1
|
Wu X, Chen Y, Zhang H, Wang J, Tian C, Jiang Z, Li X. Mechanisms and potential roles of active ingredients of traditional Chinese medicine in the treatment of chronic obstructive pulmonary disease. J Pharm Pharmacol 2025:rgaf018. [PMID: 40350160 DOI: 10.1093/jpp/rgaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/27/2025] [Indexed: 05/14/2025]
Abstract
OBJECTIVES Chronic obstructive pulmonary disease (COPD) is a respiratory condition with high rates of morbidity and mortality. Recent studies have shown that the increasing research on Traditional Chinese Medicine (TCM) also plays an important role in COPD. The purpose of this review is to categorize TCM and its active ingredients and to summarize their pharmacological effects. METHODS Articles published up to December 2024 were searched through PubMed, X-MOL, and the China National Knowledge Infrastructure. The keywords included TCM and its combination with COPD, pharmacologic activity, anti-inflammatory effects, pharmacology, as well as in vivo and in vitro studies. KEY FINDINGS Thus far, we have summarized the progress of research on the mechanisms of action of TCM and its active ingredients, such as flavonoids, terpenoids, and phenols, in the treatment of COPD. These mechanisms encompass the reduction of inflammatory responses and lung injury, regulation of the oxidation-antioxidation balance, and modulation of cellular apoptosis and aging, among other effects. CONCLUSION TCM and its active ingredients demonstrate strong anti-COPD properties. This provides a reference for accelerating the development of herbal components for the treatment of COPD and for exploring new potential multi-target therapeutic mechanisms. This will mitigate the geographical limitations of using TCM and enhance its application in future management strategies.
Collapse
Affiliation(s)
- Xilin Wu
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University Hospital, Yanbian University Yanji Jilin 133002 P.R. China
| | - Yonghu Chen
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University Hospital, Yanbian University Yanji Jilin 133002 P.R. China
| | - Hanyu Zhang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University Hospital, Yanbian University Yanji Jilin 133002 P.R. China
| | - Jiamin Wang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University Hospital, Yanbian University Yanji Jilin 133002 P.R. China
| | - Chenchen Tian
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University Hospital, Yanbian University Yanji Jilin 133002 P.R. China
| | - Zhe Jiang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University Hospital, Yanbian University Yanji Jilin 133002 P.R. China
| | - Xuezheng Li
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University Hospital, Yanbian University Yanji Jilin 133002 P.R. China
| |
Collapse
|
2
|
Xu Z, Luan J, Wan F, Zhang M, Ding F, Yang L, Dai S. Vitamin D promotes autophagy to inhibit LPS-induced lung injury via targeting cathepsin D. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5531-5541. [PMID: 39570382 DOI: 10.1007/s00210-024-03619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Pneumonia is a frequent-occurring event in children death. Vitamin D (VD) can alleviate inflammatory response and it might be a promising adjunct to antibiotics for the treatment of acute childhood pneumonia. This study intended to uncover the relevant mechanism of VD in pneumonia. For simulating inflammatory condition, BEAS-2B cells were induced using lipopolysaccharide (LPS). Cell viability was detected using cell counting kit-8 (CCK-8) method, and cell apoptosis was detected using flow cytometry and western blot. Inflammatory cytokines as well as oxidative stress markers were detected using enzyme-linked immunosorbent assay (ELISA) and corresponding assays. Western blot evaluated the contents of cathepsin D (CTSD), apoptosis- and autophagy-related proteins. Through real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot, the transfection efficiency of overexpression (OV)-CTSD was detected. Immunofluorescence assay detected light chain 3 (LC3II) level. Through SuperPred database analysis, VD can target CTSD. VD was revealed to suppress viability damage, inflammatory response, oxidative stress, and autophagy injury in BEAS-2B cells induced by LPS via targeting CTSD. However, the protective effects exhibited by VD against LPS-induced viability damage, inflammatory response, and oxidative stress in BEAS-2B cells were all counteracted by autophagy inhibitor 3-methyladenine (3-MA). Collectively, VD alleviated the severity of LPS-induced lung injury by promoting autophagy through targeting CTSD.
