1
|
Pandey MK, Gangurde SS, Shasidhar Y, Sharma V, Kale SM, Khan AW, Shah P, Joshi P, Bhat RS, Janila P, Bera SK, Varshney RK. High-throughput diagnostic markers for foliar fungal disease resistance and high oleic acid content in groundnut. BMC PLANT BIOLOGY 2024; 24:262. [PMID: 38594614 PMCID: PMC11005153 DOI: 10.1186/s12870-024-04987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Foliar diseases namely late leaf spot (LLS) and leaf rust (LR) reduce yield and deteriorate fodder quality in groundnut. Also the high oleic acid content has emerged as one of the most important traits for industries and consumers due to its increased shelf life and health benefits. RESULTS Genetic mapping combined with pooled sequencing approaches identified candidate resistance genes (LLSR1 and LLSR2 for LLS and LR1 for LR) for both foliar fungal diseases. The LLS-A02 locus housed LLSR1 gene for LLS resistance, while, LLS-A03 housed LLSR2 and LR1 genes for LLS and LR resistance, respectively. A total of 49 KASPs markers were developed from the genomic regions of important disease resistance genes, such as NBS-LRR, purple acid phosphatase, pentatricopeptide repeat-containing protein, and serine/threonine-protein phosphatase. Among the 49 KASP markers, 41 KASPs were validated successfully on a validation panel of contrasting germplasm and breeding lines. Of the 41 validated KASPs, 39 KASPs were designed for rust and LLS resistance, while two KASPs were developed using fatty acid desaturase (FAD) genes to control high oleic acid levels. These validated KASP markers have been extensively used by various groundnut breeding programs across the world which led to development of thousands of advanced breeding lines and few of them also released for commercial cultivation. CONCLUSION In this study, high-throughput and cost-effective KASP assays were developed, validated and successfully deployed to improve the resistance against foliar fungal diseases and oleic acid in groundnut. So far deployment of allele-specific and KASP diagnostic markers facilitated development and release of two rust- and LLS-resistant varieties and five high-oleic acid groundnut varieties in India. These validated markers provide opportunities for routine deployment in groundnut breeding programs.
Collapse
Affiliation(s)
- Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Yaduru Shasidhar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sandip M Kale
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Aamir W Khan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Priya Shah
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pushpesh Joshi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Pasupuleti Janila
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sandip K Bera
- ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia.
| |
Collapse
|
2
|
Transcriptome Profiling of the Resistance Response of Musa acuminata subsp. burmannicoides, var. Calcutta 4 to Pseudocercospora musae. Int J Mol Sci 2022; 23:ijms232113589. [DOI: 10.3390/ijms232113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Banana (Musa spp.), which is one of the world’s most popular and most traded fruits, is highly susceptible to pests and diseases. Pseudocercospora musae, responsible for Sigatoka leaf spot disease, is a principal fungal pathogen of Musa spp., resulting in serious economic damage to cultivars in the Cavendish subgroup. The aim of this study was to characterize genetic components of the early immune response to P. musae in Musa acuminata subsp. burmannicoides, var. Calcutta 4, a resistant wild diploid. Leaf RNA samples were extracted from Calcutta 4 three days after inoculation with fungal conidiospores, with paired-end sequencing conducted in inoculated and non-inoculated controls using lllumina HiSeq 4000 technology. Following mapping to the reference M. acuminata ssp. malaccensis var. Pahang genome, differentially expressed genes (DEGs) were identified and expression representation analyzed on the basis of gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes orthology and MapMan pathway analysis. Sequence data mapped to 29,757 gene transcript models in the reference Musa genome. A total of 1073 DEGs were identified in pathogen-inoculated cDNA libraries, in comparison to non-inoculated controls, with 32% overexpressed. GO enrichment analysis revealed common assignment to terms that included chitin binding, chitinase activity, pattern binding, oxidoreductase activity and transcription factor (TF) activity. Allocation to KEGG pathways revealed DEGs associated with environmental information processing, signaling, biosynthesis of secondary metabolites, and metabolism of terpenoids and polyketides. With 144 up-regulated DEGs potentially involved in biotic stress response pathways, including genes involved in cell wall reinforcement, PTI responses, TF regulation, phytohormone signaling and secondary metabolism, data demonstrated diverse early-stage defense responses to P. musae. With increased understanding of the defense responses occurring during the incompatible interaction in resistant Calcutta 4, these data are appropriate for the development of effective disease management approaches based on genetic improvement through introgression of candidate genes in superior cultivars.
