1
|
Drouin PJ, Forbes SPA, Zedic AK, Mladen SPS, Tschakovsky ME. A critical assessment of sympathetic restraint in submaximal exercise: Implications for integrated cardiovascular circuit control in exercise. Exp Physiol 2025; 110:708-721. [PMID: 40131015 PMCID: PMC12053882 DOI: 10.1113/ep091436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/09/2025] [Indexed: 03/26/2025]
Abstract
Sympathetic restraint in exercising muscle is currently viewed as required to prevent 'excess' vasodilatation from exceeding the cardiac output (Q ̇ ${\dot{Q}} $ ) response, even in submaximal exercise. Certainly, muscle vasodilatory capacity dictates the requirement for sympathetic restraint when cardiac pumping capacity is approached. However, a similar role in submaximal exercise has at least two important implications for integrated cardiovascular control in exercise that have not been considered. First, such a role means that there is a 'set'Q ̇ ${\dot{Q}} $ response to a given exercise challenge that dictates the cardiovascular circuit flow and therefore the vasodilatation allowed such thatQ ̇ ${\dot{Q}} $ -peripheral blood flow balance and target arterial blood pressure are achieved. This represents a 'cardiocentric' model of integrated cardiovascular control, whereby the heart leads and the peripheral resistance vessel tone is modulated accordingly. Second, what is commonly described as 'tight' matching of exercising muscle oxygen delivery relative to demand would therefore require that theQ ̇ ${\dot{Q}} $ response is closely 'calibrated' to exercising muscle metabolic demand. This would require a means of driving cardiac activation via precise communication of exercising muscle metabolic demand. However, considerable evidence demonstrates that 'excess' vasodilatation in a healthy system simply leads to a matching increasedQ ̇ ${\dot{Q}} $ without arterial blood pressure compromise. This review re-examines the evidence for existence of sympathetic restraint in exercising muscle and its currently proposed role. We propose that key questions remain unanswered and that renewed investigation into sympathetic restraint and its role can lead to important advances in understanding integrated cardiovascular control in exercise.
Collapse
Affiliation(s)
- Patrick J. Drouin
- Human Vascular Control Laboratory, School of Kinesiology and Health StudiesQueen's UniversityKingstonOntarioCanada
| | - Stacey P. A. Forbes
- Human Vascular Control Laboratory, School of Kinesiology and Health StudiesQueen's UniversityKingstonOntarioCanada
| | - Abby K. Zedic
- Human Vascular Control Laboratory, School of Kinesiology and Health StudiesQueen's UniversityKingstonOntarioCanada
| | - Stuart P. S. Mladen
- Human Vascular Control Laboratory, School of Kinesiology and Health StudiesQueen's UniversityKingstonOntarioCanada
| | - Michael E. Tschakovsky
- Human Vascular Control Laboratory, School of Kinesiology and Health StudiesQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
2
|
Lampkemeyer M, Kell J, Börß V, Claussen T, Spahiu F, Ottlik M, Helbig LC, Crandall CG, Stöhr EJ. Limited matching of the cardiac output response to the peripheral demand of heat stress and exercise. Exp Physiol 2025; 110:722-734. [PMID: 40111291 PMCID: PMC12053775 DOI: 10.1113/ep092688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
It is widely accepted that cardiac output matches the prevailing peripheral demand in healthy humans. However, it remains unknown whether stroke volume and heart rate are regulated interdependently to arrive at a specific cardiac output. The aim of this study was to determine whether the healthy human heart responds specifically according to the peripheral demands of heat stress and exercise. Eleven healthy humans (women/men n = 3/8; age = 26 ± 2 years; body mass = 73 ± 11 kg) underwent leg heat stress and cycling exercise (60 W), with and without blood flow restriction (pressure set at the prevailing mean arterial pressure of the individual). Cardiac output was measured with triplane echocardiography. Additionally, haemodynamics, oxygen consumption, carbon dioxide production and lactate were assessed. Data were analysed using two-way repeated-measures ANOVA. Despite stable heat and exercise demands, cardiac output decreased significantly with blood flow restriction in both conditions (Δ-0.87 and -1.03 L min-1, 17% and 11%, respectively, p = 0.01), owing to a decline in end-diastolic volume (p < 0.0001) and stroke volume (p < 0.0001) not sufficiently compensated for by an increase in heart rate (p = 0.001). Importantly, these responses were accompanied by an increased rate of skin temperature rise (p = 0.04) during heat stress and a significantly greater rise in circulating lactate (p < 0.0001) during exercise. The cardiac output response to local heat stress and submaximal exercise does not appear to be entirely specific to the peripheral thermal and energetic requirements. This finding supports the theory that even the healthy heart does not coordinate stroke volume and heart rate to arrive at a specific target output.