Collapse
Affiliation(s)
- Zijuan Xu
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Jinling Luan
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Fengyun Wan
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Meijie Zhang
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Fei Ding
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Ling Yang
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Shuxin Dai
- Department of Pediatrics, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang, China.
| |
Collapse
|
3
|
Liu Y, Wang T, Dong YA, Zhang J. Exploring the interplay between oxidative stress and autophagy in asthma: Pathophysiology and therapeutic potential. Allergol Immunopathol (Madr) 2025; 53:167-180. [PMID: 40342125 DOI: 10.15586/aei.v53i3.1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/11/2025] [Indexed: 05/11/2025]
Abstract
Asthma is a chronic respiratory disease, characterized by airway inflammation, hyperresponsiveness, and remodeling. Oxidative stress and autophagy play pivotal roles in asthma pathogenesis. Excessive production of reactive oxygen species (ROS) worsens airway damage and inflammation, and impaired antioxidant defenses in patients with asthma further increase ROS production, leading to tissue damage. Environmental factors, such as allergens and air pollution, and inflammatory cells, such as macrophages and eosinophils, contribute to elevated ROS levels, thereby intensifying the disease. Autophagy, a key mechanism for eliminating damaged organelles and maintaining cellular homeostasis, plays a dual role in asthma. While autophagy activation mitigates oxidative stress, dysregulated or excessive autophagy worsens airway remodeling and inflammation. This review examines the interplay between oxidative stress and autophagy in asthma and discusses emerging therapeutic approaches targeting autophagy to improve disease outcomes.
Collapse
Affiliation(s)
- Ying Liu
- School of Chinese Medicine, Anhui University of Chinese Medicine, Hefei City, Anhui Province, 230012, China
| | - Tongtong Wang
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei City, Anhui Province, 230012, China
| | - Yu-Ang Dong
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei City, Anhui Province, 230012, China
| | - Jun Zhang
- School of Chinese Medicine, Anhui University of Chinese Medicine, Hefei City, Anhui Province, 230012, China;
| |
Collapse
|
4
|
Islam S, Sarkar O, Mukherjee S, Chattopadhyay A. Long-Term Impact of Cr(VI) Exposure in Swiss Albino Mice: ROS-Driven Modulation of Autophagy and Cellular Fate. Biol Trace Elem Res 2025:10.1007/s12011-025-04599-w. [PMID: 40180680 DOI: 10.1007/s12011-025-04599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Hexavalent chromium [Cr(VI)], due to its high solubility and permeability, is significantly more toxic than trivalent chromium [Cr(III)] as it generates reactive oxygen species (ROS) during cellular reduction. Industrial discharges have led to increasing Cr(VI) contamination in surface and groundwater, posing serious environmental and public health concerns. In our previous study, we demonstrated that exposure to 5 ppm Cr(VI) for 4 and 8 months adversely affected body weight, water consumption, and liver function in Swiss albino mice. Histological analyses revealed tissue alterations, disrupted DNA repair gene expression in liver tissue, and a marked increase in apoptotic gene expression after 8 months of exposure. Building on these findings, we employed the same Cr(VI) concentration (5 ppm via drinking water) over 4 and 8 months in the present study. Our results showed a significant increase in ROS generation in the liver, brain, and kidney tissues at both time intervals. Additionally, the presence of autophagolysosomes was markedly elevated after chronic Cr(VI) exposure in each tissue. We also observed altered expression patterns of key autophagy-related genes (Atg5, Beclin1, and Lc3) and mTor in these tissues. Immunohistochemical analysis further confirmed a significant increase in LC3B expression after 4 months of exposure. Our findings suggest that heightened intracellular oxidative stress triggers a protective autophagy response, mediated via mTOR signaling, to maintain cellular integrity. However, prolonged toxic insult and ROS accumulation may eventually shift pro-survival autophagy toward apoptotic cell death in the liver and brain tissues.