Collapse
|
3
|
Tian A, Yu H, Cui Z. Functional characterization of E3 ubiquity ligase Bra015092 in pollen development of Brassica campestris ssp. Chinensis. PHYSIOLOGIA PLANTARUM 2022; 174:e13808. [PMID: 36309851 DOI: 10.1111/ppl.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Pollen development plays an important role in the sexual reproduction of seed-type plants. Ubiquitination of proteins is an essential link in the post-translational modification of proteins. E3 ubiquity ligase is a key protein that recognizes substrates in the protein ubiquitination pathway. The hybrid line "Bcajh97-01A/B" of Chinese cabbage (Brassica campestris L. ssp. Chinensis) was used as test material. The gene Bra015092, with a size of 642 bp, was amplified. Semi-quantitative (RT-PCR) and quantitative real-time PCR (qRT-PCR) techniques were utilized to analyze the expression of Bra015092 in the dual-purpose line of Chinese cabbage. It was found that Bra015092 had a higher expression level in inflorescence. Subcellular localization analysis showed that Bra015092 and GFP fusion expression protein widely exist in tobacco epidermal cells. Bra015092 was transformed into "Youqing49" cabbage to obtain Bra015092OE overexpressing transgenic lines. The morphological observation of Bra015092OE plants showed that the pollen of BcMF29OE plants became deformed and inactive, and the vegetative and reproductive nuclei were abnormally developed. The in vitro germination experiments showed that about 24.5% of the pollen in Bra015092OE plants could not germinate. The results of the semi-thin section showed that the pollen development of Bra015092OE plants was abnormal at the stage of binuclear pollen grains. Transmission electron microscopy revealed that the pollen grains of Bra015092OE plants gradually degraded from the binuclear to the trinucleate pollen grain stage, and the pollen inner wall was abnormally developed, indicating that Bra015092 plays a major role in the process of pollen development.
Collapse
Affiliation(s)
- Aimei Tian
- College of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
| | - Hui Yu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Zhejiang, Hangzhou, China
| | - Zhuoyue Cui
- College of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
- College of Life Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
4
|
Jadhav KP, Saykhedkar GR, Tamilarasi PM, Devasree S, Ranjani RV, Sarankumar C, Bharathi P, Karthikeyan A, Arulselvi S, Vijayagowri E, Ganesan KN, Paranidharan V, Nair SK, Babu R, Ramalingam J, Raveendran M, Senthil N. GBS-Based SNP Map Pinpoints the QTL Associated With Sorghum Downy Mildew Resistance in Maize (Zea mays L.). Front Genet 2022; 13:890133. [PMID: 35937985 PMCID: PMC9348272 DOI: 10.3389/fgene.2022.890133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Sorghum downy mildew (SDM), caused by the biotrophic fungi Peronosclerospora sorghi, threatens maize production worldwide, including India. To identify quantitative trait loci (QTL) associated with resistance to SDM, we used a recombinant inbred line (RIL) population derived from a cross between resistant inbred line UMI936 (w) and susceptible inbred line UMI79. The RIL population was phenotyped for SDM resistance in three environments [E1-field (Coimbatore), E2-greenhouse (Coimbatore), and E3-field (Mandya)] and also utilized to construct the genetic linkage map by genotyping by sequencing (GBS) approach. The map comprises 1516 SNP markers in 10 linkage groups (LGs) with a total length of 6924.7 cM and an average marker distance of 4.57 cM. The QTL analysis with the phenotype and marker data detected nine QTL on chromosome 1, 2, 3, 5, 6, and 7 across three environments. Of these, QTL namely qDMR1.2, qDMR3.1, qDMR5.1, and qDMR6.1 were notable due to their high phenotypic variance. qDMR3.1 from chromosome 3 was detected in more than one environment (E1 and E2), explaining the 10.3% and 13.1% phenotypic variance. Three QTL, qDMR1.2, qDMR5.1, and qDMR6.1 from chromosomes 1, 5, and 6 were identified in either E1 or E3, explaining 15.2%–18% phenotypic variance. Moreover, genome mining on three QTL (qDMR3.1, qDMR5.1, and qDMR6.1) reveals the putative candidate genes related to SDM resistance. The information generated in this study will be helpful for map-based cloning and marker-assisted selection in maize breeding programs.
Collapse
Affiliation(s)
- Kashmiri Prakash Jadhav
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Gajanan R. Saykhedkar
- Asian Regional Maize Program, International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, India
| | | | - Subramani Devasree
- Department of Millets, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Rajagopalan Veera Ranjani
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Chandran Sarankumar
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Pukalenthy Bharathi
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Adhimoolam Karthikeyan
- Department of Biotechnology, Centre of Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Soosai Arulselvi
- Agricultural College and Research Institute, Thanjavur, Tamil Nadu Agricultural University, Thanjavur, India
| | - Esvaran Vijayagowri
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Kalipatty Nalliappan Ganesan
- Department of Forage Crops, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Vaikuntavasan Paranidharan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sudha K. Nair
- Asian Regional Maize Program, International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, India
| | - Raman Babu
- Corteva Agrisciences, Multi Crop Research Centre, Hyderabad, India
| | - Jegadeesan Ramalingam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Muthurajan Raveendran
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Natesan Senthil
- Department of Biotechnology, Centre of Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
- *Correspondence: Natesan Senthil,
| |
Collapse
|
5
|
Leong JX, Raffeiner M, Spinti D, Langin G, Franz-Wachtel M, Guzman AR, Kim JG, Pandey P, Minina AE, Macek B, Hafrén A, Bozkurt TO, Mudgett MB, Börnke F, Hofius D, Üstün S. A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. EMBO J 2022; 41:e110352. [PMID: 35620914 PMCID: PMC9251887 DOI: 10.15252/embj.2021110352] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Beyond its role in cellular homeostasis, autophagy plays anti‐ and promicrobial roles in host–microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well‐described in animals, the extent to which xenophagy contributes to plant–bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type‐III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense‐related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense‐related autophagy in plant–bacteria interactions.
