1
|
D’Alessandro A. Red blood cell metabolism: a window on systems health towards clinical metabolomics. Curr Opin Hematol 2025; 32:111-119. [PMID: 40085132 PMCID: PMC11949704 DOI: 10.1097/moh.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
PURPOSE OF REVIEW This review focuses on recent advances in the understanding of red blood cell (RBC) metabolism as a function of hypoxia and oxidant stress. In particular, we will focus on RBC metabolic alterations during storage in the blood bank, a medically relevant model of erythrocyte responses to energy and redox stress. RECENT FINDINGS Recent studies on over 13 000 healthy blood donors, as part of the Recipient Epidemiology and Donor Evaluation Study (REDS) III and IV-P RBC omics, and 525 diversity outbred mice have highlighted the impact on RBC metabolism of biological factors (age, BMI), genetics (sex, polymorphisms) and exposure (dietary, professional or recreational habits, drugs that are not grounds for blood donor deferral). SUMMARY We review RBC metabolism from basic biochemistry to storage biology, briefly discussing the impact of inborn errors of metabolism and genetic factors on RBC metabolism, as a window on systems metabolic health. Expanding on the concept of clinical chemistry towards clinical metabolomics, monitoring metabolism at scale in large populations (e.g., millions of blood donors) may thus provide insights into population health as a complementary tool to genetic screening and standard clinical measurements.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Stafford KA, Osataphan S, Patell R, Key NS. Adverse clinical outcomes associated with sickle cell trait at high altitude. Haematologica 2025; 110:504-506. [PMID: 39363860 PMCID: PMC11788638 DOI: 10.3324/haematol.2024.285832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Katherine A Stafford
- Denver Health and Hospital Authority, Hospital Medicine, Denver, CO, USA; University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO.
| | - Soravis Osataphan
- Beth Israel Deaconess Medical Center, Division of Hematology and Oncology, Boston, MA
| | - Rushad Patell
- Beth Israel Deaconess Medical Center, Division of Hematology and Oncology, Boston, MA
| | - Nigel S Key
- The University of North Carolina at Chapel Hill School of Medicine, Blood Research Center and Division of Hematology, Chapel Hill, NC
| |
Collapse
|
3
|
D'Alessandro A. It's in your blood: The impact of age, sex, genetic factors and exposures on stored red blood cell metabolism. Transfus Apher Sci 2024; 63:104011. [PMID: 39423666 PMCID: PMC11606750 DOI: 10.1016/j.transci.2024.104011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Transfusion of packed red blood cell (RBCs) saves millions of lives yearly worldwide, making packed RBCs the most commonly administered drug in hospitals after vaccines. However, not all blood units are created equal. By examining blood products as they age in blood banks, transfusion scientists are gaining insights into the intricacies of human chemical individuality as regulated by biological factors (such as sex, age, and body mass index), genetic and non-genetic factors like environmental, dietary, and other exposures. Here, we review recent literature on this topic, with an emphasis on studies linking genetic traits to the metabolic heterogeneity of blood products, the hemolytic propensity of stored RBCs, and transfusion outcomes in both healthy autologous and non-autologous patients requiring transfusion. Given the role of RBCs as a simplified model of eukaryotic cells, and RBC storage as a medically relevant application modeling erythrocyte responses to oxidant stress, these insights have the potential not only to guide the development of precision transfusion strategies, but also to identify novel mechanisms of RBC metabolic regulation relevant to responses to hypoxia and oxidant stress in human (patho)physiology.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
4
|
Martins Freire C, King NR, Dzieciatkowska M, Stephenson D, Moura PL, Dobbe JGG, Streekstra GJ, D'Alessandro A, Toye AM, Satchwell TJ. Complete absence of GLUT1 does not impair human terminal erythroid differentiation. Blood Adv 2024; 8:5166-5178. [PMID: 38916993 PMCID: PMC11470287 DOI: 10.1182/bloodadvances.2024012743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/09/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024] Open
Abstract