Collapse
Affiliation(s)
- Shehnaz Islam
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Olivia Sarkar
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Sunanda Mukherjee
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | | |
Collapse
|
5
|
Wang Y, Cheng F, Hou N, Tan Y, Zhang S, Hou Y, Guo W, Peng J, Li W, Wu J. Increased risk of chronic diseases and multimorbidity in middle-aged and elderly individuals with early vision, hearing, or dual sensory impairments: insights from prospective cohort studies and Mendelian randomization analysis. BMC Med 2025; 23:118. [PMID: 40001102 PMCID: PMC11863693 DOI: 10.1186/s12916-025-03857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/08/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Sensory impairments (SI), including vision (VI), hearing (HI), and dual sensory impairments (DSI), are prevalent with aging, but their impact on disease risk remains unclear. This study investigates the epidemiological and genetic associations between SIs and 10 chronic disease categories and multimorbidity. METHODS Using the CHARLS study, participants were classified by their self-reported VI/HI/DSI status in 2011 and 2013 into groups: "new onset, remission, persistent, and no SI." Their chronic disease incidence was tracked until 2018 in sub-cohorts respectively. Mendelian randomization (MR) analyses used genetic instruments from UK Biobank GWAS data on 88,250/504,307 individuals for vision/hearing loss, with outcome datasets from consortia including FinnGen, DIAMANTE, CKDGen, PGC, GWAS Catalog, and International Parkinson's Disease Genomics Consortium. RESULTS The cohort study revealed that persistent HI significantly increased the risk of heart disease (P < 0.001, HR 1.63, 95% CI 1.31-2.03), stroke (P 0.004, HR 1.59, 95% CI 1.16-2.18), chronic lung disease (P 0.002, HR 1.53, 95% CI 1.17-1.99), and emotional, nervous, or psychiatric problems (P 0.016, HR 2.03, 95% CI 1.14-3.60). Persistent VI was significantly associated with diabetes or high blood sugar (DM/Hglu) (P 0.012, HR 1.63, 95% CI 1.11-2.38) and chronic lung disease (P 0.042, HR 1.53, 95% CI 1.02-2.31). MR confirmed these strong or suggestive associations, indicating that HI significantly increased the risk of cardiovascular and cerebrovascular events by 61-170%, bronchitis by 160%, and schizophrenia by 36%. In addition, VI significantly raised the risk of hyperglycemia or diabetes by 2-4% and the risk of lung function decline. Additionally, cohort studies confirmed that early DSI significantly raised the risk of multiple diseases, while MR identified genetic links between VI and hepatic failure, Parkinson's, and Alzheimer's disease, and between HI and hypertension, chronic kidney disease, and renal failure. CONCLUSIONS This study provides evidence from epidemiological or genetic perspectives demonstrates that early exposure to HI/VI/DSI increases the risk of developing chronic diseases. These findings underscore the need for continuous monitoring and timely intervention for SI to manage chronic disease risks in aging populations.
Collapse
Affiliation(s)
- Yaoling Wang
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Fang Cheng
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1277, Jiefang Avenue, Wuhan, 430000, China
| | - Niuniu Hou
- Department of General Surgery, Air Force 986(Th) Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Yuting Tan
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shaomin Zhang
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Yanbing Hou
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Wen Guo
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Jin Peng
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Wei Li
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1277, Jiefang Avenue, Wuhan, 430000, China.
| | - Jinhui Wu
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Ijatuyi TT, Lawal AO, Akinjiyan MO, Ojo FM, Koledoye OF, Agboola OO, Dahunsi DT, Folorunso IM, Elekofehinti OO. Effects of Bryophyllum pinnatum on Dysfunctional Autophagy in Rats Lungs Exposed to Zinc Oxide Nanoparticles. Int Immunopharmacol 2024; 141:113005. [PMID: 39213874 DOI: 10.1016/j.intimp.2024.113005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Lung inflammation as a result of exposure to toxicants is a major pathological problem. Autophagy (AP) is a process of cell self-digestion and can be disrupted by environmental toxicants, leading to oxidative stress, inflammation and cellular damage. Bryophyllum pinnatum (Lam.) Oken has been used in folklore medicine to manage pathological abnormalities, including inflammation, but mechanisms remain unclear. This work investigated the effects of Bryophyllum pinnatum ethanol leaf extract (BP) on dysfunctional AP in the lungs of Wistar rats exposed to zinc oxide nanoparticles (ZONPs). The experimental rats were orally administered ZONPs for seven days (10 mg/kg). Some exposed rats were post-treated with BP (62.5 and 125 mg/kg) through oral gavage. Oxidative stress, inflammation, and apoptotic and autophagic parameters were assessed using biochemical assay and gene expression methods. Several indices of pulmonary damage were also evaluated. PCR analysis suggested that ZONP downregulated the expression of pro-autophagy-related genes (Beclin 2, ATG5, DAPK, and FOXP3) and upregulated the expression of the TNF-alpha, NF-Kb, LC3 and Bcl2 genes. In contrast, BP significantly (p < 0.0001) reversed ZONP-induced pulmonary toxicity and oxidative stress. It reduced MDA levels and increased SOD, CAT, GSH and GPxD activities. BP significantly (p < 0.0001) downregulated the expressions of proinflammatory genes (IL-6 and JNK) and upregulated the expressions of IL-10, CAT and SOD genes in ZONP-exposed rats. BP restored the lung's histoarchitectural structure after ZNOP-induced distortion. The results suggested that BP has antioxidant and anti-inflammatory properties, and could effectively restore ZNOP-induced dysfunctional AP in the lungs of Wistar rats.