Collapse
Affiliation(s)
| | - Jonas Kell
- COR‐HELIX, Institute of Sport ScienceLeibniz UniversityHannoverGermany
| | - Veit Börß
- COR‐HELIX, Institute of Sport ScienceLeibniz UniversityHannoverGermany
| | - Tobias Claussen
- COR‐HELIX, Institute of Sport ScienceLeibniz UniversityHannoverGermany
| | - Fabian Spahiu
- COR‐HELIX, Institute of Sport ScienceLeibniz UniversityHannoverGermany
| | - Michelle Ottlik
- COR‐HELIX, Institute of Sport ScienceLeibniz UniversityHannoverGermany
| | - Lars C. Helbig
- COR‐HELIX, Institute of Sport ScienceLeibniz UniversityHannoverGermany
| | - Craig G. Crandall
- Division of Cardiology, Department of Internal MedicineUniversity of Texas Southwestern Medical Center, Institute for Exercise and Environmental MedicineDallasTexasUSA
| | - Eric J. Stöhr
- COR‐HELIX, Institute of Sport ScienceLeibniz UniversityHannoverGermany
- Division of CardiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
3
|
Wu S, Qiao L, Liu H, Li YL, Wang R, Yin Y, Li E, Wang L, Guan X, Yin L, Liu Q, Peng X, Zhang Y, Yang Z, Zuo L, Zhang C. Age related gut microbiota regulates energy-related metabolism to influence natural aging phenotypes in the heart. Exp Gerontol 2025; 203:112734. [PMID: 40118127 DOI: 10.1016/j.exger.2025.112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
As the population ages, problems pertaining to health and life expectancy due to the aging heart have become increasingly prominent. The gut microbiota has become a potential therapeutic target in several diseases, including cardiovascular diseases. Current studies on the roles of the gut microbiota in the cardiovascular system have focused mainly on cardiovascular diseases; therefore, the effects of the gut microbiota on the natural aging of myocardial tissue remain unclear. The present study aimed to explore the roles and mechanisms of the gut microbiota and related metabolites in the natural aging of the heart. Animal models of fecal microbiota transplantation (FMT) were established in elderly and young rats. 16S rRNA sequencing revealed that the gut microbiota of the recipients shifted toward the profile of the donors, with concomitant cardiac structure and diastolic function changes detected via ultrasound and positron emission tomography-computed tomography (PET-CT). A group of significantly enriched myocardial metabolites detected by LC/MS were involved in the fatty acid β-oxidation process. Together with altered glucose uptake, as revealed by PET-CT, changes in ATP content and mitochondrial structure further verified a metabolic difference related to energy among rats transplanted with the gut microbiota from donors of different ages. This study demonstrated that gut microbes may participate in the physiological aging process of the rat heart by regulating oxidative stress and autophagy. The gut microbiota has been shown to be involved in the natural aging of the heart at multiple levels, from the organ level to the metabolically plastic myocardiocytes and associated molecules.
Collapse
Affiliation(s)
- Shufen Wu
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China; Department of Pediatrics, Shanxi Medical University, Taiyuan, China
| | - Lingran Qiao
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Haiyan Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan-Li Li
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yiru Yin
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China; Translational Medicine Research Center of Shanxi Medical University, Taiyuan, China
| | - Enhui Li
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Lele Wang
- Department of Pediatrics, Shanxi Medical University, Taiyuan, China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Litian Yin
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Qinghua Liu
- Translational Medicine Research Center of Shanxi Medical University, Taiyuan, China
| | - Xiaoyang Peng
- Translational Medicine Research Center of Shanxi Medical University, Taiyuan, China
| | - Yutong Zhang
- Basic Medical School, Shanxi Medical University, Taiyuan, China
| | - Zhuanfang Yang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Lin Zuo
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China.
| | - Ce Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
4
|
Alrumaihi F, Al-Doaiss AA, Ullah F, Alwanian WM, Alharbi HO, Alassaf FA, Alfifi SM, Alshabrmi FM, Aba Alkhay FF, Alatawi EA. Histone modifications as molecular drivers of cardiac aging: Metabolic alterations, epigenetic mechanisms, and emerging therapeutic strategies. Curr Probl Cardiol 2025; 50:103056. [PMID: 40246000 DOI: 10.1016/j.cpcardiol.2025.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Cardiac aging represents a complex pathophysiological process characterized by progressive metabolic recombination and functional dedifferentiation of cardiac cellular components. Despite advancements in cardiovascular medicine, a critical research gap persists in understanding the precise epigenetic mechanisms that drive age-related cardiac dysfunction. This comprehensive review elucidates the pivotal role of histone modifications-including methylation, acetylation, and phosphorylation-in orchestrating the molecular landscape of cardiac aging. Significant gaps remain in our understanding of site-specific histone modification impacts on cardiac function, the intricate crosstalk between different histone marks, and their integration with metabolic alterations that characterize the aging myocardium. Current evidence reveals a dynamic epigenetic signature in aged cardiac tissue, typically featuring increased transcriptional activation markers alongside decreased repressive marks, though context-dependent variations exist. This review explores how histone modifications influence critical pathways governing mitochondrial dysfunction, DNA damage repair, inflammation, and fibrosis in aging hearts. Innovative therapeutic approaches targeting specific histone-modifying enzymes promise to mitigate age-related cardiac deterioration, potentially revolutionizing treatment paradigms for cardiovascular diseases in aging populations. Addressing these knowledge gaps requires multidimensional approaches that integrate epigenomics with functional assessment of cardiac performance.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amin A Al-Doaiss
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Faqir Ullah
- Department of Pharmacy, IQRA University Chak Shehzad Campus, Islamabad.
