis mediated by the NLRP3 inflammasome can affect the progression of T2D and its complications; targeting the NLRP3 inflammasome has potential therapeutic effects. In this review, we described the molecular mechanism of pyroptosis more comprehensively, discussed the most updated progress of pyroptosis mediated by NLRP3 inflammasome in T2D and its complications, and listed some drugs and agents with potential anti-pyroptosis effects. Based on the available evidence, exploring more mechanisms of the NLRP3 inflammasome pathway may bring more options and benefits for preventing and treating T2D and drug development.
Collapse
|