1
|
Liu W, Wang X, Yu Y, Lin W, Xu H, Jiang X, Yuan C, Wang Y, Wang X, Song W, He Y. Inflammatory Cell Interactions in the Rotator Cuff Microenvironment: Insights From Single-Cell Sequencing. Int J Genomics 2025; 2025:6175946. [PMID: 40265083 PMCID: PMC12014260 DOI: 10.1155/ijog/6175946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
Rotator cuff injuries are a common cause of shoulder pain and dysfunction, with chronic inflammation complicating recovery. Recent advances in single-cell RNA sequencing (scRNA-seq) have provided new insights into the immune cell interactions within the rotator cuff microenvironment during injury and healing. This review focuses on the application of scRNA-seq to explore the roles of immune and nonimmune cells, including macrophages, T-cells, fibroblasts, and myofibroblasts, in driving inflammation, tissue repair, and fibrosis. We discuss how immune cell crosstalk and interactions with the extracellular matrix influence the progression of healing or pathology. Single-cell analyses have identified distinct molecular signatures associated with chronic inflammation, which may contribute to persistent tissue damage. Additionally, we highlight the therapeutic potential of targeting inflammation in rotator cuff repair, emphasizing personalized medicine approaches. Overall, the integration of scRNA-seq in studying rotator cuff injuries enhances our understanding of the cellular mechanisms involved and offers new perspectives for developing targeted treatments in regenerative medicine.
Collapse
Affiliation(s)
- Wencai Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Yu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiming Lin
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiping Jiang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenrui Yuan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifei Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Song
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaohua He
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Mimpen JY, Baldwin MJ, Paul C, Ramos-Mucci L, Kurjan A, Cohen CJ, Sharma S, Chevalier Florquin MSN, Hulley PA, McMaster J, Titchener A, Martin A, Costa ML, Gwilym SE, Cribbs AP, Snelling SJB. Exploring cellular changes in ruptured human quadriceps tendons at single-cell resolution. J Physiol 2025. [PMID: 40232153 DOI: 10.1113/jp287812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/21/2025] [Indexed: 04/16/2025] Open
Abstract
Tendon ruptures in humans have often been studied during the chronic phase of injury, particularly in the context of rotator cuff disease. However, the early response to acute tendon ruptures remains less investigated. Quadriceps tendons, which require prompt surgical treatment, offer a model to investigate this early response. Therefore, this study aimed to explore the early cellular changes in ruptured compared to healthy human quadriceps tendons. Quadriceps tendon samples were collected from patients undergoing fracture repair (healthy) or tendon repair surgery (collected 7-8 days post-injury). Nuclei were isolated for single-nucleus RNA sequencing, and comprehensive transcriptomic analysis was conducted. The transcriptomes of 12,808 nuclei (7268 from healthy and 5540 from ruptured quadriceps tendons) were profiled, revealing 12 major cell types and several cell subtypes and states. Rupture samples showed increased expression of genes related to extracellular matrix organisation and cell cycle signalling, and a decrease in expression of genes in lipid metabolism pathways. These changes were predominantly driven by gene expression changes in the fibroblast, vascular endothelial cell (VEC), mural cell, and macrophage populations: fibroblasts shift to an activated phenotype upon rupture and there is an increase in the proportion of capillary and dividing VECs. A diverse immune environment was observed, with a shift from homeostatic to activated macrophages following rupture. Cell-cell interactions increased in number and diversity in rupture, and primarily involved fibroblast and VEC populations. Collectively, this transcriptomic analysis suggests that fibroblasts and endothelial cells are key orchestrators of the early injury response within ruptured quadriceps tendon. KEY POINTS: Tendon ruptures in humans have regularly been studied during the chronic phase of injury, but less is known about the early injury response after acute tendon ruptures. This study explored the early cellular changes in ruptured compared to healthy human quadriceps tendons at single-cell resolution. Fibroblasts and endothelial cells seem to be the key orchestrators of the early injury response within ruptured quadriceps tendon. Therefore, these cell types are obvious targets for interventions to enhance tendon healing. Overall, this study highlights that the development of more effective therapeutic options for tendon injury requires better understanding of the cellular, extracellular, and mechanical landscape of tendon tissue.