Collapse
Affiliation(s)
- Taiwo Tolulope Ijatuyi
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Akeem Olalekan Lawal
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria; Precision Molecular Laboratory, Akure, Ondo State, Nigeria
| | - Moses Orimoloye Akinjiyan
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria; Medical Biochemistry Department, School of Basic Medical Sciences, Federal University of Technology, Akure, Ondo State, Nigeria.
| | - Funmilayo Mercy Ojo
- Medical Biochemistry Department, School of Basic Medical Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Omowumi Funmilayo Koledoye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Olaoluwa Oladimeji Agboola
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Damilola Timothy Dahunsi
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Ibukun Mary Folorunso
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria; Precision Molecular Laboratory, Akure, Ondo State, Nigeria
| | - Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| |
Collapse
|
7
|
Tian L, Jin J, Lu Q, Zhang H, Tian S, Lai F, Liu C, Liang Y, Lu Y, Zhao Y, Yao S, Ren W. Bidirectional modulation of extracellular vesicle-autophagy axis in acute lung injury: Molecular mechanisms and therapeutic implications. Biomed Pharmacother 2024; 180:117566. [PMID: 39423751 DOI: 10.1016/j.biopha.2024.117566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Acute lung injury (ALI), a multifactorial pathological condition, manifests through heightened inflammatory responses, compromised lung epithelial-endothelial barrier function, and oxidative stress, potentially culminating in respiratory failure and mortality. This study explores the intricate interplay between two crucial cellular mechanisms-extracellular vesicles (EVs) and autophagy-in the context of ALI pathogenesis and potential therapeutic interventions.EVs, bioactive membrane-bound structures secreted by cells, serve as versatile carriers of molecular cargo, facilitating intercellular communication and significantly influencing disease progression. Concurrently, autophagy, an essential intracellular degradation process, maintains cellular homeostasis and has emerged as a promising therapeutic target in ALI and acute respiratory distress syndrome.Our research unveils a fascinating "EV-Autophagy dual-drive pathway," characterized by reciprocal regulation between these two processes. EVs modulate autophagy activation and inhibition, while autophagy influences EV production, creating a dynamic feedback loop. This study posits that precise manipulation of this pathway could revolutionize ALI treatment strategies.By elucidating the mechanisms underlying this cellular crosstalk, we open new avenues for targeted therapies. The potential for engineered EVs to fine-tune autophagy in ALI treatment is explored, alongside innovative concepts such as EV-based vaccines for ALI prevention and management. This research not only deepens our understanding of ALI pathophysiology but also paves the way for novel, more effective therapeutic approaches in critical care medicine.
Collapse
Affiliation(s)
- Linqiang Tian
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province 453003, China; Clinical Medical Center of Tissue Egineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Jin
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
| | - Qianying Lu
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
| | - Huajing Zhang
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
| | - Sijia Tian
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Chuanchuan Liu
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Yangfan Liang
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Yujia Lu
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Yanmei Zhao
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China.
| | - Sanqiao Yao
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province 453003, China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Wenjie Ren
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province 453003, China; Clinical Medical Center of Tissue Egineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province 453003, China; Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
8
|
Qi Y, Yan Y, Tang D, Han J, Zhu X, Cui M, Wu H, Tao Y, Fan F. Inflammatory and Immune Mechanisms in COPD: Current Status and Therapeutic Prospects. J Inflamm Res 2024; 17:6603-6618. [PMID: 39318994 PMCID: PMC11421452 DOI: 10.2147/jir.s478568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) currently ranks among the top three causes of mortality worldwide, presenting as a prevalent and complex respiratory ailment. Ongoing research has underscored the pivotal role of immune function in the onset and progression of COPD. The immune response in COPD patients exhibits abnormalities, characterized by diminished anti-infection capacity due to immune senescence, heightened activation of neutrophils and macrophages, T cell infiltration, and aberrant B cell activity, collectively contributing to airway inflammation and lung injury in COPD. Objective This review aimed to explore the pivotal role of the immune system in COPD and its therapeutic potential. Methods We conducted a review of immunity and COPD published within the past decade in the Web of Science and PubMed databases, sorting through and summarizing relevant literature. Results This article examines the pivotal roles of the immune system in COPD. Understanding the specific functions and interactions of these immune cells could facilitate the development of novel therapeutic strategies and interventions aimed at controlling inflammation, enhancing immune function, and mitigating the impact of respiratory infections in COPD patients.
