1
|
Sabur A, Khan A, Borphukan B, Razzak A, Salimullah M, Khatun M. The Unique Capability of Endolysin to Tackle Antibiotic Resistance: Cracking the Barrier. J Xenobiot 2025; 15:19. [PMID: 39997362 PMCID: PMC11856723 DOI: 10.3390/jox15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/26/2025] Open
Abstract
The lack of new antibacterial medicines and the rapid rise in bacterial resistance to antibiotics pose a major threat to individuals and healthcare systems. Despite the availability of various antibiotics, bacterial resistance has emerged for almost every antibiotic discovered to date. The increasing prevalence of multidrug-resistant bacterial strains has rendered some infections nearly untreatable, posing severe challenges to health care. Thus, the development of alternatives to conventional antibiotics is critical for the treatment of both humans and food-producing animals. Endolysins, which are peptidoglycan hydrolases encoded by bacteriophages, represent a promising new class of antimicrobials. Preliminary research suggests that endolysins are more effective against Gram-positive bacteria than Gram-negative bacteria when administered exogenously, although they can still damage the cell wall of Gram-negative bacteria. Numerous endolysins have a modular domain structure that divides their binding and catalytic activity into distinct subunits, which helps maximize their bioengineering and potential drug development. Endolysins and endolysin-derived antimicrobials offer several advantages as antibiotic substitutes. They have a unique mechanism of action and efficacy against bacterial persisters (without requiring an active host metabolism); subsequently, they target both Gram-positive and Gram-negative bacteria (including antibiotic-resistant strains), and mycobacteria. Furthermore, there has been limited evidence of endolysin being resistant. Because these enzymes target highly conserved links, resistance may develop more slowly compared to traditional antibiotics. This review provides an overview and insight of the potential applications of endolysins as novel antimicrobials.
Collapse
Affiliation(s)
- Abdus Sabur
- Animal Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh;
| | - Angkan Khan
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Mohakhali, Dhaka 1212, Bangladesh;
| | - B. Borphukan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Abdur Razzak
- Bioassay Department, Eurofins Biopharma, Columbia, MO 65201, USA;
| | - M. Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh;
| | - Muslima Khatun
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh;
| |
Collapse
|
2
|
Jamil M, Khatoon A, Saleemi MK, Abbas RZ. Bacillus licheniformis as a protective agent in broiler chicken concurrently exposed to mycotoxins and necrotic enteritis: Toxicopathological and hematobiochemical perspectives. Microb Pathog 2025; 198:107108. [PMID: 39510360 DOI: 10.1016/j.micpath.2024.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Mycotoxins negatively impact intestinal cell viability, leading to the depletion of beneficial bacteria and rendering birds susceptible to intestinal infections such as necrotic enteritis (NE). Furthermore, they impair the effective digestion and absorption of nutrients. This study aimed to evaluate the effects of Bacillus licheniformis supplementation on broiler birds exposed to mycotoxins and subsequent necrotic enteritis infection. A total of 280 one-day-old broiler chicks were divided into eight groups and subjected to B. licheniformis supplementation (1 × 106 CFU/kg of feed) and mycotoxin exposure (aflatoxin and ochratoxin A, each at 150 ppb). Clostridium perfringens (3 × 1010 CFU/ml) was later administered to induce necrotic enteritis. This study evaluated body weight, feed intake, relative organ weights, hematological and serum biochemical parameters and performed histopathological examinations of liver, kidney and intestine. All the obtained data was statistically analyzed (P ≤ 0.05). The results demonstrated that B. licheniformis supplementation reduced the susceptibility to necrotic enteritis in broilers initially exposed to mycotoxins. Body weight and feed intake were significantly decreased in groups challenged with mycotoxins and necrotic enteritis, both individually and concurrently, compared to the control group. Relative weights of the liver, kidney and intestine were significantly higher in treatment groups. Hematological analysis revealed significantly lower erythrogram parameters (TEC, Hb, and PCV) in birds fed mycotoxin-contaminated feed, with or without necrotic enteritis. Hepatic and renal biomarkers were significantly elevated, and serum protein levels (total protein, albumin) were significantly lower. In contrast, birds supplemented with B. licheniformis and challenged with either mycotoxins or NE showed no significant differences in body weight, feed intake, erythrogram and leucogram compared to the control group. However, B. licheniformis did not mitigate these effects when supplemented in group with concurrent challenge of mycotoxins and NE, however, intensity of changes was reduced. In conclusion, B. licheniformis supplementation effectively alleviates the pathological changes induced by mycotoxins and necrotic enteritis when presented individually but is not sufficiently effective against the combined challenge of mycotoxins and necrotic enteritis.