ABSTRACT The glucose transporter 1 (GLUT1) is 1 of the most abundant proteins within the erythrocyte membrane and is required for glucose and dehydroascorbic acid (vitamin C precursor) transport. It is widely recognized as a key protein for red cell structure, function, and metabolism. Previous reports highlighted the importance of GLUT1 activity within these uniquely glycolysis-dependent cells, in particular for increasing antioxidant capacity needed to avoid irreversible damage from oxidative stress in humans. However, studies of glucose transporter roles in erythroid cells are complicated by species-specific differences between humans and mice. Here, using CRISPR-mediated gene editing of immortalized erythroblasts and adult CD34+ hematopoietic progenitor cells, we generate committed human erythroid cells completely deficient in expression of GLUT1. We show that absence of GLUT1 does not impede human erythroblast proliferation, differentiation, or enucleation. This work demonstrates, to our knowledge, for the first time, generation of enucleated human reticulocytes lacking GLUT1. The GLUT1-deficient reticulocytes possess no tangible alterations to membrane composition or deformability in reticulocytes. Metabolomic analyses of GLUT1-deficient reticulocytes reveal hallmarks of reduced glucose import, downregulated metabolic processes and upregulated AMP-activated protein kinase signaling, alongside alterations in antioxidant metabolism, resulting in increased osmotic fragility and metabolic shifts indicative of higher oxidant stress. Despite detectable metabolic changes in GLUT1-deficient reticulocytes, the absence of developmental phenotype, detectable proteomic compensation, or impaired deformability comprehensively alters our understanding of the role of GLUT1 in red blood cell structure, function, and metabolism. It also provides cell biological evidence supporting clinical consensus that reduced GLUT1 expression does not cause anemia in GLUT1-deficiency syndrome.
Collapse
Affiliation(s)
| | - Nadine R. King
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Pedro L. Moura
- Department of Medicine, Center for Haematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Johannes G. G. Dobbe
- Biomedical Engineering and Physics, University of Amsterdam, Amsterdam UMC location, Amsterdam, The Netherlands
| | - Geert J. Streekstra
- Biomedical Engineering and Physics, University of Amsterdam, Amsterdam UMC location, Amsterdam, The Netherlands
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ashley M. Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
5
|
D'Alessandro A, Le K, Lundt M, Li Q, Dunkelberger EB, Cellmer T, Worth AJ, Patil S, Huston C, Grier A, Dzieciatkowska M, Stephenson D, Eaton WA, Thein SL. Functional and multi-omics signatures of mitapivat efficacy upon activation of pyruvate kinase in red blood cells from patients with sickle cell disease. Haematologica 2024; 109:2639-2652. [PMID: 38450513 PMCID: PMC11290518 DOI: 10.3324/haematol.2023.284831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Mitapivat, a pyruvate kinase activator, shows great potential as a sickle cell disease (SCD)-modifying therapy. The safety and efficacy of mitapivat as a long-term maintenance therapy are currently being evaluated in two open-label studies. Here we applied a comprehensive multi-omics approach to investigate the impact of activating pyruvate kinase on red blood cells (RBC) from 15 SCD patients. HbSS patients were enrolled in one of the open-label, extended studies (NCT04610866). Leukodepleted RBC obtained from fresh whole blood at baseline, prior to drug initiation, and at longitudinal timepoints over the course of the study were processed for multi-omics through a stepwise extraction of metabolites, lipids and proteins. Mitapivat therapy had significant effects on the metabolome, lipidome and proteome of SCD RBC. Mitapivat decreased 2,3-diphosphoglycerate levels, increased adenosine triphosphate levels, and improved hematologic and sickling parameters in patients with SCD. Agreement between omics measurements and clinical measurements confirmed the specificity of mitapivat on targeting late glycolysis, with glycolytic metabolites ranking as the top correlates to parameters of hemoglobin S oxygen affinity (p50) and sickling kinetics (t50) during treatment. Mitapivat markedly reduced levels of proteins of mitochondrial origin within 2 weeks of initiation of treatment, with minimal changes in reticulocyte counts. In the first 6 months of treatment there were also transient elevations of lysophosphatidylcholines and oxylipins with depletion of free fatty acids, suggestive of an effect on membrane lipid remodeling. Multi-omics analysis of RBC identified benefits for glycolysis, as well as activation of the Lands cycle.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO.