Collapse
Affiliation(s)
- Yanan Qi
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Yuanyuan Yan
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Dawei Tang
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Jingjing Han
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Xinyi Zhu
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Mengting Cui
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Hongyan Wu
- Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, People’s Republic of China
| | - Yu Tao
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Fangtian Fan
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| |
Collapse
|
9
|
Yue Y, Zhang B, He Z, Zheng Y, Wang X, Zhang Q. Sputum microbe community alterations induced by long-term inhaled corticosteroid use are associated with airway function in chronic obstructive pulmonary disease patients based on metagenomic next-generation sequencing (mNGS). Front Pharmacol 2024; 15:1323613. [PMID: 38915461 PMCID: PMC11194361 DOI: 10.3389/fphar.2024.1323613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
Objective: Inhaled corticosteroids (ICS) are widely used in chronic obstructive pulmonary disease (COPD) patients as a treatment option. However, ICS may also increase the risk of pneumonia and alter the composition of airway microbiota. In clinical application, the overuse of ICS exists pervasively and may potentially lead to adverse effects. Whether the long-term use of ICS confers enough benefit to COPD patients to justify its use so far remains unknown. Therefore, this study employed a single-center retrospective cohort study to compare alterations in airway function and the sputum microbial community structure between COPD patients who had undergone either long-term or short-term treatment with ICS. Methods: Sixty stable COPD patients who had used ICS were recruited and classified into the long-term use group (more than 3 months) and short-term use group (less than 3 months). The demographic features and clinical information of the subjects were investigated and their sputum samples were collected and subjected to metagenomic next-generation sequencing (mNGS). Results: The study found that compared with short-term ICS use, long-term ICS use did not further improve the clinical airway function, decrease the number of acute exacerbations, or decrease hospital readmission. In terms of sputum microbiota, the long-term use of ICS significantly altered the beta diversity of the microbial community structure (p < 0.05) and the top three phyla differed between the two groups. At the genus level, long-term ICS induced higher relative abundances of Abiotrophia, Schaalia, Granulicatella, Mogibacterium, Sphingobium, and Paraeggerthella compared to short-term ICS use. Additionally, alpha diversity was positively associated with clinical airway indicators (pre-bronchodilatory FEV1 and pre-bronchodilatory FVC) in the long-term ICS group. The relative abundances of Rothia, Granulicatella, Schaalia, and Mogibacterium genera had positive correlations with the eosinophil % (of all white blood cells). Conclusion: This study reveals the effect of long-term and short-term ICS use on sputum microbiota among COPD patients and provides a reference for the appropriate application of clinical ICS treatment in COPD patients.
Collapse
Affiliation(s)
- Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baohui Zhang
- Department of Neurobiology, China Medical University, Shenyang, China
- Journal Center, China Medical University, Shenyang, China
| | - Zhong He
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuling Zheng
- Genoxor Medical Science and Technology Inc., Taizhou, China
| | - Xueqing Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Li X, Zhou J, Ling Y, Tan Y, Zhang J, Wang X, Li F, Jiang S, Zhang S, Yu K, Han Y. Matrine induces autophagic cell death by triggering ROS/AMPK/mTOR axis and apoptosis in multiple myeloma. Biomed Pharmacother 2024; 175:116738. [PMID: 38759291 DOI: 10.1016/j.biopha.2024.116738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
Despite significant advancements in multiple myeloma (MM) treatment in recent years, most patients will eventually develop resistance or experience relapse. Matrine, a primary active compound of traditional Chinese medicinal herb Sophora flavescens Ait, has been found to have anti-tumor properties in various types of malignant tumors. Whether autophagy plays a crucial role in the anti-MM effect of matrine remain unknown. Herein, we found that matrine could trigger apoptosis and cell cycle arrest, and meanwhile induce autophagy in MM cells in vitro. We further ascertained the role of autophagy by using ATG5 siRNA or the autophagy inhibitor spautin-1, which partially reversed matrine's inhibitory effect on MM cells. Conversely, the combination of matrine with the autophagy inducer rapamycin enhanced their anti-tumor activity. These findings suggest that autophagy induced by matrine can lead to cell death in MM cells. Further mechanism investigation revealed that matrine treatment increased the levels of reactive oxygen species (ROS) and AMPKα1 phosphorylation and decreased the phosphorylation of mTOR in MM cells. Additionally, co-treatment with AMPKα1 siRNA or the ROS scavenger N-acetyl-1-cysteine weakened the increase in autophagy that was induced by matrine. Finally, we demonstrated a synergistic inhibitory effect of matrine and rapamycin against MM in a xenograft mouse model. Collectively, our findings provided novel insights into the anti-MM efficacy of matrine and suggest that matrine induces autophagy by triggering ROS/AMPK/mTOR axis in MM cells, and combinatorial treatment of matrine and rapamycin may be a promising therapeutic strategy against MM.