Collapse
Affiliation(s)
- Jolet Y Mimpen
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Mathew J Baldwin
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Claudia Paul
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lorenzo Ramos-Mucci
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alina Kurjan
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Carla J Cohen
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Shreeya Sharma
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Philippa A Hulley
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - John McMaster
- Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | | | | | - Matthew L Costa
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Stephen E Gwilym
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Adam P Cribbs
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research University of Oxford, Oxford, UK
| | - Sarah J B Snelling
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Xu Z, Hou W, Zhang T, Chen R, Skutella T. Exploring molecular and cellular signaling pathways: Unraveling the pathogenesis of tendinopathy. J Orthop Translat 2025; 51:298-311. [PMID: 40201708 PMCID: PMC11978293 DOI: 10.1016/j.jot.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/09/2025] [Accepted: 02/05/2025] [Indexed: 04/10/2025] Open
Abstract
Despite the long healing duration of tendon injuries, the outcomes of repairs are frequently suboptimal, resulting in persistent pain and reduced functionality. Current clinical approaches to tendinopathy are primarily symptomatic, encompassing nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroid injections, physical therapies, surgical interventions, loading programs, and pain management. Yet, these treatments have protracted timelines and their efficacy remains uncertain. This uncertainty stems largely from an incomplete understanding of tendinopathy's pathogenesis. Unraveling the mechanisms behind tendinopathy is essential for devising novel therapeutic strategies. In this context, this review systematic reviewed more recent cellular and molecular literature in tendinopathy, in order to summarize the up-to-date advancements including the structure and composition of healthy tendons, the pathophysiological changes in tendinopathy, the molecular pathways implicated in various forms of the condition, and current effective treatment methods. This review not only aims to offer insights but also to inspire further investigation into the mechanisms and clinical management of tendinopathy. The translational potential of this article A deficient understanding of the molecular mechanisms hampers the advancement of therapeutic strategies and drug development. Consequently, an in-depth examination of these molecular mechanisms is essential for comprehending the etiology of tendinopathy and for devising effective clinical management strategies.
Collapse
Affiliation(s)
- Zihan Xu
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Wenjing Hou
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Tao Zhang
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Rui Chen
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Thomas Skutella
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Stauber T, Moschini G, Hussien AA, Jaeger PK, De Bock K, Snedeker JG. Il-6 signaling exacerbates hallmarks of chronic tendon disease by stimulating reparative fibroblasts. eLife 2025; 12:RP87092. [PMID: 39918402 PMCID: PMC11805502 DOI: 10.7554/elife.87092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
Tendinopathies are debilitating diseases currently increasing in prevalence and associated costs. There is a need to deepen our understanding of the underlying cell signaling pathways to unlock effective treatments. In this work, we screen cell signaling pathways in human tendinopathies and find positively enriched IL-6/JAK/STAT signaling alongside signatures of cell populations typically activated by IL-6 in other tissues. In human tendinopathic tendons, we also confirm the strong presence and co-localization of IL-6, IL-6R, and CD90, an established marker of reparative fibroblasts. To dissect the underlying causalities, we combine IL-6 knock-out mice with an explant-based assembloid model of tendon damage to successfully connect IL-6 signaling to reparative fibroblast activation and recruitment. Vice versa, we show that these reparative fibroblasts promote the development of tendinopathy hallmarks in the damaged explant upon IL-6 activation. We conclude that IL-6 activates tendon fibroblast populations which then initiate and deteriorate tendinopathy hallmarks.