Collapse
Affiliation(s)
- Jia Xuan Leong
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Margot Raffeiner
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Daniela Spinti
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Gautier Langin
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Mirita Franz-Wachtel
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Andrew R Guzman
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Pooja Pandey
- Department of Life Sciences, Imperial College London, London, UK
| | - Alyona E Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Boris Macek
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Frederik Börnke
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Suayib Üstün
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.,Faculty of Biology & Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Trenner J, Monaghan J, Saeed B, Quint M, Shabek N, Trujillo M. Evolution and Functions of Plant U-Box Proteins: From Protein Quality Control to Signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:93-121. [PMID: 35226816 DOI: 10.1146/annurev-arplant-102720-012310] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Posttranslational modifications add complexity and diversity to cellular proteomes. One of the most prevalent modifications across eukaryotes is ubiquitination, which is orchestrated by E3 ubiquitin ligases. U-box-containing E3 ligases have massively expanded in the plant kingdom and have diversified into plant U-box proteins (PUBs). PUBs likely originated from two or three ancestral forms, fusing with diverse functional subdomains that resulted in neofunctionalization. Their emergence and diversification may reflect adaptations to stress during plant evolution, reflecting changes in the needs of plant proteomes to maintain cellular homeostasis. Through their close association with protein kinases, they are physically linked to cell signaling hubs and activate feedback loops by dynamically pairing with E2-ubiquitin-conjugating enzymes to generate distinct ubiquitin polymers that themselves act as signals. Here, we complement current knowledgewith comparative genomics to gain a deeper understanding of PUB function, focusing on their evolution and structural adaptations of key U-box residues, as well as their various roles in plant cells.
Collapse
Affiliation(s)
- Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany; ,
| | | | - Bushra Saeed
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; ,
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany; ,
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, USA;
| | - Marco Trujillo
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; ,
| |
Collapse
|
7
|
Kalapos B, Juhász C, Balogh E, Kocsy G, Tóbiás I, Gullner G. Transcriptome profiling of pepper leaves by RNA-Seq during an incompatible and a compatible pepper-tobamovirus interaction. Sci Rep 2021; 11:20680. [PMID: 34667194 PMCID: PMC8526828 DOI: 10.1038/s41598-021-00002-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
Upon virus infections, the rapid and comprehensive transcriptional reprogramming in host plant cells is critical to ward off virus attack. To uncover genes and defense pathways that are associated with virus resistance, we carried out the transcriptome-wide Illumina RNA-Seq analysis of pepper leaves harboring the L3 resistance gene at 4, 8, 24 and 48 h post-inoculation (hpi) with two tobamoviruses. Obuda pepper virus (ObPV) inoculation led to hypersensitive reaction (incompatible interaction), while Pepper mild mottle virus (PMMoV) inoculation resulted in a systemic infection without visible symptoms (compatible interaction). ObPV induced robust changes in the pepper transcriptome, whereas PMMoV showed much weaker effects. ObPV markedly suppressed genes related to photosynthesis, carbon fixation and photorespiration. On the other hand, genes associated with energy producing pathways, immune receptors, signaling cascades, transcription factors, pathogenesis-related proteins, enzymes of terpenoid biosynthesis and ethylene metabolism as well as glutathione S-transferases were markedly activated by ObPV. Genes related to photosynthesis and carbon fixation were slightly suppressed also by PMMoV. However, PMMoV did not influence significantly the disease signaling and defense pathways. RNA-Seq results were validated by real-time qPCR for ten pepper genes. Our findings provide a deeper insight into defense mechanisms underlying tobamovirus resistance in pepper.
Collapse
Affiliation(s)
- Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Brunszvik utca 2, Martonvásár, 2462, Hungary
| | - Csilla Juhász
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Herman Ottó út 15, Budapest, 1022, Hungary
| | - Eszter Balogh
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Brunszvik utca 2, Martonvásár, 2462, Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Brunszvik utca 2, Martonvásár, 2462, Hungary
| | - István Tóbiás
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Herman Ottó út 15, Budapest, 1022, Hungary
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Herman Ottó út 15, Budapest, 1022, Hungary.
