1
|
Prudinnik DS, Kussanova A, Vorobjev IA, Tikhonov A, Ataullakhanov FI, Barteneva NS. Deformability of Heterogeneous Red Blood Cells in Aging and Related Pathologies. Aging Dis 2025:AD.2024.0526. [PMID: 39012672 DOI: 10.14336/ad.2024.0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Aging is interrelated with changes in red blood cell parameters and functionality. In this article, we focus on red blood cells (RBCs) and provide a review of the known changes associated with the characterization of RBC deformability in aging and related pathologies. The biophysical parameters complement the commonly used biochemical parameters and may contribute to a better understanding of the aging process. The power of the deformability measurement approach is well established in clinical settings. Measuring RBCs' deformability has the advantage of relative simplicity, and it reflects the complex effects developing in erythrocytes during aging. However, aging and related pathological conditions also promote heterogeneity of RBC features and have a certain impact on the variance in erythrocyte cell properties. The possible applications of deformability as an early biophysical biomarker of pathological states are discussed, and modulating PIEZO1 as a therapeutic target is suggested. The changes in RBCs' shape can serve as a proxy for deformability evaluation, leveraging single-cell analysis with imaging flow cytometry and artificial intelligence algorithms. The characterization of biophysical parameters of RBCs is in progress in humans and will provide a better understanding of the complex dynamics of aging.
Collapse
Affiliation(s)
- Dmitry S Prudinnik
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Aigul Kussanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ivan A Vorobjev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Alexander Tikhonov
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Fazly I Ataullakhanov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Goreke U, Gonzales A, Shipley B, Tincher M, Sharma O, Wulftange WJ, Man Y, An R, Hinczewski M, Gurkan UA. Motion blur microscopy: in vitro imaging of cell adhesion dynamics in whole blood flow. Nat Commun 2024; 15:7058. [PMID: 39152149 PMCID: PMC11329636 DOI: 10.1038/s41467-024-51014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
Imaging and characterizing the dynamics of cellular adhesion in blood samples is of fundamental importance in understanding biological function. In vitro microscopy methods are widely used for this task but typically require diluting the blood with a buffer to allow for transmission of light. However, whole blood provides crucial signaling cues that influence adhesion dynamics, which means that conventional approaches lack the full physiological complexity of living microvasculature. We can reliably image cell interactions in microfluidic channels during whole blood flow by motion blur microscopy (MBM) in vitro and automate image analysis using machine learning. MBM provides a low cost, easy to implement alternative to intravital microscopy, for rapid data generation where understanding cell interactions, adhesion, and motility is crucial. MBM is generalizable to studies of various diseases, including cancer, blood disorders, thrombosis, inflammatory and autoimmune diseases, as well as providing rich datasets for theoretical modeling of adhesion dynamics.
Collapse
Affiliation(s)
- Utku Goreke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ayesha Gonzales
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
| | - Brandon Shipley
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
| | - Madeleine Tincher
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Oshin Sharma
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - William J Wulftange
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA.
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Oshabaheebwa S, Delianides CA, Patwardhan AA, Evans EN, Sekyonda Z, Bode A, Apio FM, Mutuluuza CK, Sheehan VA, Suster MA, Gurkan UA, Mohseni P. A miniaturized wash-free microfluidic assay for electrical impedance-based assessment of red blood cell-mediated microvascular occlusion. Biosens Bioelectron 2024; 258:116352. [PMID: 38718635 PMCID: PMC11741037 DOI: 10.1016/j.bios.2024.116352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
The production of HbS - an abnormal hemoglobin (Hb) - in sickle cell disease (SCD) results in poorly deformable red blood cells (RBCs) that are prone to microcapillary occlusion, causing tissue ischemia and organ damage. Novel treatments, including gene therapy, may reduce SCD morbidity, but methods to functionally evaluate RBCs remain limited. Previously, we presented the microfluidic impedance red cell assay (MIRCA) for rapid assessment of RBC deformability, employing electrical impedance-based readout to measure RBC occlusion of progressively narrowing micropillar openings. We describe herein the design, development, validation, and clinical utility of the next-generation MIRCA assay, featuring enhanced portability, rapidity, and usability. It incorporates a miniaturized impedance analyzer and features a simplified wash-free operation that yields an occlusion index (OI) within 15 min as a new metric for RBC occlusion. We show a correlation between OI and percent fetal hemoglobin (%HbF), other laboratory biomarkers of RBC hemolysis, and SCD severity. To demonstrate the assay's versatility, we tested RBC samples from treatment-naïve SCD patients in Uganda that yielded OI levels similar to those from hydroxyurea (HU)-treated patients in the U.S., highlighting the role of %HbF in protecting against microcapillary occlusion independent of other pharmacological effects. The MIRCA assay could also identify a subset of HU-treated patients with high occlusion risks, suggesting that they may require treatment adjustments including a second-line therapy to improve their outcomes. This work demonstrates the potential of the MIRCA assay for accelerated evaluation of RBC health, function, and therapeutic effect in an ex vivo model of the microcapillary networks.