| | - Kang Le
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda
| | - Maureen Lundt
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda
| | - Quan Li
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda
| | - Emily B Dunkelberger
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda
| | - Troy Cellmer
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda
| | | | | | | | - Abby Grier
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO
| | - William A Eaton
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda.
| |
Collapse
|
6
|
Nemkov T, Key A, Stephenson D, Earley EJ, Keele GR, Hay A, Amireault P, Casimir M, Dussiot M, Dzieciatkowska M, Reisz JA, Deng X, Stone M, Kleinman S, Spitalnik SL, Hansen KC, Norris PJ, Churchill GA, Busch MP, Roubinian N, Page GP, Zimring JC, Arduini A, D’Alessandro A. Genetic regulation of carnitine metabolism controls lipid damage repair and aging RBC hemolysis in vivo and in vitro. Blood 2024; 143:2517-2533. [PMID: 38513237 PMCID: PMC11208298 DOI: 10.1182/blood.2024023983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT Recent large-scale multiomics studies suggest that genetic factors influence the chemical individuality of donated blood. To examine this concept, we performed metabolomics analyses of 643 blood units from volunteers who donated units of packed red blood cells (RBCs) on 2 separate occasions. These analyses identified carnitine metabolism as the most reproducible pathway across multiple donations from the same donor. We also measured l-carnitine and acyl-carnitines in 13 091 packed RBC units from donors in the Recipient Epidemiology and Donor Evaluation study. Genome-wide association studies against 879 000 polymorphisms identified critical genetic factors contributing to interdonor heterogeneity in end-of-storage carnitine levels, including common nonsynonymous polymorphisms in genes encoding carnitine transporters (SLC22A16, SLC22A5, and SLC16A9); carnitine synthesis (FLVCR1 and MTDH) and metabolism (CPT1A, CPT2, CRAT, and ACSS2), and carnitine-dependent repair of lipids oxidized by ALOX5. Significant associations between genetic polymorphisms on SLC22 transporters and carnitine pools in stored RBCs were validated in 525 Diversity Outbred mice. Donors carrying 2 alleles of the rs12210538 SLC22A16 single-nucleotide polymorphism exhibited the lowest l-carnitine levels, significant elevations of in vitro hemolysis, and the highest degree of vesiculation, accompanied by increases in lipid peroxidation markers. Separation of RBCs by age, via in vivo biotinylation in mice, and Percoll density gradients of human RBCs, showed age-dependent depletions of l-carnitine and acyl-carnitine pools, accompanied by progressive failure of the reacylation process after chemically induced membrane lipid damage. Supplementation of stored murine RBCs with l-carnitine boosted posttransfusion recovery, suggesting this could represent a viable strategy to improve RBC storage quality.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Eric J. Earley
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC
| | - Gregory R. Keele
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC
- The Jackson Laboratory, Bar Harbor, ME
| | - Ariel Hay
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Pascal Amireault
- Université Paris Cité et Université des Antilles, INSERM, Biologie Intégrée du Globule Rouge, Paris, France
- Université Paris Cité, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Paris, France
| | - Madeleine Casimir
- Université Paris Cité et Université des Antilles, INSERM, Biologie Intégrée du Globule Rouge, Paris, France
- Université Paris Cité, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Paris, France
| | - Michaël Dussiot
- Université Paris Cité et Université des Antilles, INSERM, Biologie Intégrée du Globule Rouge, Paris, France
- Université Paris Cité, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Paris, France
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Steve Kleinman
- The University of British Columbia, Victoria, BC, Canada
| | | | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | | | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Nareg Roubinian
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
- Kaiser Permanente Northern California Division of Research, Oakland, CA
| | - Grier P. Page
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Arduino Arduini
- Department of Research and Development, CoreQuest Sagl, Lugano, Switzerland
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| |
Collapse
|
7
|
Nemkov T, Stephenson D, Erickson C, Dzieciatkowska M, Key A, Moore A, Earley EJ, Page GP, Lacroix IS, Stone M, Deng X, Raife T, Kleinman S, Zimring JC, Roubinian N, Hansen KC, Busch MP, Norris PJ, D’Alessandro A. Regulation of kynurenine metabolism by blood donor genetics and biology impacts red cell hemolysis in vitro and in vivo. Blood 2024; 143:456-472. [PMID: 37976448 PMCID: PMC10862365 DOI: 10.1182/blood.2023022052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023] Open