Collapse
Affiliation(s)
- Tino Stauber
- Laboratory for Orthopedic Biomechanics, University Hospital Balgrist and ETH ZurichZurichSwitzerland
| | - Greta Moschini
- Laboratory for Orthopedic Biomechanics, University Hospital Balgrist and ETH ZurichZurichSwitzerland
- Laboratory of Exercise and Health Department of Health Sciences and Technology (D-HEST) ETH Zurich, Swiss Federal Institute of TechnologyZurichSwitzerland
| | - Amro A Hussien
- Laboratory for Orthopedic Biomechanics, University Hospital Balgrist and ETH ZurichZurichSwitzerland
| | - Patrick Klaus Jaeger
- Laboratory for Orthopedic Biomechanics, University Hospital Balgrist and ETH ZurichZurichSwitzerland
| | - Katrien De Bock
- Laboratory of Exercise and Health Department of Health Sciences and Technology (D-HEST) ETH Zurich, Swiss Federal Institute of TechnologyZurichSwitzerland
| | - Jess G Snedeker
- Laboratory for Orthopedic Biomechanics, University Hospital Balgrist and ETH ZurichZurichSwitzerland
| |
Collapse
|
5
|
Duman E, Müller-Deubert S, Pattappa G, Stratos I, Sieber SA, Clausen-Schaumann H, Sarafian V, Shukunami C, Rudert M, Docheva D. Fluoroquinolone-Mediated Tendinopathy and Tendon Rupture. Pharmaceuticals (Basel) 2025; 18:184. [PMID: 40005998 PMCID: PMC11858458 DOI: 10.3390/ph18020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
The fluoroquinolone (FQ) class of antibiotics includes the world's most prescribed antibiotics such as ciprofloxacin, levofloxacin, and ofloxacin that are known for their low bacterial resistance. This is despite their potential to trigger severe side effects, such as myopathy, hearing loss, tendinopathy, and tendon rupture. Thus, healthcare organizations around the world have recommended limiting the prescription of FQs. Tendinopathy is a common name for maladies that cause pain and degeneration in the tendon tissue, which can result in tendon rupture. Whilst there are several identified effects of FQ on tendons, the exact molecular mechanisms behind FQ-mediated tendon rupture are unclear. Previous research studies indicated that FQ-mediated tendinopathy and tendon rupture can be induced by changes in gene expression, metabolism, and function of tendon resident cells, thus leading to alterations in the extracellular matrix. Hence, this review begins with an update on FQs, their mode of action, and their known side effects, as well as summary information on tendon tissue structure and cellular content. Next, how FQs affect the tendon tissue and trigger tendinopathy and tendon rupture is explored in detail. Lastly, possible preventative measures and promising areas for future research are also discussed. Specifically, follow-up studies should focus on understanding the FQ-mediated tendon changes in a more complex manner and integrating in vitro with in vivo models. With respect to in vitro systems, the field should move towards three-dimensional models that reflect the cellular diversity found in the tissue.
Collapse
Affiliation(s)
- Ezgi Duman
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (S.M.-D.); (G.P.)
| | - Sigrid Müller-Deubert
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (S.M.-D.); (G.P.)
| | - Girish Pattappa
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (S.M.-D.); (G.P.)
| | - Ioannis Stratos
- Department of Orthopaedics, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (I.S.); (M.R.)
| | - Stephan A. Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany;
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), University of Applied Sciences, 80335 Munich, Germany;
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
- Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Maximilian Rudert
- Department of Orthopaedics, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (I.S.); (M.R.)
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (S.M.-D.); (G.P.)
| |
Collapse
|
6
|
von Stade D, Meyers M, Johnson J, Schlegel T, Romeo A, Regan D, McGilvray K. Primary Human Macrophage and Tenocyte Tendon Healing Phenotypes Changed by Exosomes Per Cell Origin. Tissue Eng Part A 2025. [PMID: 39761039 DOI: 10.1089/ten.tea.2024.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
The high failure rate of surgical repair for tendinopathies has spurred interest in adjunct therapies, including exosomes (EVs). Mesenchymal stromal cell (MSC)-derived EVs (MSCdEVs) have been of particular interest as they improve several metrics of tendon healing in animal models. However, research has shown that EVs derived from tissue-native cells, such as tenocytes, are functionally distinct and may better direct tendon healing. To this end, we investigated the differential regulation of human primary macrophage transcriptomic responses and cytokine secretion by tenocyte-derived EVs (TdEVs) compared with MSCdEVs. Compared with MSCdEVs, TdEVs upregulated TNFa-NFkB and TGFB signaling and pathways associated with osteoclast differentiation in macrophages while decreasing secretion of several pro-inflammatory cytokines. Conditioned media of these TdEV educated macrophages drove increased tenocyte migration and decreased MMP3 and MMP13 expression. In contrast, MSCdEV education of macrophages drove increased gene expression pathways related to INFa, INFg and protection against oxidative stress while increasing cytokine expression of MCP1 and IL6. These data demonstrate that EV cell source differentially impacts the function of key effector cells in tendon healing and that TdEVs, compared with MSCdEVs, promote a more favorable tendon healing phenotype within these cells.