| |
Collapse
|
8
|
Kim Y, Kim YJ, Paek KH. Temperature-specific vsiRNA confers RNAi-mediated viral resistance at elevated temperature in Capsicum annuum. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1432-1448. [PMID: 33165515 DOI: 10.1093/jxb/eraa527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/02/2020] [Indexed: 05/12/2023]
Abstract
Resistance (R) gene-mediated resistance is a robust and efficient antiviral immune system in the plants. Thus, when R-mediated resistance was suppressed at elevated temperatures, resistance towards viruses was expected to be completely collapsed. Nonetheless, the multiplication of Tobacco mosaic virus pathotype P0 (TMV-P0) was inhibited, and TMV-P0 particles were only occasionally present in the systemic leaves of pepper plants (Capsicum annuum). RNAi-mediated RNA silencing is a well-known antiviral immune mechanism. At elevated temperatures, RNAi-mediated antiviral resistance was induced and virus-derived siRNAs (vsiRNAs) were dramatically increased. Through sRNA-sequencing (sRNA-Seq) analysis, we revealed that vsiRNAs derived from TMV-P0 were greatly increased. Intriguingly, virus-infected plants could select the temperature-specific vsiRNAs for antiviral resistance from the amplified vsiRNAs at elevated temperatures. Pre-application of these temperature-specific vsiRNAs endowed antiviral resistance of the plants. Therefore, plants sustain antiviral resistance by activating RNAi-mediated resistance, based on temperature-specific vsiRNAs at elevated temperatures.
Collapse
Affiliation(s)
- Yunsik Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Young Jin Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Kyung-Hee Paek
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Sargolzaei M, Maddalena G, Bitsadze N, Maghradze D, Bianco PA, Failla O, Toffolatti SL, De Lorenzis G. Rpv29, Rpv30 and Rpv31: Three Novel Genomic Loci Associated With Resistance to Plasmopara viticola in Vitis vinifera. FRONTIERS IN PLANT SCIENCE 2020; 11:562432. [PMID: 33163011 PMCID: PMC7583455 DOI: 10.3389/fpls.2020.562432] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/17/2020] [Indexed: 05/21/2023]
Abstract
Plasmopara viticola (Berk. et Curt.) Berl. and de Toni, the agent of downy mildew, is one of the most important pathogens of European grapevine (Vitis vinifera L.). Extensive evaluation of cultivated grapevine germplasm has highlighted the existence of resistant phenotypes in the Georgian (Southern Caucasus) germplasm. Resistance is shown as a reduction in disease severity. Unraveling the genetic architecture of grapevine response to P. viticola infection is crucial to develop resistant varieties and reduce the impact of disease management. The aim of this work was to apply a genome-wide association (GWA) approach to a panel of Georgian-derived accessions phenotyped for P. viticola susceptibility and genotyped with Vitis18kSNP chip array. GWA identified three highly significant novel loci on chromosomes 14 (Rpv29), 3 (Rpv30) and 16 (Rpv31) associated with a low level of pathogen sporulation. Rpv29, Rpv30, and Rpv31 loci appeared to be associated with plant defense genes against biotic stresses, such as genes involved in pathogen recognition and signal transduction. This study provides the first evidence of resistant loci against P. viticola in V. vinifera germplasm, and identifies potential target genes for breeding P. viticola resistant grapevine cultivars.
Collapse
Affiliation(s)
- Maryam Sargolzaei
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Giuliana Maddalena
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Nana Bitsadze
- Department of Agriculture and Life Sciences, Agricultural University of Georgia, Tbilisi, Georgia
| | - David Maghradze
- Faculty of Viticulture and Winemaking, Caucasus International University, Tbilisi, Georgia
- National Wine Agency of Georgia, Tbilisi, Georgia
| | - Piero Attilio Bianco
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Osvaldo Failla
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Silvia Laura Toffolatti
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
- *Correspondence: Gabriella De Lorenzis,
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
- Silvia Laura Toffolatti,
| |
Collapse
|
10
|
Svara A, Jakse J, Radisek S, Javornik B, Stajner N. Temporal and spatial assessment of defence responses in resistant and susceptible hop cultivars during infection with Verticillium nonalfalfae. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153008. [PMID: 31326713 DOI: 10.1016/j.jplph.2019.153008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Hop (Humulus lupulus L.) is an important industrial plant providing ingredients for brewing and pharmaceutical industry worldwide. Its intensive production is challenged by numerous diseases. One of the most lethal and difficult to control is verticillium wilt, a vascular disease caused by the fungal pathogen Verticillium nonalfalfae. The disease can be successfully controlled by the host resistance. Despite various studies that already researched resistance mechanisms of hops, only limited number of resistance genes and markers that could be utilized for efficient resistance breeding has been identified. In this study we aimed to follow fungus colonization pattern and the differential expression of selected genes during pre-symptomatic period of susceptible (Celeia) and resistant (Wye Target) hop cultivars. Results of gene expressions and fungal colonisation of compatible and incompatible interactions with V. nonalfalfae suggest that the hop plant is challenged already at the very early fungal colonisation stages. In total, nine out of 17 gene targets investigated in our study resulted in differential expression between inoculated and control plants of susceptible and resistant cultivars. The difference was the most evident in stems at an early stage of colonisation (6 dpi), showing relatively stronger changes in targeted gene expression to infection in the resistant cultivar than in the susceptible one. Analysed gene targets are involved in the overall defence response processes of nucleic acid binding, signalling, protein ubiquitination, cell oxidative burst, hydroxylation, peroxidation, alternative splicing, and metabolite biosynthesis. The up-regulation of some genes (e.g. glycine-rich RNA-binding family protein, protein phosphatase, cysteine-rich receptor-like protein kinase, zinc finger CCCH domain-containing protein 40, cinnamic acid 4-hydroxylase, class III peroxidase, putative MAPK2, peroxiredoxin-2F) upon infection in incompatible interactions might reflect defence activation, restriction of disease spreading throughout the plant and successful response of resistant genotype.