Abstract
ABSTRACT In the field of transfusion medicine, the clinical relevance of the metabolic markers of the red blood cell (RBC) storage lesion is incompletely understood. Here, we performed metabolomics of RBC units from 643 donors enrolled in the Recipient Epidemiology and Donor Evaluation Study, REDS RBC Omics. These units were tested on storage days 10, 23, and 42 for a total of 1929 samples and also characterized for end-of-storage hemolytic propensity after oxidative and osmotic insults. Our results indicate that the metabolic markers of the storage lesion poorly correlated with hemolytic propensity. In contrast, kynurenine was not affected by storage duration and was identified as the top predictor of osmotic fragility. RBC kynurenine levels were affected by donor age and body mass index and were reproducible within the same donor across multiple donations from 2 to 12 months apart. To delve into the genetic underpinnings of kynurenine levels in stored RBCs, we thus tested kynurenine levels in stored RBCs on day 42 from 13 091 donors from the REDS RBC Omics study, a population that was also genotyped for 879 000 single nucleotide polymorphisms. Through a metabolite quantitative trait loci analysis, we identified polymorphisms in SLC7A5, ATXN2, and a series of rate-limiting enzymes (eg, kynurenine monooxygenase, indoleamine 2,3-dioxygenase, and tryptophan dioxygenase) in the kynurenine pathway as critical factors affecting RBC kynurenine levels. By interrogating a donor-recipient linkage vein-to-vein database, we then report that SLC7A5 polymorphisms are also associated with changes in hemoglobin and bilirubin levels, suggestive of in vivo hemolysis in 4470 individuals who were critically ill and receiving single-unit transfusions.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Christopher Erickson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Amy Moore
- Research Triangle Institute International, Atlanta, GA
| | | | - Grier P. Page
- Research Triangle Institute International, Atlanta, GA
| | - Ian S. Lacroix
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Thomas Raife
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Steven Kleinman
- Department of Pathology, University of British Columbia, Victoria, BC, Canada
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Nareg Roubinian
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
- Kaiser Permanente Northern California Division of Research, Oakland, CA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
- Omix Technologies Inc, Aurora, CO
| |
Collapse
|
8
|
Freire CM, King NR, Dzieciatkowska M, Stephenson D, Moura PL, Dobbe JGG, Streekstra GJ, D'Alessandro A, Toye AM, Satchwell TJ. Complete absence of GLUT1 does not impair human terminal erythroid differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574621. [PMID: 38293086 PMCID: PMC10827085 DOI: 10.1101/2024.01.10.574621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The Glucose transporter 1 (GLUT1) is one of the most abundant proteins within the erythrocyte membrane and is required for glucose and dehydroascorbic acid (Vitamin C precursor) transport. It is widely recognized as a key protein for red cell structure, function, and metabolism. Previous reports highlighted the importance of GLUT1 activity within these uniquely glycolysis-dependent cells, in particular for increasing antioxidant capacity needed to avoid irreversible damage from oxidative stress in humans. However, studies of glucose transporter roles in erythroid cells are complicated by species-specific differences between humans and mice. Here, using CRISPR-mediated gene editing of immortalized erythroblasts and adult CD34+ hematopoietic progenitor cells, we generate committed human erythroid cells completely deficient in expression of GLUT1. We show that absence of GLUT1 does not impede human erythroblast proliferation, differentiation, or enucleation. This work demonstrates for the first-time generation of enucleated human reticulocytes lacking GLUT1. The GLUT1-deficient reticulocytes possess no tangible alterations to membrane composition or deformability in reticulocytes. Metabolomic analyses of GLUT1-deficient reticulocytes reveal hallmarks of reduced glucose import, downregulated metabolic processes and upregulated AMPK-signalling, alongside alterations in antioxidant metabolism, resulting in increased osmotic fragility and metabolic shifts indicative of higher oxidant stress. Despite detectable metabolic changes in GLUT1 deficient reticulocytes, the absence of developmental phenotype, detectable proteomic compensation or impaired deformability comprehensively alters our understanding of the role of GLUT1 in red blood cell structure, function and metabolism. It also provides cell biological evidence supporting clinical consensus that reduced GLUT1 expression does not cause anaemia in GLUT1 deficiency syndrome.