Collapse
Affiliation(s)
- Devin von Stade
- Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Melinda Meyers
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - James Johnson
- Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | | | - Anthony Romeo
- Shoulder Elbow Sports Medicine, Chicago, Illinois, USA
| | - Daniel Regan
- Flint Animal Cancer Center and Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kirk McGilvray
- Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
7
|
Zhang XZ, Li QL, Tang TT, Cheng X. Emerging Role of Macrophage-Fibroblast Interactions in Cardiac Homeostasis and Remodeling. JACC Basic Transl Sci 2025; 10:113-127. [PMID: 39958468 PMCID: PMC11830265 DOI: 10.1016/j.jacbts.2024.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 02/18/2025]
Abstract
As major noncardiomyocyte components in cardiac tissues, macrophages and fibroblasts play crucial roles in maintaining cardiac homeostasis, orchestrating reparative responses after cardiac injuries, facilitating adaptive cardiac remodeling, and contributing to adverse cardiac remodeling, owing to their inherent heterogeneity and plasticity. Recent advances in research methods have yielded novel insights into the intricate interactions between macrophages and fibroblasts in the cardiac context. This review aims to comprehensively examine the molecular mechanisms governing macrophage-fibroblast interactions in cardiac homeostasis and remodeling, emphasize recent advancements in the field, and offer an evaluation from a translational standpoint.
Collapse
Affiliation(s)
- Xu-Zhe Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin-Lin Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting-Ting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Li JX, Dang YM, Liu MC, Gao LQ, Lin H. Fibroblasts in heterotopic ossification: mechanisms and therapeutic targets. Int J Biol Sci 2025; 21:544-564. [PMID: 39781450 PMCID: PMC11705629 DOI: 10.7150/ijbs.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/07/2024] [Indexed: 01/12/2025] Open
Abstract
Heterotopic ossification (HO) refers to the abnormal formation of bone in non-skeletal tissues. Fibroblasts have traditionally been viewed as stationary cells primarily responsible for producing extracellular matrix during tissue repair and fibrosis. However, recent discoveries regarding their plasticity-encompassing roles in inflammation, extracellular matrix remodeling, and osteogenesis-highlight their potential as key contributors to the development of HO. In this review, we systematically summarize the diverse phenotypic and functional plasticity of fibroblasts in HO. Furthermore, we evaluate the possible interaction between fibroblasts and macrophages in pathophysiological processes and signaling pathways. Finally, we highlight the potential strategies for preventing and treating HO by targeting fibroblast activities.
Collapse
Affiliation(s)
- Jia-xin Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yan-miao Dang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Meng-chao Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lin-qing Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| |
Collapse
|
9
|
Muscat S, Nichols AEC. Leveraging in vivo animal models of tendon loading to inform tissue engineering approaches. Front Bioeng Biotechnol 2024; 12:1449372. [PMID: 39434716 PMCID: PMC11491380 DOI: 10.3389/fbioe.2024.1449372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Tendon injuries disrupt successful transmission of force between muscle and bone, resulting in reduced mobility, increased pain, and significantly reduced quality of life for affected patients. There are currently no targeted treatments to improve tendon healing beyond conservative methods such as rest and physical therapy. Tissue engineering approaches hold great promise for designing instructive biomaterials that could improve tendon healing or for generating replacement graft tissue. More recently, engineered microphysiological systems to model tendon injuries have been used to identify therapeutic targets. Despite these advances, current tissue engineering efforts that aim to regenerate, replace, or model injured tendons have largely failed due in large part to a lack of understanding of how the mechanical environment of the tendon influences tissue homeostasis and how altered mechanical loading can promote or prevent disease progression. This review article draws inspiration from what is known about tendon loading from in vivo animal models and identifies key metrics that can be used to benchmark success in tissue engineering applications. Finally, we highlight important challenges and opportunities for the field of tendon tissue engineering that should be taken into consideration in designing engineered platforms to understand or improve tendon healing.