Collapse
Affiliation(s)
- Xue Li
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Jifan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yixin Ling
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Yicheng Tan
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Laboratory Animal Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jialing Zhang
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Fanfan Li
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Shenghui Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Laboratory Animal Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China.
| | - Yixiang Han
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Song W, Yue Y, Zhang Q, Wang X. Copper homeostasis dysregulation in respiratory diseases: a review of current knowledge. Front Physiol 2024; 15:1243629. [PMID: 38883186 PMCID: PMC11176810 DOI: 10.3389/fphys.2024.1243629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/22/2024] [Indexed: 06/18/2024] Open
Abstract
Cu is an essential micronutrient for various physiological processes in almost all human cell types. Given the critical role of Cu in a wide range of cellular processes, the local concentrations of Cu and the cellular distribution of Cu transporter proteins in the lung are essential for maintaining a steady-state internal environment. Dysfunctional Cu metabolism or regulatory pathways can lead to an imbalance in Cu homeostasis in the lungs, affecting both acute and chronic pathological processes. Recent studies have identified a new form of Cu-dependent cell death called cuproptosis, which has generated renewed interest in the role of Cu homeostasis in diseases. Cuproptosis differs from other known cell death pathways. This occurs through the direct binding of Cu ions to lipoylated components of the tricarboxylic acid cycle during mitochondrial respiration, leading to the aggregation of lipoylated proteins and the subsequent downregulation of Fe-S cluster proteins, which causes toxic stress to the proteins and ultimately leads to cell death. Here, we discuss the impact of dysregulated Cu homeostasis on the pathogenesis of various respiratory diseases, including asthma, chronic obstructive pulmonary disease, idiopathic interstitial fibrosis, and lung cancer. We also discuss the therapeutic potential of targeting Cu. This study highlights the intricate interplay between copper, cellular processes, and respiratory health. Copper, while essential, must be carefully regulated to maintain the delicate balance between necessity and toxicity in living organisms. This review highlights the need to further investigate the precise mechanisms of copper interactions with infections and immune inflammation in the context of respiratory diseases and explore the potential of therapeutic strategies for copper, cuproptosis, and other related effects.
Collapse
Affiliation(s)
- Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueqing Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Levra S, Rosani U, Gnemmi I, Brun P, Leonardi A, Carriero V, Bertolini F, Balbi B, Profita M, Ricciardolo FLM, Di Stefano A. Impaired autophagy in the lower airways and lung parenchyma in stable COPD. ERJ Open Res 2023; 9:00423-2023. [PMID: 38111541 PMCID: PMC10726222 DOI: 10.1183/23120541.00423-2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/24/2023] [Indexed: 12/20/2023] Open
Abstract
Background There is increasing evidence of autophagy activation in COPD, but its role is complex and probably regulated through cell type-specific mechanisms. This study aims to investigate the autophagic process at multiple levels within the respiratory system, using different methods to clarify conflicting results reported so far. Methods This cross-sectional study was performed on bronchial biopsies and peripheral lung samples obtained from COPD patients (30 and 12 per sample type, respectively) and healthy controls (25 and 22 per sample type, respectively), divided by smoking history. Subjects were matched for age and smoking history. We analysed some of the most important proteins involved in autophagosome formation, such as LC3 and p62, as well as some molecules essential for lysosome function, such as lysosome-associated membrane protein 1 (LAMP1). Immunohistochemistry was used to assess the autophagic process in both sample types. ELISA and transcriptomic analysis were performed on lung samples. Results We found increased autophagic stimulus in smoking subjects, regardless of respiratory function. This was revealed by immunohistochemistry through a significant increase in LC3 (p<0.01) and LAMP1 (p<0.01) in small airway bronchiolar epithelium, alveolar septa and alveolar macrophages. Similar results were obtained in bronchial biopsy epithelium by evaluating LC3B (p<0.05), also increased in homogenate lung tissue using ELISA (p<0.05). Patients with COPD, unlike the others, showed an increase in p62 by ELISA (p<0.05). No differences were found in transcriptomics analysis. Conclusions Different techniques, applied at post-transcriptional level, confirm that cigarette smoke stimulates autophagy at multiple levels inside the respiratory system, and that autophagy failure may characterise COPD.