Collapse
Affiliation(s)
- C M Freire
- School of Biochemistry, University of Bristol, Bristol, UK
| | - N R King
- School of Biochemistry, University of Bristol, Bristol, UK
| | - M Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - D Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - P L Moura
- Center for Haematology and Regenerative Medicine, Department of Medicine (MedH), Karolinska Institutet, Huddinge, Sweden
| | - J G G Dobbe
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - G J Streekstra
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - A D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - A M Toye
- School of Biochemistry, University of Bristol, Bristol, UK
| | - T J Satchwell
- School of Biochemistry, University of Bristol, Bristol, UK
| |
Collapse
|
9
|
Connes P. Blood rheology and vascular function in sickle cell trait and sickle cell disease: From pathophysiological mechanisms to clinical usefulness. Clin Hemorheol Microcirc 2024; 86:9-27. [PMID: 38073384 DOI: 10.3233/ch-238122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Sickle cell disease (SCD) is an autosomal recessive disorder. Although the molecular mechanisms at the origin of SCD have been well characterized, its clinical expression is highly variable. SCD is characterized by blood rheological abnormalities, increased inflammation and oxidative stress, and vascular dysfunction. Individuals with only one copy of the mutated β-globin gene have sickle cell trait (SCT) and are usually asymptomatic. The first part of this review focuses on the biological responses of SCT carriers during exercise and on the effects of combined SCT and diabetes on vascular function, several biomarkers and clinical complications. The second part of the review focuses on SCD and shows that the magnitude of red blood cell (RBC) rheological alterations is highly variable from one patient to another, and this variability reflects the clinical and hematological variability: patients with the less deformable RBCs have high hemolytic rate and severe anemia, and are prone to develop leg ulcers, priapism, cerebral vasculopathy, glomerulopathy or pulmonary hypertension. In contrast, SCD patients characterized by the presence of more deformable RBCs (but still rigid) are less anemic and may exhibit increased blood viscosity, which increases the risk for vaso-occlusive events. Several genetic and cellular factors may modulate RBC deformability in SCD: co-existence of α-thalassemia, fetal hemoglobin level, oxidative stress, the presence of residual mitochondria into mature RBCs, the activity of various non-selective cationic ion channels, etc. The last part of this review presents the effects of hydroxyurea and exercise training on RBC rheology and other biomarkers in SCD.
Collapse
Affiliation(s)
- Philippe Connes
- Laboratory LIBM EA7424, University of Lyon 1, "Vascular Biology and Red Blood Cell" Team, Lyon, France
- Laboratory of Excellence Labex GR-Ex, Paris, France
| |
Collapse
|
10
|
D'Alessandro A, Nouraie SM, Zhang Y, Cendali F, Gamboni F, Reisz JA, Zhang X, Bartsch KW, Galbraith MD, Espinosa JM, Gordeuk VR, Gladwin MT. Metabolic signatures of cardiorenal dysfunction in plasma from sickle cell patients as a function of therapeutic transfusion and hydroxyurea treatment. Haematologica 2023; 108:3418-3432. [PMID: 37439373 PMCID: PMC10690926 DOI: 10.3324/haematol.2023.283288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
Metabolomics studies in sickle cell disease (SCD) have been so far limited to tens of samples, owing to technical and experimental limitations. To overcome these limitations, we performed plasma metabolomics analyses on 596 samples from patients with SCD enrolled in the WALK-PHaSST study (clinicaltrials gov. Identifier: NCT00492531). Clinical covariates informed the biological interpretation of metabolomics data, including genotypes (hemoglobin [Hb] SS, hemoglobin SC), history of recent transfusion (HbA%), response to hydroxyurea treatment (fetal Hb%). We investigated metabolic correlates to the degree of intravascular hemolysis, cardiorenal function, as determined by tricuspid regurgitation velocity (TRV), estimated glomerular filtration rate (eGFR), and overall hazard ratio (unadjusted or adjusted by age). Recent transfusion events or hydroxyurea treatment were associated with elevation in plasma-free fatty acids and decreases in acyl-carnitines, urate, kynurenine, indoles, carboxylic acids, and glycine- or taurine-conjugated bile acids. High levels of these metabolites, along with low levels of plasma S1P and L-arginine were identified as top markers of hemolysis, cardiorenal function (TRV, eGFR), and overall hazard ratio. We thus uploaded all omics and clinical data on a novel online portal that we used to identify a potential mechanism of dysregulated red cell S1P synthesis and export as a contributor to the more severe clinical manifestations in patients with the SS genotype compared to SC. In conclusion, plasma metabolic signatures - including low S1P, arginine and elevated kynurenine, acyl-carnitines and bile acids - are associated with clinical manifestation and therapeutic efficacy in SCD patients, suggesting new avenues for metabolic interventions in this patient population.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine - Division of Hematology, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO.