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fai Abdullah Alassaf
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Somayah Mohammad Alfifi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris F Aba Alkhay
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Eid A Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| |
Collapse
|
5
|
Stöhr EJ. Controversies related to the cardiac origin of preeclampsia - Does a mother's heart know? Best Pract Res Clin Obstet Gynaecol 2025; 99:102600. [PMID: 40132365 DOI: 10.1016/j.bpobgyn.2025.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
A potential role of cardiac output has been proposed in the development of preeclampsia. Given that cardiac output may contribute to hypertensive states in the general population, a contribution from cardiac output to preeclampsia is plausible. However, the interplay between the heart and the periphery is complex, and some responses in cardiac output during pregnancy are surprising even when pregnancy progresses without complications. Therefore, this review focuses on recent evidence that has provided new insight into cardiac output in healthy humans including pregnancy, and offers some suggestions about future studies in preeclamptic patients.
Collapse
Affiliation(s)
- Eric J Stöhr
- COR-HELIX, Institute of Sport Science, Leibniz University Hannover, Am Moritzwinkel 6, 30167, Hannover, Germany.
| |
Collapse
|
6
|
Hooijmans MT, Jeneson JA, Jørstad HT, Bakermans AJ. Exercise MR of Skeletal Muscles, the Heart, and the Brain. J Magn Reson Imaging 2025; 61:535-560. [PMID: 38726984 PMCID: PMC11706321 DOI: 10.1002/jmri.29445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 01/11/2025] Open
Abstract
Magnetic resonance (MR) imaging (MRI) is routinely used to evaluate organ morphology and pathology in the human body at rest or in combination with pharmacological stress as an exercise surrogate. With MR during actual physical exercise, we can assess functional characteristics of tissues and organs under real-life stress conditions. This is particularly relevant in patients with limited exercise capacity or exercise intolerance, and where complaints typically present only during physical activity, such as in neuromuscular disorders, inherited metabolic diseases, and heart failure. This review describes practical and physiological aspects of exercise MR of skeletal muscles, the heart, and the brain. The acute effects of physical exercise on these organs are addressed in the light of various dynamic quantitative MR readouts, including phosphorus-31 MR spectroscopy (31P-MRS) of tissue energy metabolism, phase-contrast MRI of blood flow and muscle contraction, real-time cine MRI of cardiac performance, and arterial spin labeling MRI of muscle and brain perfusion. Exercise MR will help advancing our understanding of underlying mechanisms that contribute to exercise intolerance, which often proceed structural and anatomical changes in disease. Its potential to detect disease-driven alterations in organ function, perfusion, and metabolism under physiological stress renders exercise MR stress testing a powerful noninvasive imaging modality to aid in disease diagnosis and risk stratification. Although not yet integrated in most clinical workflows, and while some applications still require thorough validation, exercise MR has established itself as a comprehensive and versatile modality for characterizing physiology in health and disease in a noninvasive and quantitative way. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Melissa T. Hooijmans
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Human Movement Sciences, Faculty of Behavioral and Movement SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Jeroen A.L. Jeneson
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
- Center for Child Development and Exercise, Wilhelmina Children's Hospital/Division of Child HealthUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Harald T. Jørstad
- Department of CardiologyAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Adrianus J. Bakermans
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
7
|
Kucsera D, Ruppert M, Sayour NV, Tóth VE, Kovács T, Hegedűs ZI, Onódi Z, Fábián A, Kovács A, Radovits T, Merkely B, Pacher P, Ferdinandy P, Varga ZV. NASH triggers cardiometabolic HFpEF in aging mice. GeroScience 2024; 46:4517-4531. [PMID: 38630423 PMCID: PMC11336017 DOI: 10.1007/s11357-024-01153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/20/2024] [Indexed: 08/22/2024] Open
Abstract
Both heart failure with preserved ejection fraction (HFpEF) and non-alcoholic fatty liver disease (NAFLD) develop due to metabolic dysregulation, has similar risk factors (e.g., insulin resistance, systemic inflammation) and are unresolved clinical challenges. Therefore, the potential link between the two disease is important to study. We aimed to evaluate whether NASH is an independent factor of cardiac dysfunction and to investigate the age dependent effects of NASH on cardiac function. C57Bl/6 J middle aged (10 months old) and aged mice (24 months old) were fed either control or choline deficient (CDAA) diet for 8 weeks. Before termination, echocardiography was performed. Upon termination, organ samples were isolated for histological and molecular analysis. CDAA diet led to the development of NASH in both age groups, without inducing weight gain, allowing to study the direct effect of NASH on cardiac function. Mice with NASH developed hepatomegaly, fibrosis, and inflammation. Aged animals had increased heart weight. Conventional echocardiography revealed normal systolic function in all cohorts, while increased left ventricular volumes in aged mice. Two-dimensional speckle tracking echocardiography showed subtle systolic and diastolic deterioration in aged mice with NASH. Histologic analyses of cardiac samples showed increased cross-sectional area, pronounced fibrosis and Col1a1 gene expression, and elevated intracardiac CD68+ macrophage count with increased Il1b expression. Conventional echocardiography failed to reveal subtle change in myocardial function; however, 2D speckle tracking echocardiography was able to identify diastolic deterioration. NASH had greater impact on aged animals resulting in cardiac hypertrophy, fibrosis, and inflammation.