Collapse
Affiliation(s)
- Stefano Levra
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Umberto Rosani
- Department of Biology, University of Padova, Padua, Italy
| | - Isabella Gnemmi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno (Novara), Italy
| | - Paola Brun
- Department of Molecular Medicine, Histology Unit, University of Padova, Padua, Italy
| | - Andrea Leonardi
- Department of Neuroscience, Ophthalmology Unit, University of Padova, Padua, Italy
| | - Vitina Carriero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Francesca Bertolini
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Mirella Profita
- Section of Palermo, Institute of Translational Pharmacology, National Research Council (IFT-CNR), Palermo, Italy
| | - Fabio Luigi Massimo Ricciardolo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Section of Palermo, Institute of Translational Pharmacology, National Research Council (IFT-CNR), Palermo, Italy
- Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, Turin, Italy
- These authors contributed equally
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno (Novara), Italy
- These authors contributed equally
| |
Collapse
|
13
|
Zheng X, Liu W, Zhu Y, Kong W, Su X, Huang L, Cui Y, Sun G. Development and Validation of the Oxidative Stress Related lncRNAs for Prognosis in Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:4399. [PMID: 37686677 PMCID: PMC10487246 DOI: 10.3390/cancers15174399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Esophageal squamous cell cancer (ESCC) is an aggressive disease associated with a poor prognosis. Long non-coding RNAs (lncRNAs) and oxidative stress play crucial roles in tumor progression. We aimed to identify an oxidative stress-related lncRNA signature that could predict the prognosis in ESCC. In the GSE53625 dataset, we identified 332 differentially expressed lncRNAs (DElncRNAs) between ESCC and control samples, out of which 174 were oxidative stress-related DElncRNAs. Subsequently, seven oxidative stress-related DElncRNAs (CCR5AS, LINC01749, PCDH9-AS1, TMEM220-AS1, KCNMA1-AS1, SNHG1, LINC01672) were selected based on univariate and LASSO Cox to build a prognostic risk model, and their expression was detected by RT-qPCR. The model exhibited an excellent ability for the prediction of overall survival (OS) and other clinicopathological traits using Kaplan-Meier (K-M) survival curves, receiver operating characteristic (ROC) curves, and the Wilcoxon test. Additionally, analysis of infiltrated immune cells and immune checkpoints indicated differences in immune status between the two risk groups. Finally, the in vitro experiments showed that PCDH9-AS1 overexpression inhibited proliferation ability and promoted apoptosis and oxidative stress levels in ESCC cells. In conclusion, our study demonstrated that a novel oxidative stress-related DElncRNA prognostic model performed favorably in predicting ESCC patient prognosis and benefits personalized clinical applications.
Collapse
Affiliation(s)
- Xuan Zheng
- School of Public Health, North China University of Science and Technology, Tangshan 063200, China; (X.Z.); (Y.C.)
| | - Wei Liu
- School of Clinical Medicine, North China University of Science and Technology, Tangshan 063200, China; (W.L.); (Y.Z.); (W.K.); (X.S.); (L.H.)
| | - Yingze Zhu
- School of Clinical Medicine, North China University of Science and Technology, Tangshan 063200, China; (W.L.); (Y.Z.); (W.K.); (X.S.); (L.H.)
| | - Wenyue Kong
- School of Clinical Medicine, North China University of Science and Technology, Tangshan 063200, China; (W.L.); (Y.Z.); (W.K.); (X.S.); (L.H.)