Collapse
Affiliation(s)
- Solomon Oshabaheebwa
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Christopher A Delianides
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Akshay A Patwardhan
- Department of Pediatrics, Emory University School of Medicine & Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Erica N Evans
- Department of Pediatrics, Emory University School of Medicine & Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Zoe Sekyonda
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Allison Bode
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | | | - Vivien A Sheehan
- Department of Pediatrics, Emory University School of Medicine & Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| | - Michael A Suster
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Umut A Gurkan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Pedram Mohseni
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Sekyonda Z, An R, Goreke U, Man Y, Monchamp K, Bode A, Zhang Q, El-Gammal Y, Kityo C, Kalfa TA, Akkus O, Gurkan UA. Rapid measurement of hemoglobin-oxygen dissociation by leveraging Bohr effect and Soret band bathochromic shift. Analyst 2024; 149:2561-2572. [PMID: 38501195 PMCID: PMC11056771 DOI: 10.1039/d3an02071a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/24/2024] [Indexed: 03/20/2024]
Abstract
Oxygen (O2) binds to hemoglobin (Hb) in the lungs and is then released (dissociated) in the tissues. The Bohr effect is a physiological mechanism that governs the affinity of Hb for O2 based on pH, where a lower pH results in a lower Hb-O2 affinity and higher Hb-O2 dissociation. Hb-O2 affinity and dissociation are crucial for maintaining aerobic metabolism in cells and tissues. Despite its vital role in human physiology, Hb-O2 dissociation measurement is underutilized in basic research and in clinical laboratories, primarily due to the technical complexity and limited throughput of existing methods. We present a rapid Hb-O2 dissociation measurement approach by leveraging the Bohr effect and detecting the optical shift in the Soret band that corresponds to the light absorption by the heme group in Hb. This new method reduces Hb-O2 dissociation measurement time from hours to minutes. We show that Hb deoxygenation can be accelerated chemically at the optimal pH of 6.9. We show that time and pH-controlled deoxygenation of Hb results in rapid and distinct conformational changes in its tertiary structure. These molecular conformational changes are manifested as significant, detectable shifts in Hb's optical absorption spectrum, particularly in the characteristic Soret band (414 nm). We extensively validated the method by testing human blood samples containing normal Hb and Hb variants. We show that rapid Hb-O2 dissociation can be used to screen for and detect Hb-O2 affinity disorders and to evaluate the function and efficacy of Hb-modifying therapies. The ubiquity of optical absorption spectrophotometers positions this approach as an accessible, rapid, and accurate Hb-O2 dissociation measurement method for basic research and clinical use. We anticipate this method's broad adoption will democratize the diagnosis and prognosis of Hb disorders, such as sickle cell disease. Further, this method has the potential to transform the research and development of new targeted and genome-editing-based therapies that aim to modify or improve Hb-O2 affinity.
Collapse
Affiliation(s)
- Zoe Sekyonda
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Glennan Building 616B, Cleveland, OH, 44106, USA.
| | - Utku Goreke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Glennan Building 616B, Cleveland, OH, 44106, USA.
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Glennan Building 616B, Cleveland, OH, 44106, USA.
| | - Karamoja Monchamp
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Glennan Building 616B, Cleveland, OH, 44106, USA.
- Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Allison Bode
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Glennan Building 616B, Cleveland, OH, 44106, USA.
- Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Qiaochu Zhang
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Glennan Building 616B, Cleveland, OH, 44106, USA.
| | - Yasmin El-Gammal
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cissy Kityo
- The Joint Clinical Research Center, Kampala, Uganda
| | - Theodosia A Kalfa
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ozan Akkus
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Glennan Building 616B, Cleveland, OH, 44106, USA.
- Department of Orthopedics, Case Western Reserve University, Cleveland, OH, USA
| | - Umut A Gurkan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Glennan Building 616B, Cleveland, OH, 44106, USA.