Collapse
Affiliation(s)
- Dániel Kucsera
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Nabil V Sayour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Viktória E Tóth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Tamás Kovács
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Zsombor I Hegedűs
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Alexandra Fábián
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Kovács
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/National Institute On Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary.
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary.
| |
Collapse
|
8
|
Chen W, Rams D, Zając M, Albalawi R, Atkinson AJ, Aminu AJ, Mazur M, Hołda MK, Walocha J, Gil K, Kuniewicz M, Dobrzynski H. Morphology of human sinoatrial node and its surrounding right atrial muscle in the global obesity pandemic-does fat matter? Front Med (Lausanne) 2024; 11:1415065. [PMID: 38966523 PMCID: PMC11223615 DOI: 10.3389/fmed.2024.1415065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction The sinus node (SN) is the main pacemaker site of the heart, located in the upper right atrium at the junction of the superior vena cava and right atrium. The precise morphology of the SN in the human heart remains relatively unclear especially the SN microscopical anatomy in the hearts of aged and obese individuals. In this study, the histology of the SN with surrounding right atrial (RA) muscle was analyzed from young non-obese, aged non-obese, aged obese and young obese individuals. The impacts of aging and obesity on fibrosis, apoptosis and cellular hypertrophy were investigated in the SN and RA. Moreover, the impact of obesity on P wave morphology in ECG was also analyzed to determine the speed and conduction of the impulse generated by the SN. Methods Human SN/RA specimens were dissected from 23 post-mortem hearts (preserved in 4% formaldehyde solution), under Polish local ethical rules. The SN/RA tissue blocks were embedded in paraffin and histologically stained with Masson's Trichrome. High and low-magnification images were taken, and analysis was done for appropriate statistical tests on Prism (GraphPad, USA). 12-lead ECGs from 14 patients under Polish local ethical rules were obtained. The P wave morphologies from lead II, lead III and lead aVF were analyzed. Results Compared to the surrounding RA, the SN in all four groups has significantly more connective tissue (P ≤ 0.05) (young non-obese individuals, aged non-obese individuals, aged obese individuals and young obese individuals) and significantly smaller nodal cells (P ≤ 0.05) (young non-obese individuals, aged non-obese individuals, aged obese individuals, young obese individuals). In aging, overall, there was a significant increase in fibrosis, apoptosis, and cellular hypertrophy in the SN (P ≤ 0.05) and RA (P ≤ 0.05). Obesity did not further exacerbate fibrosis but caused a further increase in cellular hypertrophy (SN P ≤ 0.05, RA P ≤ 0.05), especially in young obese individuals. However, there was more infiltrating fat within the SN and RA bundles in obesity. Compared to the young non-obese individuals, the young obese individuals showed decreased P wave amplitude and P wave slope in aVF lead. Discussion Aging and obesity are two risk factors for extensive fibrosis and cellular hypertrophy in SN and RA. Obesity exacerbates the morphological alterations, especially hypertrophy of nodal and atrial myocytes. These morphological alterations might lead to functional alterations and eventually cause cardiovascular diseases, such as SN dysfunction, atrial fibrillation, bradycardia, and heart failure.