Collapse
Affiliation(s)
- Samantha Muscat
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Department of Orthopedics and Physical Performance, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Anne E. C. Nichols
- Department of Orthopedics and Physical Performance, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
10
|
Leahy TP, Chenna SS, Soslowsky LJ, Dyment NA. Focal adhesion kinase regulates tendon cell mechanoresponse and physiological tendon development. FASEB J 2024; 38:e70050. [PMID: 39259535 PMCID: PMC11522781 DOI: 10.1096/fj.202400151r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
Tendons enable locomotion by transmitting high tensile mechanical forces between muscle and bone via their dense extracellular matrix (ECM). The application of extrinsic mechanical stimuli via muscle contraction is necessary to regulate healthy tendon function. Specifically, applied physiological levels of mechanical loading elicit an anabolic tendon cell response, while decreased mechanical loading evokes a degradative tendon state. Although the tendon response to mechanical stimuli has implications in disease pathogenesis and clinical treatment strategies, the cell signaling mechanisms by which tendon cells sense and respond to mechanical stimuli within the native tendon ECM remain largely unknown. Therefore, we explored the role of cell-ECM adhesions in regulating tendon cell mechanotransduction by perturbing the genetic expression and signaling activity of focal adhesion kinase (FAK) through both in vitro and in vivo approaches. We determined that FAK regulates tendon cell spreading behavior and focal adhesion morphology, nuclear deformation in response to applied mechanical strain, and mechanosensitive gene expression. In addition, our data reveal that FAK signaling plays an essential role in in vivo tendon development and postnatal growth, as FAK-knockout mouse tendons demonstrated reduced tendon size, altered mechanical properties, differences in cellular composition, and reduced maturity of the deposited ECM. These data provide a foundational understanding of the role of FAK signaling as a critical regulator of in situ tendon cell mechanotransduction. Importantly, an increased understanding of tendon cell mechanotransductive mechanisms may inform clinical practice as well as lead to the discovery of diagnostic and/or therapeutic molecular targets.
Collapse
Affiliation(s)
- Thomas P. Leahy
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Srish S. Chenna
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louis J. Soslowsky
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathaniel A. Dyment
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Vidal L, Lopez-Garzon M, Venegas V, Vila I, Domínguez D, Rodas G, Marotta M. A Novel Tendon Injury Model, Induced by Collagenase Administration Combined with a Thermo-Responsive Hydrogel in Rats, Reproduces the Pathogenesis of Human Degenerative Tendinopathy. Int J Mol Sci 2024; 25:1868. [PMID: 38339145 PMCID: PMC10855568 DOI: 10.3390/ijms25031868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Patellar tendinopathy is a common clinical problem, but its underlying pathophysiology remains poorly understood, primarily due to the absence of a representative experimental model. The most widely used method to generate such a model is collagenase injection, although this method possesses limitations. We developed an optimized rat model of patellar tendinopathy via the ultrasound-guided injection of collagenase mixed with a thermo-responsive Pluronic hydrogel into the patellar tendon of sixty male Wistar rats. All analyses were carried out at 3, 7, 14, 30, and 60 days post-injury. We confirmed that our rat model reproduced the pathophysiology observed in human patients through analyses of ultrasonography, histology, immunofluorescence, and biomechanical parameters. Tendons that were injured by the injection of the collagenase-Pluronic mixture exhibited a significant increase in the cross-sectional area (p < 0.01), a high degree of tissue disorganization and hypercellularity, significantly strong neovascularization (p < 0.01), important changes in the levels of types I and III collagen expression, and the organization and presence of intra-tendinous calcifications. Decreases in the maximum rupture force and stiffness were also observed. These results demonstrate that our model replicates the key features observed in human patellar tendinopathy. Collagenase is evenly distributed, as the Pluronic hydrogel prevents its leakage and thus, damage to surrounding tissues. Therefore, this model is valuable for testing new treatments for patellar tendinopathy.