Collapse
Affiliation(s)
- Maria Jamil
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture Faisalabad, 38040 Pakistan
| | - Aisha Khatoon
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture Faisalabad, 38040 Pakistan.
| | - Muhammad Kashif Saleemi
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture Faisalabad, 38040 Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture Faisalabad, 38040, Pakistan
| |
Collapse
|
3
|
Shamshirgaran MA, Golchin M. A comprehensive review of experimental models and induction protocols for avian necrotic enteritis over the past 2 decades. Front Vet Sci 2024; 11:1429637. [PMID: 39113718 PMCID: PMC11304537 DOI: 10.3389/fvets.2024.1429637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 08/10/2024] Open
Abstract
Necrotic enteritis (NE) is a severe gastrointestinal disease that poses a significant threat to the poultry industry. It leads to progressive damage to the small intestine, reduced performance, increased mortality rates, and substantial economic losses. With the removal of antimicrobial agents from chicken feed, there is an urgent need to find alternative approaches for NE control. Various approaches, including vaccination, prebiotics, probiotics, and plant-derived products, have been utilized to address NE in poultry management. To evaluate the efficacy of these preventive measures against NE, successful induction of NE is crucial to observe effects of these approaches in related studies. This study presents a comprehensive overview of the methods and approaches utilized for NE reproduction in related studies from 2004 to 2023. These considerations are the careful selection of a virulent Clostridium perfringens strain, preparation of challenge inoculum, choice of time and the route for challenge inoculum administration, and utilization of one or more predisposing factors to increase the rate of NE occurrence in birds under experiment. We also reviewed the different systems used for lesion scoring of NE-challenged birds. By gaining clarity on these fundamental parameters, researchers can make informed decisions regarding the selection of the most appropriate NE experimental design in their respective studies.
Collapse
|
4
|
van der Klein SAS, Evans C, Marchal JLM, Gibbs K. Elucidating the Varying Impact of Necrotic Enteritis Using Performance and Health Indicators in Broiler Infection Models. Avian Dis 2024; 67:326-339. [PMID: 38300654 DOI: 10.1637/aviandiseases-d-23-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 02/02/2024]
Abstract
Necrotic enteritis (NE) continues to be a significant burden to the poultry industry, compounded by pressure to reduce antibiotic use. Researchers use NE-challenge models to study the infection biology of NE and as screening tools to develop potential novel interventions. Currently, data are limited comparing such models between research establishments, and few indicate which quantitative metrics provide the most accurate measure for determining the efficacy of interventions. We compared data from 10 independent NE-challenge trials incorporating six challenge models employed in four geographical regions to determine the extent of variability in bird responses and to determine, using principal component analysis (PCA), which variables discriminated most effectively between nonchallenged control (NC) and challenged control (CC) groups. Response variables related to growth performance (weight gain, feed intake, feed conversion), health (mortality, lesion scores, NE induction rate), and, in three trials only, gut integrity (tight junction protein claudin-1, claudin-2, and zonula occludens-1 expression, coccidia counts, and intestinal permeability [assessed by FITC-dextran assay]). Treatments included a CC, which varied between trials (for example, in Eimeria predisposition, Clostridium perfringens strain, and days of inoculation), and a NC. The degree of response to challenge in CC birds varied significantly among models and trials. In all trials, lesion scores 1 to 4 days postchallenge were increased in CC vs. NC birds and varied both within and among models (by 0.29-1.17 points and 0.05-2.50 points, respectively). In addition, NE-related mortality at day 28 was increased in CC vs. NC, both within and among models (by 1.79%-4.72% and 0.02%-16.70%, respectively), and final (day 35 or 42) body weight was reduced by 3.9%-14.4% and overall FCR increased by up to 27% across trials (P , 0.05). A PCA on the combined dataset including only performance indicators failed to adequately differentiate NC and CC groups. However, the combination of performance and gut integrity variables and standardization of data by trial and phase achieved greater resolution between groups. This indicated that the inclusion of both types of variables in future NE-challenge studies would enable the generation of more robust predictions about intervention efficacy from different types of infection models. A final PCA based on a subset of key indicator variables, including body weight, feed intake, feed conversion ratio, mortality, and lesion score, achieved a good level of separation between NC and CC status of birds and could, with further research, be a useful supplement to existing approaches for assessing and predicting the NE status of birds in the field.