Collapse
Affiliation(s)
- A Svara
- Department of Biosystems, KU Leuven, W. De Croylaan 42, 3001 Leuven, Belgium.
| | - J Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - S Radisek
- Plant Protection Department, Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, 3310 Žalec, Slovenia.
| | - B Javornik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - N Stajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
11
|
Sun J, Cao L, Li H, Wang G, Wang S, Li F, Zou X, Wang J. Early responses given distinct tactics to infection of Peronophythora litchii in susceptible and resistant litchi cultivar. Sci Rep 2019; 9:2810. [PMID: 30808947 PMCID: PMC6391439 DOI: 10.1038/s41598-019-39100-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
Litchi downy blight, a destructive litchi disease caused by Peronophythora litchii, is controlled by intensive fungicide applying. Sources of resistance are used in conventional breeding approaches, but the mechanism is not well understood. Follow-up six years investigation, 'Guiwei' and 'Heiye' displayed stable susceptible and resistant against to P. litchii, respectively. After 72 hour inoculation, 'Heiye' showed few disease spots, while 'Guiwei' appeared brown and covered with white sporangia. Germination of sporangia and growth of mycelium in 'Guiwei' is more quickly than in 'Heiye'. Transcript levels were measured at 6, 24, and 48 hour post-inoculation. 'Oxidation-reduction process' was dramatically enhanced in 'Heiye', which could promote its resistance to pathogen infection. A small ratio (3.78%) of common DEGs indicates that resistant and susceptible cultivars take different strategies to defense against P. litchii. At early infection stage, 'Heiye' induced a larger number of genes, including seven receptor-like kinases, which quickly recognized attack of pathogen and led to a rapidly resistance by regulation of degradation of proteasome, transcription factors, and cell wall remodeling. The early DGEs were exiguous in 'Guiwei', suggesting a weak response. Once the infection was successful, the resistance was repressed by down-regulated genes involved in phenylpropanoid metabolism, ET biosynthesis and signaling conduction in 'Guiwei'. In conclusion, quickly recognition and early responses to pathogen, as well as minimal pathogen development and basal expression of resistance-related genes, were correlated with a high level of resistance in 'Heiye', while susceptible 'Guiwei' suffered massive infection due to lagging response and repressed signal transduction.
Collapse
Affiliation(s)
- Jinhua Sun
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Lulu Cao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Huanling Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Guo Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Shujun Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Fang Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Xiaoxiao Zou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Jiabao Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China.
| |
Collapse
|
12
|
Bègue H, Mounier A, Rosnoblet C, Wendehenne D. Toward the understanding of the role of CDC48, a major component of the protein quality control, in plant immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:34-44. [PMID: 30709491 DOI: 10.1016/j.plantsci.2018.10.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The evolutionally conserved chaperone-like protein CDC48 (cell division cycle 48) is a major component of ubiquitin-dependent protein degradation pathways in animal and yeast and, more generally, of the protein quality control machinery. In plants, CDC48 plays essential regulatory functions in development and the possibly that it contributes to protein degradation through the ubiquitin-proteasome system (UPS) and the endoplasmic reticulum-associated protein degradation (ERAD) system has been reported. In this review we described recent findings highlighting a role for CDC48 in plant immunity. First data indicated that CDC48 is S-nitrosylated in plant cells undergoing an immune response, regulates the turnover of immune receptors and mediates the degradation of viral proteins. Furthermore its overexpression was associated to an exacerbated hypersensitive-like cell death. We also designed and reported here the first CDC48 interactome. The corresponding data confirm the closed interaction of CDC48 with components of the UPS and shed light on its putative regulatory function of S-adenosyl-methionine synthesis and metabolism. More generally, these investigations further support the concept that plant cells facing pathogen attack finely regulate the protein quality control machinery.
Collapse
Affiliation(s)
- Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - Arnaud Mounier
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
13
|
Toffolatti SL, De Lorenzis G, Costa A, Maddalena G, Passera A, Bonza MC, Pindo M, Stefani E, Cestaro A, Casati P, Failla O, Bianco PA, Maghradze D, Quaglino F. Unique resistance traits against downy mildew from the center of origin of grapevine (Vitis vinifera). Sci Rep 2018; 8:12523. [PMID: 30131589 PMCID: PMC6104083 DOI: 10.1038/s41598-018-30413-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/30/2018] [Indexed: 11/17/2022] Open
Abstract
The Eurasian grapevine (Vitis vinifera), an Old World species now cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. The cultivation of resistant V. vinifera varieties would be a sustainable way to reduce the damage caused by the pathogen and the impact of disease management, which involves the economic, health and environmental costs of frequent fungicide application. We report the finding of unique downy mildew resistance traits in a winemaking cultivar from the domestication center of V. vinifera, and characterize the expression of a range of genes associated with the resistance mechanism. Based on comparative experimental inoculations, confocal microscopy and transcriptomics analyses, our study shows that V. vinifera cv. Mgaloblishvili, native to Georgia (South Caucasus), exhibits unique resistance traits against P. viticola. Its defense response, leading to a limitation of P. viticola growth and sporulation, is determined by the overexpression of genes related to pathogen recognition, the ethylene signaling pathway, synthesis of antimicrobial compounds and enzymes, and the development of structural barriers. The unique resistant traits found in Mgaloblishvili highlight the presence of a rare defense system in V. vinifera against P. viticola which promises fresh opportunities for grapevine genetic improvement.