Collapse
Affiliation(s)
- Weixuan Chen
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniel Rams
- Department of Anatomy, Jagiellonian University, Kraków, Poland
| | - Maciej Zając
- Department of Anatomy, Jagiellonian University, Kraków, Poland
| | - Raghad Albalawi
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew J. Atkinson
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Abimbola J. Aminu
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Mateusz K. Hołda
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
- Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
| | - Jerzy Walocha
- Department of Anatomy, Jagiellonian University, Kraków, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Kuniewicz
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
- Department of Anatomy, Jagiellonian University, Kraków, Poland
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
- Department of Anatomy, Jagiellonian University, Kraków, Poland
| |
Collapse
|
9
|
Hu M, Zhang X, Gao YP, Hu YX, Teng T, Wang SS, Tang QZ. Isthmin-1 Improves Aging-Related Cardiac Dysfunction in Mice through Enhancing Glycolysis and SIRT1 Deacetylase Activity. Aging Dis 2024; 15:2682-2696. [PMID: 38300636 PMCID: PMC11567257 DOI: 10.14336/ad.2024.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/13/2024] [Indexed: 02/02/2024] Open
Abstract
Aging-related cardiac dysfunction poses a major risk factor of mortality for elderly populations, however, efficient treatment for aging-related cardiac dysfunction is far from being known. Isthmin-1 (ISM1) is a novel adipokine that promotes glucose uptake and acts indispensable roles in restraining inflammatory and fibrosis. The present study aims to investigate the potential role and molecular mechanism of ISM1 in aging-related cardiac dysfunction. Aged and matched young mice were overexpressed or silenced with ISM1 to investigate the role of ISM1 in aging-related cardiac dysfunction. Moreover, H9C2 cells were stimulated with D-galactose (D-gal) to examine the role of ISM1 in vitro. Herein, we found that cardiac-specific overexpression of ISM1 significantly mitigated insulin resistance by promoting glucose uptake in aging mice. ISM1 overexpression alleviated while ISM1 silencing deteriorated cellular senescence, cardiac inflammation, and dysfunction in natural and accelerated cardiac aging. Mechanistically, ISM1 promoted glycolysis and activated Sirtuin-1 (SIRT1) through increasing glucose uptake. ISM1 increased glucose uptake via translocating GLUT4 to the surface, thereby enhancing glycolytic flux and hexosamine biosynthetic pathway (HBP) flux, ultimately leading to increased SIRT1 activity through O-GlcNAc modification. ISM1 may serve as a novel potential therapeutic target for preventing aging-related cardiac disease in elderly populations. ISM1 prevents aging-related cardiac dysfunction by promoting glycolysis and enhancing SIRT1 deacetylase activity, making it a promising therapeutic target for aging-related cardiac disease.
Collapse
Affiliation(s)
- Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Xin Zhang
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi-Peng Gao
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Yu-Xin Hu
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Sha-Sha Wang
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| |
Collapse
|
10
|
Breenfeldt Andersen A, Nordsborg NB, Bonne TC, Bejder J. Contemporary blood doping-Performance, mechanism, and detection. Scand J Med Sci Sports 2024; 34:e14243. [PMID: 36229224 DOI: 10.1111/sms.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 10/17/2022]
Abstract
Blood doping is prohibited for athletes but has been a well-described practice within endurance sports throughout the years. With improved direct and indirect detection methods, the practice has allegedly moved towards micro-dosing, that is, reducing the blood doping regime amplitude. This narrative review evaluates whether blood doping, specifically recombinant human erythropoietin (rhEpo) treatment and blood transfusions are performance-enhancing, the responsible mechanism as well as detection possibilities with a special emphasis on micro-dosing. In general, studies evaluating micro-doses of blood doping are limited. However, in randomized, double-blinded, placebo-controlled trials, three studies find that infusing as little as 130 ml red blood cells or injecting 9 IU × kg bw-1 rhEpo three times per week for 4 weeks improve endurance performance ~4%-6%. The responsible mechanism for a performance-enhancing effect following rhEpo or blood transfusions appear to be increased O2 -carrying capacity, which is accompanied by an increased muscular O2 extraction and likely increased blood flow to the working muscles, enabling the ability to sustain a higher exercise intensity for a given period. Blood doping in micro-doses challenges indirect detection by the Athlete Biological Passport, albeit it can identify ~20%-60% of the individuals depending on the sample timing. However, novel biomarkers are emerging, and some may provide additive value for detection of micro blood doping such as the immature reticulocytes or the iron regulatory hormones hepcidin and erythroferrone. Future studies should attempt to validate these biomarkers for implementation in real-world anti-doping efforts and continue the biomarker discovery.