| | - Xin Su
- School of Clinical Medicine, North China University of Science and Technology, Tangshan 063200, China; (W.L.); (Y.Z.); (W.K.); (X.S.); (L.H.)
| | - Lanxiang Huang
- School of Clinical Medicine, North China University of Science and Technology, Tangshan 063200, China; (W.L.); (Y.Z.); (W.K.); (X.S.); (L.H.)
| | - Yishuang Cui
- School of Public Health, North China University of Science and Technology, Tangshan 063200, China; (X.Z.); (Y.C.)
| | - Guogui Sun
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan 063000, China
- Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China
| |
Collapse
|
14
|
Albano GD, Montalbano AM, Gagliardo R, Profita M. Autophagy/Mitophagy in Airway Diseases: Impact of Oxidative Stress on Epithelial Cells. Biomolecules 2023; 13:1217. [PMID: 37627282 PMCID: PMC10452925 DOI: 10.3390/biom13081217] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Autophagy is the key process by which the cell degrades parts of itself within the lysosomes. It maintains cell survival and homeostasis by removing molecules (particularly proteins), subcellular organelles, damaged cytoplasmic macromolecules, and by recycling the degradation products. The selective removal or degradation of mitochondria is a particular type of autophagy called mitophagy. Various forms of cellular stress (oxidative stress (OS), hypoxia, pathogen infections) affect autophagy by inducing free radicals and reactive oxygen species (ROS) formation to promote the antioxidant response. Dysfunctional mechanisms of autophagy have been found in different respiratory diseases such as chronic obstructive lung disease (COPD) and asthma, involving epithelial cells. Several existing clinically approved drugs may modulate autophagy to varying extents. However, these drugs are nonspecific and not currently utilized to manipulate autophagy in airway diseases. In this review, we provide an overview of different autophagic pathways with particular attention on the dysfunctional mechanisms of autophagy in the epithelial cells during asthma and COPD. Our aim is to further deepen and disclose the research in this direction to stimulate the develop of new and selective drugs to regulate autophagy for asthma and COPD treatment.
Collapse
Affiliation(s)
- Giusy Daniela Albano
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Section of Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy; (A.M.M.); (R.G.); (M.P.)
| | | | | | | |
Collapse
|
15
|
Zhao X, Yue Y, Wang X, Zhang Q. Bioinformatics analysis of PLA2G7 as an immune-related biomarker in COPD by promoting expansion and suppressive functions of MDSCs. Int Immunopharmacol 2023; 120:110399. [PMID: 37270927 DOI: 10.1016/j.intimp.2023.110399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Immune mechanism is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the exact immune pathogenesis still remains unclear. This study aimed to identify the immune-related biomarkers in COPD through bioinformatics analysis and its potential molecular mechanism. METHODS GSE76925 was downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened, and enrichment analysis was performed. Single sample gene enrichment analysis (ssGSEA) was conducted to score the infiltration levels of immune cells. Weighted gene co-expression network analysis (WGCNA) was applied to identify trait-related modules and to further determine the key module-related DEGs. Moreover, the correlations between the key genes and clinical parameters and infiltration levels of immune cells were analyzed. Furthermore, expression of the selected one key gene, PLA2G7, the frequency of MDSCs, and the expression of MDSCs-related immunosuppressive mediators were determined among healthy, smokers and COPD patients. Finally, effects of PLA2G7 abnormal expression on the frequency of MDSCs and the expression of MDSCs-related immunosuppressive mediators were examined. RESULTS A total of 352 DEGs were observed. These DEGs were mainly related to RNA metabolism and positive regulation of organelle organization. In addition, the black module was the most correlated with COPD. Six key genes (ADAMDEC1, CCL19, CHIT1, MMP9, PLA2G7, and TM4SF19) were identified between the black module and DEGs. Serum Lp-PLA2 and mRNA levels of PLA2G7, MDSCs, and MDSCs-related immunosuppressive mediators were found to be upregulated in COPD patients compared to the controls. The expression of PLA2G7 represented positive impact on the frequency of MDSCs and the expression of MDSCs-related immunosuppressive mediators. CONCLUSION PLA2G7 may serve as a potential immune-related biomarker contributing to the progression of COPD by promoting expansion and suppressive functions of MDSCs.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, China
| | - Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, China
| | - Xueqing Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, China.
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, China.
| |
Collapse
|