Collapse
Affiliation(s)
- Silvia Laura Toffolatti
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy.
| | - Gabriella De Lorenzis
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy.
| | - Alex Costa
- Università degli Studi di Milano, Dipartimento di Bioscienze (DBS), via Celoria 26, 20133, Milano, Italy
| | - Giuliana Maddalena
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| | - Alessandro Passera
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| | - Maria Cristina Bonza
- Università degli Studi di Milano, Dipartimento di Bioscienze (DBS), via Celoria 26, 20133, Milano, Italy
| | - Massimo Pindo
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010, San Michele all'Adige, (TN), Italy
| | - Erika Stefani
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010, San Michele all'Adige, (TN), Italy
| | - Alessandro Cestaro
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010, San Michele all'Adige, (TN), Italy
| | - Paola Casati
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| | - Osvaldo Failla
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| | - Piero Attilio Bianco
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| | - David Maghradze
- Scientific - Research Center of Agriculture, Marshal Gelovani Avenue 6, 0159, Tbilisi, Georgia
- Faculty of Agricultural Sciences and Biosystems Engineering, Georgian Technical University, David Guramishvili Avenue 17, 0175, Tbilisi, Georgia
| | - Fabio Quaglino
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| |
Collapse
|
14
|
Chen XL, Xie X, Wu L, Liu C, Zeng L, Zhou X, Luo F, Wang GL, Liu W. Proteomic Analysis of Ubiquitinated Proteins in Rice ( Oryza sativa) After Treatment With Pathogen-Associated Molecular Pattern (PAMP) Elicitors. FRONTIERS IN PLANT SCIENCE 2018; 9:1064. [PMID: 30083178 PMCID: PMC6064729 DOI: 10.3389/fpls.2018.01064] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/29/2018] [Indexed: 05/18/2023]
Abstract
Reversible protein ubiquitination plays essential roles in regulating cellular processes. Although many reports have described the functions of ubiquitination in plant defense responses, few have focused on global changes in the ubiquitome. To better understand the regulatory roles of ubiquitination in rice pattern-triggered immunity (PTI), we investigated the ubiquitome of rice seedlings after treatment with two pathogen-associated molecular patterns, the fungal-derived chitin or the bacterial-derived flg22, using label-free quantitative proteomics. In chitin-treated samples, 144 and 167 lysine-ubiquitination sites in 121 and 162 proteins showed increased and decreased ubiquitination, respectively. In flg22-treated samples, 151 and 179 lysine-ubiquitination sites in 118 and 166 proteins showed increased and decreased ubiquitination, respectively. Bioinformatic analyses indicated diverse regulatory roles of these proteins. The ubiquitination levels of many proteins involved in the ubiquitination system, protein transportation, ligand recognition, membrane trafficking, and redox reactions were significantly changed in response to the elicitor treatments. Notably, the ubiquitination levels of many enzymes in the phenylpropanoid metabolic pathway were up-regulated, indicating that this pathway is tightly regulated by ubiquitination during rice PTI. Additionally, the ubiquitination levels of some key components in plant hormone signaling pathways were up- or down-regulated, suggesting that ubiquitination may fine-tune hormone pathways for defense responses. Our results demonstrated that ubiquitination, by targeting a wide range of proteins for degradation or stabilization, has a widespread role in modulating PTI in rice. The large pool of ubiquitination targets will serve as a valuable resource for understanding how the ubiquitination system regulates defense responses to pathogen attack.