| | - S Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO
| | - Xu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Kyle W Bartsch
- Linda Crnic Institute for Down Syndrome, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus; School of Medicine Information Services, University of Colorado Anschutz Medical Campus
| | - Victor R Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Mark T Gladwin
- University of Maryland School of Medicine, University of Maryland, Baltimore, MD.
| |
Collapse
|
11
|
D'Alessandro A, Hod EA. Red Blood Cell Storage: From Genome to Exposome Towards Personalized Transfusion Medicine. Transfus Med Rev 2023; 37:150750. [PMID: 37574398 PMCID: PMC10834861 DOI: 10.1016/j.tmrv.2023.150750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 08/15/2023]
Abstract
Over the last decade, the introduction of omics technologies-especially high-throughput genomics and metabolomics-has contributed significantly to our understanding of the role of donor genetics and nongenetic determinants of red blood cell storage biology. Here we briefly review the main advances in these areas, to the extent these contributed to the appreciation of the impact of donor sex, age, ethnicity, but also processing strategies and donor environmental, dietary or other exposures - the so-called exposome-to the onset and severity of the storage lesion. We review recent advances on the role of genetically encoded polymorphisms on red cell storage biology, and relate these findings with parameters of storage quality and post-transfusion efficacy, such as hemolysis, post-transfusion intra- and extravascular hemolysis and hemoglobin increments. Finally, we suggest that the combination of these novel technologies have the potential to drive further developments towards personalized (or precision) transfusion medicine approaches.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
12
|
D’Alessandro A, Anastasiadi AT, Tzounakas VL, Nemkov T, Reisz JA, Kriebardis AG, Zimring JC, Spitalnik SL, Busch MP. Red Blood Cell Metabolism In Vivo and In Vitro. Metabolites 2023; 13:793. [PMID: 37512500 PMCID: PMC10386156 DOI: 10.3390/metabo13070793] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Red blood cells (RBC) are the most abundant cell in the human body, with a central role in oxygen transport and its delivery to tissues. However, omics technologies recently revealed the unanticipated complexity of the RBC proteome and metabolome, paving the way for a reinterpretation of the mechanisms by which RBC metabolism regulates systems biology beyond oxygen transport. The new data and analytical tools also informed the dissection of the changes that RBCs undergo during refrigerated storage under blood bank conditions, a logistic necessity that makes >100 million units available for life-saving transfusions every year worldwide. In this narrative review, we summarize the last decade of advances in the field of RBC metabolism in vivo and in the blood bank in vitro, a narrative largely influenced by the authors' own journeys in this field. We hope that this review will stimulate further research in this interesting and medically important area or, at least, serve as a testament to our fascination with this simple, yet complex, cell.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Alkmini T. Anastasiadi
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Anastsios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA;
| | | | | |
Collapse
|
13
|
D'Alessandro A. Red Blood Cell Omics and Machine Learning in Transfusion Medicine: Singularity Is Near. Transfus Med Hemother 2023; 50:174-183. [PMID: 37434999 PMCID: PMC10331163 DOI: 10.1159/000529744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 07/30/2023] Open
Abstract
Background Blood transfusion is a life-saving intervention for millions of recipients worldwide. Over the last 15 years, the advent of high-throughput, affordable omics technologies - including genomics, proteomics, lipidomics, and metabolomics - has allowed transfusion medicine to revisit the biology of blood donors, stored blood products, and transfusion recipients. Summary Omics approaches have shed light on the genetic and non-genetic factors (environmental or other exposures) impacting the quality of stored blood products and efficacy of transfusion events, based on the current Food and Drug Administration guidelines (e.g., hemolysis and post-transfusion recovery for stored red blood cells). As a treasure trove of data accumulates, the implementation of machine learning approaches promises to revolutionize the field of transfusion medicine, not only by advancing basic science. Indeed, computational strategies have already been used to perform high-content screenings of red blood cell morphology in microfluidic devices, generate in silico models of erythrocyte membrane to predict deformability and bending rigidity, or design systems biology maps of the red blood cell metabolome to drive the development of novel storage additives. Key Message In the near future, high-throughput testing of donor genomes via precision transfusion medicine arrays and metabolomics of all donated products will be able to inform the development and implementation of machine learning strategies that match, from vein to vein, donors, optimal processing strategies (additives, shelf life), and recipients, realizing the promise of personalized transfusion medicine.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