Collapse
Affiliation(s)
- Andreas Breenfeldt Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Section for Sport Science, Aarhus University, Aarhus, Denmark
| | | | - Thomas Christian Bonne
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Gillet A, Forton K, Lamotte M, Macera F, Roussoulières A, Louis P, Ibrahim M, Dewachter C, van de Borne P, Deboeck G. Effects of High-Intensity Interval Training Using the 3/7 Resistance Training Method on Metabolic Stress in People with Heart Failure and Coronary Artery Disease: A Randomized Cross-Over Study. J Clin Med 2023; 12:7743. [PMID: 38137812 PMCID: PMC10743906 DOI: 10.3390/jcm12247743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The 3/7 resistance training (RT) method involves performing sets with increasing numbers of repetitions, and shorter rest periods than the 3x9 method. Therefore, it could induce more metabolic stress in people with heart failure with reduced ejection fraction (HFrEF) or coronary artery disease (CAD). This randomized cross-over study tested this hypothesis. Eleven individuals with HFrEF and thirteen with CAD performed high-intensity interval training (HIIT) for 30 min, followed by 3x9 or 3/7 RT according to group allocation. pH, HCO3-, lactate, and growth hormone were measured at baseline, after HIIT, and after RT. pH and HCO3- decreased, and lactate increased after both RT methods. In the CAD group, lactate increased more (6.99 ± 2.37 vs. 9.20 ± 3.57 mmol/L, p = 0.025), pH tended to decrease more (7.29 ± 0.06 vs. 7.33 ± 0.04, p = 0.060), and HCO3- decreased more (18.6 ± 3.1 vs. 21.1 ± 2.5 mmol/L, p = 0.004) after 3/7 than 3x9 RT. In the HFrEF group, lactate, pH, and HCO3- concentrations did not differ between RT methods (all p > 0.248). RT did not increase growth hormone in either patient group. In conclusion, the 3/7 RT method induced more metabolic stress than the 3x9 method in people with CAD but not HFrEF.
Collapse
Affiliation(s)
- Alexis Gillet
- Department of Cardiology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (A.G.); (K.F.); (M.L.); (F.M.); (A.R.); (C.D.); (P.v.d.B.)
- Department of Physiotherapy, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
- Research Unit in Rehabilitation Sciences, Faculty of Motor Skills Science, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Kevin Forton
- Department of Cardiology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (A.G.); (K.F.); (M.L.); (F.M.); (A.R.); (C.D.); (P.v.d.B.)
- Department of Physiotherapy, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| | - Michel Lamotte
- Department of Cardiology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (A.G.); (K.F.); (M.L.); (F.M.); (A.R.); (C.D.); (P.v.d.B.)
- Department of Physiotherapy, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| | - Francesca Macera
- Department of Cardiology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (A.G.); (K.F.); (M.L.); (F.M.); (A.R.); (C.D.); (P.v.d.B.)
| | - Ana Roussoulières
- Department of Cardiology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (A.G.); (K.F.); (M.L.); (F.M.); (A.R.); (C.D.); (P.v.d.B.)
| | - Pauline Louis
- Department of Physiotherapy, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| | - Malko Ibrahim
- Research Unit in Rehabilitation Sciences, Faculty of Motor Skills Science, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Céline Dewachter
- Department of Cardiology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (A.G.); (K.F.); (M.L.); (F.M.); (A.R.); (C.D.); (P.v.d.B.)
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Philippe van de Borne
- Department of Cardiology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (A.G.); (K.F.); (M.L.); (F.M.); (A.R.); (C.D.); (P.v.d.B.)
| | - Gaël Deboeck
- Research Unit in Rehabilitation Sciences, Faculty of Motor Skills Science, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| |
Collapse
|
12
|
Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications. Signal Transduct Target Ther 2023; 8:114. [PMID: 36918543 PMCID: PMC10015017 DOI: 10.1038/s41392-023-01378-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Cardiac aging is evident by a reduction in function which subsequently contributes to heart failure. The metabolic microenvironment has been identified as a hallmark of malignancy, but recent studies have shed light on its role in cardiovascular diseases (CVDs). Various metabolic pathways in cardiomyocytes and noncardiomyocytes determine cellular senescence in the aging heart. Metabolic alteration is a common process throughout cardiac degeneration. Importantly, the involvement of cellular senescence in cardiac injuries, including heart failure and myocardial ischemia and infarction, has been reported. However, metabolic complexity among human aging hearts hinders the development of strategies that targets metabolic susceptibility. Advances over the past decade have linked cellular senescence and function with their metabolic reprogramming pathway in cardiac aging, including autophagy, oxidative stress, epigenetic modifications, chronic inflammation, and myocyte systolic phenotype regulation. In addition, metabolic status is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and chronic inflammation. However, further elucidation of the metabolism involvement in cardiac degeneration is still needed. Thus, deciphering the mechanisms underlying how metabolic reprogramming impacts cardiac aging is thought to contribute to the novel interventions to protect or even restore cardiac function in aging hearts. Here, we summarize emerging concepts about metabolic landscapes of cardiac aging, with specific focuses on why metabolic profile alters during cardiac degeneration and how we could utilize the current knowledge to improve the management of cardiac aging.