Collapse
Affiliation(s)
- Xiao-Lin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xin Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liye Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caiyun Liu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lirong Zeng
- Department of Plant Pathology, Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, United States
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC, United States
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology, Ohio State University, Columbus, OH, United States
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Zhang G, Hua Z. Genome comparison implies the role of Wsm2 in membrane trafficking and protein degradation. PeerJ 2018; 6:e4678. [PMID: 29707435 PMCID: PMC5918131 DOI: 10.7717/peerj.4678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/09/2018] [Indexed: 02/01/2023] Open
Abstract
Wheat streak mosaic virus (WSMV) causes streak mosaic disease in wheat (Triticum aestivum L.) and has been an important constraint limiting wheat production in many regions around the world. Wsm2 is the only resistance gene discovered in wheat genome and has been located in a short genomic region of its chromosome 3B. However, the sequence nature and the biological function of Wsm2 remain unknown due to the difficulty of genetic manipulation in wheat. In this study, we tested WSMV infectivity among wheat and its two closely related grass species, rice (Oryza sativa) and Brachypodium distachyon. Based on the phenotypic result and previous genomic studies, we developed a novel bioinformatics pipeline for interpreting a potential biological function of Wsm2 and its ancestor locus in wheat. In the WSMV resistance tests, we found that rice has a WMSV resistance gene while Brachypodium does not, which allowed us to hypothesize the presence of a Wsm2 ortholog in rice. Our OrthoMCL analysis of protein coding genes on wheat chromosome 3B and its syntenic chromosomes in rice and Brachypodium discovered 4,035 OrthoMCL groups as preliminary candidates of Wsm2 orthologs. Given that Wsm2 is likely duplicated through an intrachromosomal illegitimate recombination and that Wsm2 is dominant, we inferred that this new WSMV-resistance gene acquired an activation domain, lost an inhibition domain, or gained high expression compared to its ancestor locus. Through comparison, we identified that 67, 16, and 10 out of 4,035 OrthoMCL orthologous groups contain a rice member with 25% shorter or longer in length, or 10 fold more expression, respectively, than those from wheat and Brachypodium. Taken together, we predicted a total of 93 good candidates for a Wsm2 ancestor locus. All of these 93 candidates are not tightly linked with Wsm2, indicative of the role of illegitimate recombination in the birth of Wsm2. Further sequence analysis suggests that the protein products of Wsm2 may combat WSMV disease through a molecular mechanism involving protein degradation and/or membrane trafficking. The 93 putative Wsm2 ancestor loci discovered in this study could serve as good candidates for future genetic isolation of the true Wsm2 locus.
Collapse
Affiliation(s)
- Guorong Zhang
- Agricultural Research Center-Hays, Kansas State University, Hays, KS, United States of America
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States of America.,Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, United States of America
| |
Collapse
|
16
|
Serrano I, Campos L, Rivas S. Roles of E3 Ubiquitin-Ligases in Nuclear Protein Homeostasis during Plant Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:139. [PMID: 29472944 PMCID: PMC5809434 DOI: 10.3389/fpls.2018.00139] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/24/2018] [Indexed: 05/23/2023]
Abstract
Ubiquitination, the reversible protein conjugation with ubiquitin (Ub), is a post-translational modification that enables rapid and specific cellular responses to stimuli without requirement of de novo protein synthesis. Although ubiquitination also displays non-proteolytic functions, it often acts as a signal for selective protein degradation through the ubiquitin-proteasome system (UPS). In plants, it has become increasingly apparent that the UPS is a central regulator of many key cellular and physiological processes, including responses to biotic and abiotic stresses. In the nucleus, protein regulation via the UPS orchestrates gene expression, genome maintenance, and signal transduction. Here, we focus on E3 Ub-ligase proteins as major components of the ubiquitination cascade that confer specificity of substrate recognition. We provide an overview on how they contribute to nuclear proteome plasticity during plant responses to environmental stress signals.
Collapse
|
17
|
Withers J, Dong X. Post-translational regulation of plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:124-132. [PMID: 28538164 PMCID: PMC5644497 DOI: 10.1016/j.pbi.2017.05.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 05/20/2023]
Abstract
Plants have evolved multi-layered molecular defense strategies to protect against pathogens. Plant immune signaling largely relies on post-translational modifications (PTMs) to induce rapid alterations of signaling pathways to achieve a response that is appropriate to the type of pathogen and infection pressure. In host cells, dynamic PTMs have emerged as powerful regulatory mechanisms that cells use to adjust their immune response. PTM is also a virulence strategy used by pathogens to subvert host immunity through the activities of effector proteins secreted into the host cell. Recent studies focusing on deciphering post-translational mechanisms underlying plant immunity have offered an in-depth view of how PTMs facilitate efficient immune responses and have provided a more dynamic and holistic view of plant immunity.
Collapse
Affiliation(s)
- John Withers
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
18
|
Liao D, Cao Y, Sun X, Espinoza C, Nguyen CT, Liang Y, Stacey G. Arabidopsis E3 ubiquitin ligase PLANT U-BOX13 (PUB13) regulates chitin receptor LYSIN MOTIF RECEPTOR KINASE5 (LYK5) protein abundance. THE NEW PHYTOLOGIST 2017; 214:1646-1656. [PMID: 28195333 DOI: 10.1111/nph.14472] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/09/2017] [Indexed: 05/21/2023]
Abstract
Long-chain chitooligosaccharides are fungal microbe-associated molecular patterns (MAMPs) that are recognized by LYSIN MOTIF RECEPTOR KINASE5 (LYK5), inducing the formation of a complex with CHITIN ELICITOR RECEPTOR KINASE1 (CERK1). Formation of this complex leads to activation of the CERK1 intracellular kinase domain and induction of plant innate immunity in Arabidopsis. We found that addition of chitooctaose induced LYK5 protein accumulation as a result of de novo gene expression and the inhibition of LYK5 protein degradation. Screening the putative E3 ligases for interaction with LYK5 identified PLANT U-BOX13 (PUB13), which complexed with LYK5, but this complex dissociated upon addition of chitooctaose. Consistent with these results, LYK5 protein abundance was higher in pub13 mutants compared with the wild type without chitooctaose treatment, while similar abundance was detected with the addition of chitooctaose. The pub13 mutants showed hypersensitivity to chitooctaose-induced rapid responses, such as the production of reactive oxygen species (ROS) and mitogen-activated protein (MAP) kinase phosphorylation, but exhibited normal responses to subsequent long-term chitooctaose treatment, such as gene expression and callose deposition. In addition, PUB13 could ubiquitinate the LYK5 kinase domain in vitro. Taken together, our results suggest an important regulatory function for the turnover of LYK5 mediated by the E3 ligase PUB13.