14
|
D'Alessandro A, Nouraie SM, Zhang Y, Cendali F, Gamboni F, Reisz JA, Zhang X, Bartsch KW, Galbraith MD, Espinosa JM, Gordeuk VR, Gladwin MT. Metabolic signatures of cardiorenal dysfunction in plasma from sickle cell patients, as a function of therapeutic transfusion and hydroxyurea treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535693. [PMID: 37066337 PMCID: PMC10104066 DOI: 10.1101/2023.04.05.535693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Metabolomics studies in sickle cell disease (SCD) have been so far limited to tens of samples, owing to technical and experimental limitations. To overcome these limitations, we performed plasma metabolomics analyses on 596 samples from patients with sickle cell sickle cell disease (SCD) enrolled in the WALK-PHaSST study. Clinical covariates informed the biological interpretation of metabolomics data, including genotypes (hemoglobin SS, hemoglobin SC), history of recent transfusion (HbA%), response to hydroxyurea treatment (HbF%). We investigated metabolic correlates to the degree of hemolysis, cardiorenal function, as determined by tricuspid regurgitation velocity (TRV), estimated glomerular filtration rate (eGFR), and overall hazard ratio (unadjusted or adjusted by age). Recent transfusion events or hydroxyurea treatment were associated with elevation in plasma free fatty acids and decreases in acyl-carnitines, urate, kynurenine, indoles, carboxylic acids, and glycine- or taurine-conjugated bile acids. High levels of these metabolites, along with low levels of plasma S1P and L-arginine were identified as top markers of hemolysis, cardiorenal function (TRV, eGFR), and overall hazard ratio. We thus uploaded all omics and clinical data on a novel online portal that we used to identify a potential mechanism of dysregulated red cell S1P synthesis and export as a contributor to the more severe clinical manifestations in patients with the SS genotype compared to SC. In conclusion, plasma metabolic signatures - including low S1P, arginine and elevated kynurenine, acyl-carnitines and bile acids - are associated with clinical manifestation and therapeutic efficacy in SCD patients, suggesting new avenues for metabolic interventions in this patient population.
Collapse
|
15
|
Cendali FI, Nemkov T, Lisk C, Lacroix IS, Nouraie SM, Zhang Y, Gordeuk VR, Buehler PW, Irwin D, D’Alessandro A. Metabolic correlates to critical speed in murine models of sickle cell disease. Front Physiol 2023; 14:1151268. [PMID: 37007990 PMCID: PMC10053510 DOI: 10.3389/fphys.2023.1151268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction: Exercise intolerance is a common clinical manifestation in patients with sickle cell disease (SCD), though the mechanisms are incompletely understood. Methods: Here we leverage a murine mouse model of sickle cell disease, the Berkeley mouse, to characterize response to exercise via determination of critical speed (CS), a functional measurement of mouse running speed upon exerting to exhaustion. Results: Upon observing a wide distribution in critical speed phenotypes, we systematically determined metabolic aberrations in plasma and organs-including heart, kidney, liver, lung, and spleen-from mice ranked based on critical speed performances (top vs. bottom 25%). Results indicated clear signatures of systemic and organ-specific alterations in carboxylic acids, sphingosine 1-phosphate and acylcarnitine metabolism. Metabolites in these pathways showed significant correlations with critical speed across all matrices. Findings from murine models were thus further validated in 433 sickle cell disease patients (SS genotype). Metabolomics analyses of plasma from 281 subjects in this cohort (with HbA < 10% to decrease confounding effects of recent transfusion events) were used to identify metabolic correlates to sub-maximal exercise test performances, as measure by 6 min walking test in this clinical cohort. Results confirmed strong correlation between test performances and dysregulated levels of circulating carboxylic acids (especially succinate) and sphingosine 1-phosphate. Discussion: We identified novel circulating metabolic markers of exercise intolerance in mouse models of sickle cell disease and sickle cell patients.