Collapse
Affiliation(s)
- Laura Vidal
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Maria Lopez-Garzon
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Vanesa Venegas
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Ingrid Vila
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - David Domínguez
- Medical Department of Futbol Club Barcelona (FIFA Medical Center of Excellence) and Barça Innovation, 08970 Sant Joan Despí, Spain
| | - Gil Rodas
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Medical Department of Futbol Club Barcelona (FIFA Medical Center of Excellence) and Barça Innovation, 08970 Sant Joan Despí, Spain
- Sports Medicine Unit, Hospital Clínic and Sant Joan de Déu, 08950 Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Mario Marotta
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| |
Collapse
|
12
|
Previtali P, Pagani L, Risca G, Capitoli G, Bossi E, Oliveira G, Piga I, Radice A, Trezzi B, Sinico RA, Magni F, Chinello C. Towards the Definition of the Molecular Hallmarks of Idiopathic Membranous Nephropathy in Serum Proteome: A DIA-PASEF Approach. Int J Mol Sci 2023; 24:11756. [PMID: 37511514 PMCID: PMC10380405 DOI: 10.3390/ijms241411756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Idiopathic membranous nephropathy (IMN) is a pathologically defined disorder of the glomerulus, primarily responsible for nephrotic syndromes (NS) in nondiabetic adults. The underlying molecular mechanisms are still not completely clarified. To explore possible molecular and functional signatures, an optimised mass spectrometry (MS) method based on next-generation data-independent acquisition combined with ion-mobility was applied to serum of patients affected by IMN (n = 15) or by other glomerulopathies (PN) (n = 15). The statistical comparison highlighted a panel of 57 de-regulated proteins with a significant increase in lipoprotein-related proteins (APOC1, APOB, APOA1, APOL1 and LCAT) and a substantial quantitative alteration of key serpins (including A4, D1, A7, A6, F2, F1 and 1) possibly associated with IMN or NS and podocyte stress. A critical dysregulation in metabolisms of lipids (e.g., VLDL assembly and clearance) likely to be related to known hyperlipidemia in IMN, along with involvement of non-classical complement pathways and a putative enrolment of ficolin-2 in sustaining the activation of the lectin-mediated complement system have been pinpointed. Moreover, mannose receptor CD206 (MRC1-down in IMN) and biotinidase (BTD-up in IMN) are able alone to accurately distinguish IMN vs. PN. To conclude, our work provides key proteomic insights into the IMN complexity, opening the way to an efficient stratification of MN patients.
Collapse
Affiliation(s)
- Paolo Previtali
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Lisa Pagani
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Giulia Risca
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Giulia Capitoli
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Eleonora Bossi
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Glenda Oliveira
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Isabella Piga
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Antonella Radice
- Microbiology Institute, ASST (Azienda Socio Sanitaria Territoriale) Santi Paolo e Carlo, 20142 Milan, Italy
| | - Barbara Trezzi
- Department of Medicine and Surgery, University of Milano Bicocca and Nephrology, 20900 Monza, Italy
- Dialysis Unit, ASST-Monza, Ospedale San Gerardo, 20900 Monza, Italy
| | - Renato Alberto Sinico
- Department of Medicine and Surgery, University of Milano Bicocca and Nephrology, 20900 Monza, Italy
- Dialysis Unit, ASST-Monza, Ospedale San Gerardo, 20900 Monza, Italy
| | - Fulvio Magni
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Clizia Chinello
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| |
Collapse
|