Collapse
Affiliation(s)
- S A S van der Klein
- Danisco Animal Nutrition & Health, IFF, Willem Einthovenstraat 4, 2342 BH, Oegstgeest, the Netherlands,
| | - C Evans
- Danisco Animal Nutrition & Health, IFF, Willem Einthovenstraat 4, 2342 BH, Oegstgeest, the Netherlands
| | - J L M Marchal
- Danisco Animal Nutrition & Health, IFF, Willem Einthovenstraat 4, 2342 BH, Oegstgeest, the Netherlands
| | - K Gibbs
- Danisco Animal Nutrition & Health, IFF, Willem Einthovenstraat 4, 2342 BH, Oegstgeest, the Netherlands
| |
Collapse
|
5
|
Yang T, Sun Y, Dai Z, Liu J, Xiao S, Liu Y, Wang X, Yang S, Zhang R, Yang C, Dai B. Microencapsulated Sodium Butyrate Alleviates Immune Injury and Intestinal Problems Caused by Clostridium Perfringens through Gut Microbiota. Animals (Basel) 2023; 13:3784. [PMID: 38136821 PMCID: PMC10741131 DOI: 10.3390/ani13243784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Microencapsulated sodium butyrate (MS-SB) is an effective sodium butyrate additive which can reduce the release of sodium butyrate (SB) in the fore gastrointestinal tract. In this study, we assess the protective effects and mechanisms of MS-SB in Clostridium perfringens (C. perfringens)-challenged broilers. Broiler chickens were pre-treated with SB or MS-SB for 56 days and then challenged with C. perfringens three times. Our results indicate that the addition of MS-SB or SB before C. perfringens infection significantly decreased the thymus index (p < 0.05). Serum IgA, IgY, and IgM concentrations were significantly increased (p < 0.05), while pro-inflammatory IL-1β, IL-6, and TNF-α were significantly decreased (p < 0.05) under MS-SB or SB supplementation. Compared with SB, MS-SB presented a stronger performance, with higher IgA content, as well as a lower IL-1β level when normal or C. perfringens-challenged. While C. perfringens challenge significantly decreased the villus height (p < 0.05), MS-SB or SB administration significantly increased the villus height and villus height/crypt depth (V/C ratio) (p < 0.05). Varying degrees of SB or MS-SB increased the concentrations of volatile fatty acids (VFAs) during C. perfringens challenge, where MS-SB presented a stronger performance, as evidenced by the higher content of isovaleric acid and valeric acid. Microbial analysis demonstrated that both SB or MS-SB addition and C. perfringens infection increase variation in the microbiota community. The results also indicate that the proportions of Bacteroides, Faecalibacterium, Clostridia, Ruminococcaceae, Alistipes, and Clostridia were significantly higher in the MS-SB addition group while, at same time, C. perfringens infection increased the abundance of Bacteroides and Alistipes. In summary, dietary supplementation with SB or MS-SB improves the immune status and morphology of intestinal villi, increases the production of VFAs, and modulates cecal microbiota in chickens challenged with C. perfringens. Moreover, MS-SB was more effective than SB with the same supplemental amount.
Collapse
Affiliation(s)
- Ting Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Yaowei Sun
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Zhenglie Dai
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Shiping Xiao
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Yulan Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Xiuxi Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Shenglan Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Caimei Yang
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Bing Dai
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| |
Collapse
|
6
|
He W, Kamely M, Wakaruk J, Goes EC, Korver DR, Barreda DR. Early-life β-glucan exposure enhances disease resilience of broiler chickens to a natural Clostridium perfringens infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104613. [PMID: 36496011 DOI: 10.1016/j.dci.2022.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/27/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Necrotic enteritis (NE) is an economically important disease in poultry. Colonization by the opportunistic pathogen C. perfringens occurs early after hatch and induces host immune tolerance, which allows it to persist as part of the bird's commensal microflora. β-glucan, a yeast cell wall component, is well characterized for its immunomodulatory capacity, and is a strong driver of innate immune memory. In this study, we assessed the effectiveness of β-glucan to reduce severity of NE, when co-administered with heat-killed C. perfringens via intra-abdominal route at day 1 of age. We found that this early-life exposure in the presence of β-glucan did not reduce intestinal C. perfringens loads or lesion severity during a subsequent NE outbreak. However, it improved ileal morphology, prevented liver and spleen weight decline, and preserved feed efficiency in challenged birds. Molecular analyses revealed metabolic changes consistent with innate immune memory. Together, our results suggest that β-glucan can reduce the negative impacts of NE by influencing the context in which C. perfringens is first encountered.