Collapse
|
13
|
Drouin PJ, Liu T, Lew LA, McGarity-Shipley E, Tschakovsky ME. The 'normal' adjustment of oxygen delivery to small muscle mass exercise is not optimized for muscle contractile function. J Physiol 2023; 601:783-799. [PMID: 36644910 DOI: 10.1113/jp283933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023] Open
Abstract
Oxygen delivery is viewed as tightly coupled to demand in exercise below critical power because increasing oxygen delivery does not increase V O 2 ${V_{{O_2}}}$ . However, whether the 'normal' adjustment of oxygen delivery to small muscle mass exercise in the heavy intensity domain is optimal for excitation-contraction coupling is currently unknown. In 20 participants (10 female), a remote skeletal muscle (i.e. tibialis anterior) metaboreflex was (Hyperperfusion condition) or was not (Control condition) activated for 4 min during both force of contraction (experimental model 1) and muscle activation-targeted (experimental model 2) rhythmic forearm handgrip exercise. Analysis was completed on the combined data from both experimental models. After 30 s of remote skeletal muscle metaboreflex activation, mean arterial blood pressure, forearm blood flow and muscle oxygenation were increased and remained increased until metaboreflex discontinuation. While oxygen delivery was elevated, the muscle activation to force of contraction ratio was improved. Upon metaboreflex discontinuation, forearm oxygen delivery and the muscle activation and force of contraction ratio rapidly (within 30 s) returned to control levels. These findings demonstrate that (a) the metaboreflex was effective at increasing forearm muscle oxygen delivery and oxygenation, (b) the muscle activation to force of contraction ratio was improved with increased oxygen delivery, and (c) in the heavy exercise intensity domain, the normal matching of oxygen delivery to metabolic demand is not optimal for muscle excitation-contraction coupling. These results suggest that the nature of vasoregulation in exercising muscle is such that it does not support optimal perfusion for excitation-contraction coupling. KEY POINTS: Oxygen delivery is viewed as tightly coupled to demand in exercise below critical power because increasing oxygen delivery does not increase the rate of oxygen uptake. Whether the 'normal' adjustment of oxygen delivery in small muscle mass exercise below critical power is optimal for excitation-contraction coupling is not known. Here we show in humans that increasing oxygen delivery above 'normal' improves excitation-contraction coupling. These results suggest that, in the heavy exercise intensity domain, the 'normal' matching of oxygen delivery to metabolic demand is not optimal for muscle excitation-contraction coupling. Therefore, the nature of vasoregulation in exercising muscle is such that it does not support optimal perfusion for excitation-contraction coupling.
Collapse
Affiliation(s)
- Patrick J Drouin
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Taylor Liu
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Lindsay A Lew
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Ellen McGarity-Shipley
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Michael E Tschakovsky
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
14
|
Theodorakopoulou MP, Zafeiridis A, Dipla K, Faitatzidou D, Koutlas A, Alexandrou ME, Doumas M, Papagianni A, Sarafidis P. Muscle Oxygenation and Microvascular Reactivity Across Different Stages of CKD: A Near-Infrared Spectroscopy Study. Am J Kidney Dis 2023; 81:655-664.e1. [PMID: 36608922 DOI: 10.1053/j.ajkd.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/19/2022] [Indexed: 01/05/2023]
Abstract
RATIONALE & OBJECTIVE Previous studies in chronic kidney disease (CKD) showed that vascular dysfunction in different circulatory beds progressively deteriorates with worsening CKD severity. This study evaluated muscle oxygenation and microvascular reactivity at rest, during an occlusion-reperfusion maneuver, and during exercise in patients with different stages of CKD versus controls. STUDY DESIGN Observational controlled study. SETTING & PARTICIPANTS 90 participants (18 per CKD stage 2, 3a, 3b, and 4, as well as 18 controls). PREDICTOR CKD stage. OUTCOME The primary outcome was muscle oxygenation at rest. Secondary outcomes were muscle oxygenation during occlusion-reperfusion and exercise, and muscle microvascular reactivity (hyperemic response). ANALYTICAL APPROACH Continuous measurement of muscle oxygenation [tissue saturation index (TSI)] using near-infrared spectroscopy at rest, during occlusion-reperfusion, and during a 3-minute handgrip exercise (at 35% of maximal voluntary contraction). Aortic pulse wave velocity and carotid intima-media thickness were also recorded. RESULTS Resting muscle oxygenation did not differ across the study groups (controls: 64.3% ± 2.9%; CKD stage 2: 63.8% ± 4.2%; CKD stage 3a: 64.1% ± 4.1%; CKD stage 3b: 62.3% ± 3.3%; CKD stage 4: 62.7% ± 4.3%; P=0.6). During occlusion, no significant differences among groups were detected in the TSI occlusion magnitude and TSI occlusion slope. However, during reperfusion the maximum TSI value was significantly lower in groups of patients with more advanced CKD stages compared with controls, as was the hyperemic response (controls: 11.2%±3.7%; CKD stage 2: 8.3%±4.6%; CKD stage 3: 7.8%±5.5%; CKD stage 3b: 7.3%±4.4%; CKD stage 4: 7.2%±3.3%; P=0.04). During the handgrip exercise, the average decline in TSI was marginally lower in patients with CKD than controls, but no significant differences were detected across CKD stages. LIMITATIONS Moderate sample size, cross-sectional evaluation. CONCLUSIONS Although no differences were observed in muscle oxygenation at rest or during occlusion, the microvascular hyperemic response during reperfusion was significantly impaired in CKD and was most prominent in more advanced CKD stages. This impaired ability of microvasculature to respond to stimuli may be a crucial component of the adverse vascular profile of patients with CKD and may contribute to exercise intolerance.