- Department of Orthopedics, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
5
|
Goreke U, Iram S, Singh G, Domínguez-Medina S, Man Y, Bode A, An R, Little JA, Wirth CL, Hinczewski M, Gurkan UA. Catch bonds in sickle cell disease: Shear-enhanced adhesion of red blood cells to laminin. Biophys J 2023; 122:2564-2576. [PMID: 37177783 PMCID: PMC10323024 DOI: 10.1016/j.bpj.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Could the phenomenon of catch bonding-force-strengthened cellular adhesion-play a role in sickle cell disease, where abnormal red blood cell (RBC) adhesion obstructs blood flow? Here, we investigate the dynamics of sickle RBCs adhering to a surface functionalized with the protein laminin (a component of the extracellular matrix around blood vessels) under physiologically relevant microscale flow. First, using total internal reflectance microscopy we characterize the spatial fluctuations of the RBC membrane above the laminin surface before detachment. The complex dynamics we observe suggest the possibility of catch bonding, where the mean detachment time of the cell from the surface initially increases to a maximum and then decreases as a function of shear force. We next conduct a series of shear-induced detachment experiments on blood samples from 25 sickle cell disease patients, quantifying the number and duration of adhered cells under both sudden force jumps and linear force ramps. The experiments reveal that a subset of patients does indeed exhibit catch bonding. By fitting the data to a theoretical model of the bond dynamics, we can extract the mean bond lifetime versus force for each patient. The results show a striking heterogeneity among patients, both in terms of the qualitative behavior (whether or not there is catch bonding) and in the magnitudes of the lifetimes. Patients with large bond lifetimes at physiological forces are more likely to have certain adverse clinical features, like a diagnosis of pulmonary arterial hypertension and intracardiac shunts. By introducing an in vitro platform for fully characterizing RBC-laminin adhesion dynamics, our approach could contribute to the development of patient-specific antiadhesive therapies for sickle cell disease. The experimental setup is also easily generalizable to studying adhesion dynamics in other cell types, for example, leukocytes or cancer cells, and can incorporate disease-relevant environmental conditions like oxygen deprivation.
Collapse
Affiliation(s)
- Utku Goreke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Shamreen Iram
- Department of Physics, Case Western Reserve University, Cleveland, Ohio
| | - Gundeep Singh
- Department of Physics, Case Western Reserve University, Cleveland, Ohio
| | - Sergio Domínguez-Medina
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Allison Bode
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Jane A Little
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Christopher L Wirth
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, Ohio.
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
6
|
Szpak D, Turpin C, Goreke U, Bialkowska K, Bledzka KM, Verbovetskiy D, Mohandas N, Gurkan UA, Qin J, Plow EF, Pluskota E. Kindlin-3 deficiency leads to impaired erythropoiesis and erythrocyte cytoskeleton. Blood Adv 2023; 7:1739-1753. [PMID: 36649586 PMCID: PMC10182306 DOI: 10.1182/bloodadvances.2022008498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Kindlin-3 (K3) is critical for the activation of integrin adhesion receptors in hematopoietic cells. In humans and mice, K3 deficiency is associated with impaired immunity and bone development, bleeding, and aberrant erythrocyte shape. To delineate how K3 deficiency (K3KO) contributes to anemia and misshaped erythrocytes, mice deficient in erythroid (K3KO∖EpoR-cre) or myeloid cell K3 (K3KO∖Lyz2cre), knockin mice expressing mutant K3 (Q597W598 to AA) with reduced integrin-activation function (K3KI), and control wild-type (WT) K3 mice were studied. Both K3-deficient strains and K3KI mice showed anemia at baseline, reduced response to erythropoietin stimulation, and compromised recovery after phenylhydrazine (PHZ)-induced hemolytic anemia as compared with K3WT. Erythroid K3KO and K3 (Q597W598 to AA) showed arrested erythroid differentiation at proerythroblast stage, whereas macrophage K3KO showed decreased erythroblast numbers at all developmental stages of terminal erythroid differentiation because of reduced erythroblastic island (EBI) formation attributable to decreased expression and activation of erythroblast integrin α4β1 and macrophage αVβ3. Peripheral blood smears of K3KO∖EpoR-cre mice, but not of the other mouse strains, showed numerous aberrant tear drop-shaped erythrocytes. K3 deficiency in these erythrocytes led to disorganized actin cytoskeleton, reduced deformability, and increased osmotic fragility. Mechanistically, K3 directly interacted with F-actin through an actin-binding site K3-LK48. Taken together, these findings document that erythroid and macrophage K3 are critical contributors to erythropoiesis in an integrin-dependent manner, whereas F-actin binding to K3 maintains the membrane cytoskeletal integrity and erythrocyte biconcave shape. The dual function of K3 in erythrocytes and in EBIs establish an important functional role for K3 in normal erythroid function.