Collapse
Affiliation(s)
- Francesca I. Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Christina Lisk
- Department of Pulmonology, University of Colorado Denver, Aurora, CO, United States
| | - Ian S. Lacroix
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Seyed-Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Victor R. Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Paul W. Buehler
- Department of Pathology, University of Maryland, Baltimore, MD, United States
- Center for Blood Oxygen Transport, Department of Pediatrics, Baltimore, MD, United States
| | - David Irwin
- Department of Pulmonology, University of Colorado Denver, Aurora, CO, United States
| | - Angelo D’Alessandro
- Department of Pulmonology, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
16
|
Guntur VP, Nemkov T, de Boer E, Mohning MP, Baraghoshi D, Cendali FI, San-Millán I, Petrache I, D’Alessandro A. Signatures of Mitochondrial Dysfunction and Impaired Fatty Acid Metabolism in Plasma of Patients with Post-Acute Sequelae of COVID-19 (PASC). Metabolites 2022; 12:1026. [PMID: 36355108 PMCID: PMC9699059 DOI: 10.3390/metabo12111026] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Exercise intolerance is a major manifestation of post-acute sequelae of severe acute respiratory syndrome coronavirus infection (PASC, or "long-COVID"). Exercise intolerance in PASC is associated with higher arterial blood lactate accumulation and lower fatty acid oxidation rates during graded exercise tests to volitional exertion, suggesting altered metabolism and mitochondrial dysfunction. It remains unclear whether the profound disturbances in metabolism that have been identified in plasma from patients suffering from acute coronavirus disease 2019 (COVID-19) are also present in PASC. To bridge this gap, individuals with a history of previous acute COVID-19 infection that did not require hospitalization were enrolled at National Jewish Health (Denver, CO, USA) and were grouped into those that developed PASC (n = 29) and those that fully recovered (n = 16). Plasma samples from the two groups were analyzed via mass spectrometry-based untargeted metabolomics and compared against plasma metabolic profiles of healthy control individuals (n = 30). Observational demographic and clinical data were retrospectively abstracted from the medical record. Compared to plasma of healthy controls or individuals who recovered from COVID-19, PASC plasma exhibited significantly higher free- and carnitine-conjugated mono-, poly-, and highly unsaturated fatty acids, accompanied by markedly lower levels of mono-, di- and tricarboxylates (pyruvate, lactate, citrate, succinate, and malate), polyamines (spermine) and taurine. Plasma from individuals who fully recovered from COVID-19 exhibited an intermediary metabolic phenotype, with milder disturbances in fatty acid metabolism and higher levels of spermine and taurine. Of note, depletion of tryptophan-a hallmark of disease severity in COVID-19-is not normalized in PASC patients, despite normalization of kynurenine levels-a tryptophan metabolite that predicts mortality in hospitalized COVID-19 patients. In conclusion, PASC plasma metabolites are indicative of altered fatty acid metabolism and dysfunctional mitochondria-dependent lipid catabolism. These metabolic profiles obtained at rest are consistent with previously reported mitochondrial dysfunction during exercise, and may pave the way for therapeutic intervention focused on restoring mitochondrial fat-burning capacity.
Collapse
Affiliation(s)
- Vamsi P. Guntur
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Travis Nemkov
- Department of Biochemical and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Esther de Boer
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael P. Mohning
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Baraghoshi
- Department of Biostatistics, National Jewish Health, Denver, CO 80206, USA
| | - Francesca I. Cendali
- Department of Biochemical and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Inigo San-Millán
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO 80918, USA
| | - Irina Petrache
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemical and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|