Collapse
Affiliation(s)
- Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Zafeiridis
- Exercise Physiology & Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Dipla
- Exercise Physiology & Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Danai Faitatzidou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Angelos Koutlas
- Exercise Physiology & Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria-Eleni Alexandrou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michael Doumas
- Second Propedeutic Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
15
|
Stöhr EJ. The healthy heart does not control a specific cardiac output: a plea for a new interpretation of normal cardiac function. Am J Physiol Heart Circ Physiol 2022; 323:H1239-H1243. [PMID: 36269649 DOI: 10.1152/ajpheart.00535.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The current evidence suggests that the healthy heart does not sense the optimal cardiac output (Q̇) because the different organ systems that influence cardiac function do not interact to adjust their individual responses toward a specific Q̇. Consequently, it is conceivable that the complex cycle of cardiac contraction and relaxation must occur for reasons other than to produce a specific target Q̇ and that there is likely a yet undiscovered overarching principle in the cardiovascular system that explains the combined effects of the prevailing preload, afterload, and contractility. Future research should embrace the possibility of a different purpose to cardiac function than previously assumed and examine the biological capacity of this fascinating organ accordingly.
Collapse
Affiliation(s)
- Eric J Stöhr
- COR-HELIX (CardiOvascular Regulation and Human Exercise Laboratory - Integration and Xploration), Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
16
|
Hartmann JP, Dahl RH, Nymand S, Munch GW, Ryrsø CK, Pedersen BK, Thaning P, Mortensen SP, Berg RMG, Iepsen UW. Regulation of the microvasculature during small muscle mass exercise in chronic obstructive pulmonary disease vs. chronic heart failure. Front Physiol 2022; 13:979359. [PMID: 36134330 PMCID: PMC9483770 DOI: 10.3389/fphys.2022.979359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Aim: Skeletal muscle convective and diffusive oxygen (O2) transport are peripheral determinants of exercise capacity in both patients with chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF). We hypothesised that differences in these peripheral determinants of performance between COPD and CHF patients are revealed during small muscle mass exercise, where the cardiorespiratory limitations to exercise are diminished. Methods: Eight patients with moderate to severe COPD, eight patients with CHF (NYHA II), and eight age- and sex-matched controls were studied. We measured leg blood flow (Q̇leg) by Doppler ultrasound during submaximal one-legged knee-extensor exercise (KEE), while sampling arterio-venous variables across the leg. The capillary oxyhaemoglobin dissociation curve was reconstructed from paired femoral arterial-venous oxygen tensions and saturations, which enabled the estimation of O2 parameters at the microvascular level within skeletal muscle, so that skeletal muscle oxygen conductance (DSMO2) could be calculated and adjusted for flow (DSMO2/Q̇leg) to distinguish convective from diffusive oxygen transport. Results: During KEE, Q̇leg increased to a similar extent in CHF (2.0 (0.4) L/min) and controls (2.3 (0.3) L/min), but less in COPD patients (1.8 (0.3) L/min) (p <0.03). There was no difference in resting DSMO2 between COPD and CHF and when adjusting for flow, the DSMO2 was higher in both groups compared to controls (COPD: 0.97 (0.23) vs. controls 0.63 (0.24) mM/kPa, p= 0.02; CHF 0.98 (0.11) mM/kPa vs. controls, p= 0.001). The Q̇-adjusted DSMO2 was not different in COPD and CHF during KEE (COPD: 1.19 (0.11) vs. CHF: 1.00 (0.18) mM/kPa; p= 0.24) but higher in COPD vs. controls: 0.87 (0.28) mM/kPa (p= 0.02), and only CHF did not increase Q̇-adjusted DSMO2 from rest (p= 0.2). Conclusion: Disease-specific factors may play a role in peripheral exercise limitation in patients with COPD compared with CHF. Thus, low convective O2 transport to contracting muscle seemed to predominate in COPD, whereas muscle diffusive O2 transport was unresponsive in CHF.
Collapse
Affiliation(s)
- Jacob Peter Hartmann
- Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus H. Dahl
- Department of Radiology, Hvidovre Hospital, Copenhagen, Denmark
- Department of Radiology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Stine Nymand
- Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregers W. Munch
- Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Camilla K. Ryrsø
- Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
| | - Bente K. Pedersen
- Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pia Thaning
- Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Respiratory Medicine, Copenhagen University Hospital, Hvidovre Hospital, Copenhagen, Denmark
| | - Stefan P. Mortensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Copenhagen, Denmark
| | - Ronan M. G. Berg
- Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Ulrik Winning Iepsen
- Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Anaesthesiology and Intensive Care, Copenhagen University Hospital, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|