Collapse
Affiliation(s)
- Dorota Szpak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Chloe Turpin
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
| | - Utku Goreke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
| | - Katarzyna Bialkowska
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Kamila M. Bledzka
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Dmitriy Verbovetskiy
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Narla Mohandas
- Laboratory of Red Cell Physiology, New York Blood Center, New York, NY
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Jun Qin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Edward F. Plow
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Elzbieta Pluskota
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
7
|
Man Y, Kucukal E, Liu S, An R, Goreke U, Wulftange WJ, Sekyonda Z, Bode A, Little JA, Manwani D, Stavrou EX, Gurkan UA. A microfluidic device for assessment of E-selectin-mediated neutrophil recruitment to inflamed endothelium and prediction of therapeutic response in sickle cell disease. Biosens Bioelectron 2023; 222:114921. [PMID: 36521205 PMCID: PMC9850363 DOI: 10.1016/j.bios.2022.114921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Neutrophil recruitment to the inflamed endothelium is a multistep process and is of utmost importance in the development of the hallmark vaso-occlusive crisis in sickle cell disease (SCD). However, there lacks a standardized, clinically feasible approach for assessing neutrophil recruitment to the inflamed endothelium for individualized risk stratification and therapeutic response prediction in SCD. Here, we describe a microfluidic device functionalized with E-selectin, a critical endothelial receptor for the neutrophil recruitment process, as a strategy to assess neutrophil binding under physiologic flow in normoxia and clinically relevant hypoxia in SCD. We show that hypoxia significantly enhances neutrophil binding to E-selectin and promotes the formation of neutrophil-platelet aggregates. Moreover, we identified two distinct patient populations: a more severe clinical phenotype with elevated lactate dehydrogenase levels and absolute reticulocyte counts but lowered fetal hemoglobin levels associated with constitutively less neutrophil binding to E-selectin. Mechanistically, we demonstrate that the extent of neutrophil activation correlates with membrane L-selectin shedding, resulting in the loss of ligand interaction sites with E-selectin. We also show that inhibition of E-selectin significantly reduces leukocyte recruitment to activated endothelial cells. Our findings add mechanistic insight into neutrophil-endothelial interactions under hypoxia and provide a clinically feasible means for assessing neutrophil binding to E-selectin using clinical whole blood samples, which can help guide therapeutic decisions for SCD patients.
Collapse
Affiliation(s)
- Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Shichen Liu
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Utku Goreke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - William J Wulftange
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Zoe Sekyonda
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Allison Bode
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Hematology and Oncology Division, CWRU School of Medicine, Cleveland, OH, USA
| | - Jane A Little
- Department of Hematology, UNC Blood Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Deepa Manwani
- Department of Pediatrics, Albert Einstein College of Medicine/Children's Hospital at Montefiore, Bronx, NY, USA
| | - Evi X Stavrou
- Department of Medicine, Hematology and Oncology Division, CWRU School of Medicine, Cleveland, OH, USA; Medicine Service, Section of Hematology-Oncology, Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
8
|
Ozcelik A, Abas BI, Erdogan O, Cevik E, Cevik O. On-Chip Organoid Formation to Study CXCR4/CXCL-12 Chemokine Microenvironment Responses for Renal Cancer Drug Testing. BIOSENSORS 2022; 12:1177. [PMID: 36551144 PMCID: PMC9775535 DOI: 10.3390/bios12121177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Organoid models have gained importance in recent years in determining the toxic effects of drugs in cancer studies. Organoid designs with the same standardized size and cellular structures are desired for drug tests. The field of microfluidics offers numerous advantages to enable well-controlled and contamination-free biomedical research. In this study, simple and low-cost microfluidic devices were designed and fabricated to develop an organoid model for drug testing for renal cancers. Caki human renal cancer cells and mesenchymal stem cells isolated from human umbilical cord were placed into alginate hydrogels. The microfluidic system was implemented to form size-controllable organoids within alginate hydrogels. Alginate capsules of uniform sizes formed in the microfluidic system were kept in cell culture for 21 days, and their organoid development was studied with calcein staining. Cisplatin was used as a standard chemotherapeutic, and organoid sphere structures were examined as a function of time with an MTT assay. HIF-1α, CXCR4 and CXCL-12 chemokine protein, and CXCR4 and CXCL-12 gene levels were tested in organoids and cisplatin responses. In conclusion, it was found that the standard renal cancer organoids made on a lab-on-a-chip system can be used to measure drug effects and tumor microenvironment responses.
Collapse
Affiliation(s)
- Adem Ozcelik
- Department of Mechanical Engineering, Aydın Adnan Menderes University, Aydin 09010, Turkey
| | - Burcin Irem Abas
- Department of Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Omer Erdogan
- Department of Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Evrim Cevik
- Department of Machinery and Metal Technologies, Kocarli Vocational School, Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Ozge Cevik
- Department of Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin 09010, Turkey
| |
Collapse
|