Collapse
Affiliation(s)
- Wanwei He
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammad Kamely
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy Wakaruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Emanuele C Goes
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas R Korver
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Liu L, Sui W, Yang Y, Liu L, Li Q, Guo A. Establishment of an Enteric Inflammation Model in Broiler Chickens by Oral Administration with Dextran Sulfate Sodium. Animals (Basel) 2022; 12:ani12243552. [PMID: 36552471 PMCID: PMC9774581 DOI: 10.3390/ani12243552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to evaluate the effectiveness of oral gavage of dextran sodium sulfate (DSS) to establish an enteric inflammation model in broilers. Forty 1-day-old male, yellow-feathered broilers were randomly divided into 2 groups with 5 replicates of 4 birds each for a 42-day trial. The experiment design used 2 groups: (1) the control group (CT), normal broilers fed a basal diet, and (2) the DSS group, DSS-treated broilers fed a basal diet. The DSS group received 1 mL of 2.5% DSS solution once a day by oral gavage from 21 to 29 days of age. The results showed that compared with those in CT, DSS treatment significantly increased histological scores for enteritis and mucosal damage at 29 and 42 days of age (p < 0.01) and the disease activity index (DAI) from 23 to 29 days of age (p < 0.01). DSS-treated broilers showed poor growth performance at 42 days of age, including decreased body weight and average daily gain and an increased feed conversion ratio (p < 0.01). DSS also caused gross lesions and histopathological damage in the jejunum of broilers, such as obvious hemorrhagic spots, loss of villus architecture, epithelial cell disruption, inflammatory cell infiltration, and decreased villus height. These results suggest that oral gavage of DSS is an effective method for inducing mild and non-necrotic enteric inflammation in broilers.
Collapse
Affiliation(s)
- Lixuan Liu
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
| | - Wenjing Sui
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
| | - Yajin Yang
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
| | - Lily Liu
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
| | - Qingqing Li
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
- Kunming Xianghao Technology Co., Ltd., Kunming 650204, China
| | - Aiwei Guo
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
- Correspondence:
| |
Collapse
|
8
|
Konieczka P, Żelechowska E, Przybylski W, Jaworska D, Sałek P, Kinsner M, Jankowski J. The Sarcoplasmic Protein Profile of Breast Muscle in Turkeys in Response to Different Dietary Ratios of Limiting Amino Acids and Clostridium perfringens-Induced Inflammation. Poult Sci 2022; 101:102195. [PMID: 36257075 PMCID: PMC9574763 DOI: 10.1016/j.psj.2022.102195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, the effects of the Arginine/Lysine (Arg/Lys) ratio in low- and high-methionine (Met) diets on the sarcoplasmic protein profile of breast muscles from turkeys reared under optimal or challenge (Clostridium perfringens infection) conditions were determined. One-day-old Hybrid Converter female turkey poults (216 in total) obtained from a commercial hatchery on hatching day, and on the basis of their average initial body weight were randomly allocated to 12 pens (4 m2 each; 2.0 m × 2.0 m) containing litter bedding and were reared over a 42-day experimental period. Diets with high levels of Lys contained approximately 1.80% and 1.65% Lys and were offered in two successive feeding periods (days 1–28 and days 29–42). The supplemental levels of Lys were consistent with the nutritional specifications for birds at their respective ages as established in the Management Guidelines for Raising Commercial Turkeys. The experiment was based on a completely randomized 3 × 2 × 2 factorial design with three levels of Arg (90%, 100% and 110%) relative to the content of dietary Met (30 or 45%) and without (−) or with (+) C. perfringens challenge at 34, 36, or 37 d of age. Meat samples were investigated in terms of pH, color, and sarcoplasmic protein profile. The experimental factors did not influence meat quality but the dietary Arg content affected meat color. The sarcoplasmic protein profile was influenced by all studied factors, and glycolytic enzymes were the most abundant. This study evidenced strong association between the challenge conditions and the involvement of glycolytic enzymes in cell metabolism, particularly in inflammatory processes, and DNA replication and maintenance in turkeys. The results showed an effect of C. perfringens infection and feeding with different doses of Arg and Met may lead to significant consequences in cell metabolism.
Collapse
Affiliation(s)
- Paweł Konieczka
- Department of Poultry Science and Apiculture, University of Warmia and Mazury, Olsztyn, Poland.
| | - Elżbieta Żelechowska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Wiesław Przybylski
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Danuta Jaworska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Sałek
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Misza Kinsner
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Jan Jankowski
- Department of Poultry Science and Apiculture, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|