Collapse
Affiliation(s)
- Dehua Liao
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yangrong Cao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xun Sun
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Catherine Espinoza
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Cuong T Nguyen
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Yan Liang
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
19
|
Jayaraman D, Richards AL, Westphall MS, Coon JJ, Ané JM. Identification of the phosphorylation targets of symbiotic receptor-like kinases using a high-throughput multiplexed assay for kinase specificity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1196-1207. [PMID: 28267253 PMCID: PMC5461195 DOI: 10.1111/tpj.13529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 02/17/2017] [Accepted: 03/01/2017] [Indexed: 05/29/2023]
Abstract
Detecting the phosphorylation substrates of multiple kinases in a single experiment is a challenge, and new techniques are being developed to overcome this challenge. Here, we used a multiplexed assay for kinase specificity (MAKS) to identify the substrates directly and to map the phosphorylation site(s) of plant symbiotic receptor-like kinases. The symbiotic receptor-like kinases nodulation receptor-like kinase (NORK) and lysin motif domain-containing receptor-like kinase 3 (LYK3) are indispensable for the establishment of root nodule symbiosis. Although some interacting proteins have been identified for these symbiotic receptor-like kinases, very little is known about their phosphorylation substrates. Using this high-throughput approach, we identified several other potential phosphorylation targets for both these symbiotic receptor-like kinases. In particular, we also discovered the phosphorylation of LYK3 by NORK itself, which was also confirmed by pairwise kinase assays. Motif analysis of potential targets for these kinases revealed that the acidic motif xxxsDxxx was common to both of them. In summary, this high-throughput technique catalogs the potential phosphorylation substrates of multiple kinases in a single efficient experiment, the biological characterization of which should provide a better understanding of phosphorylation signaling cascade in symbiosis.
Collapse
Affiliation(s)
- Dhileepkumar Jayaraman
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
| | - Alicia L. Richards
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
| | - Michael S. Westphall
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, 420 Henry Mall, WI 53706, USA
| | - Joshua J. Coon
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, 420 Henry Mall, WI 53706, USA
| | - Jean-Michel Ané
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
- Department of Bacteriology, 1550 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
| |
Collapse
|
20
|
Furlan G, Trujillo M. In Vitro Ubiquitination Activity Assays in Plant Immune Responses. Methods Mol Biol 2017; 1578:109-121. [PMID: 28220418 DOI: 10.1007/978-1-4939-6859-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Ubiquitination is a central posttranslational modification that impinges on the fate of proteins. While attachment of K48-linked chains onto soluble proteins marks them for proteolysis via the 26S proteasome, mono-ubiquitination or K63-linked chains result in the endocytosis and sorting through the endomembrane system of integral membrane proteins, such as pattern recognition receptors. In vitro ubiquitination assays allow the biochemical analysis of all individual components of the ubiquitination machinery and its potential substrates. Here, we describe how to reconstitute the ubiquitination cascade in vitro and detail different variations of the assay, the required controls and how to interpret the obtained results.
Collapse
Affiliation(s)
- Giulia Furlan
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Marco Trujillo
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany.
| |
Collapse
|
21
|
Pierella Karlusich JJ, Zurbriggen MD, Shahinnia F, Sonnewald S, Sonnewald U, Hosseini SA, Hajirezaei MR, Carrillo N. Chloroplast Redox Status Modulates Genome-Wide Plant Responses during the Non-host Interaction of Tobacco with the Hemibiotrophic Bacterium Xanthomonas campestris pv. vesicatoria. FRONTIERS IN PLANT SCIENCE 2017; 8:1158. [PMID: 28725231 PMCID: PMC5495832 DOI: 10.3389/fpls.2017.01158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/16/2017] [Indexed: 05/05/2023]
Abstract
Non-host resistance is the most ample and durable form of plant resistance against pathogen infection. It includes induction of defense-associated genes, massive metabolic reprogramming, and in many instances, a form of localized cell death (LCD) at the site of infection, purportedly designed to limit the spread of biotrophic and hemibiotrophic microorganisms. Reactive oxygen species (ROS) have been proposed to act as signals for LCD orchestration. They are produced in various cellular compartments including chloroplasts, mitochondria and apoplast. We have previously reported that down-regulation of ROS build-up in chloroplasts by expression of a plastid-targeted flavodoxin (Fld) suppressed LCD in tobacco leaves inoculated with the non-host bacterium Xanthomonas campestris pv. vesicatoria (Xcv), while other defensive responses were unaffected, suggesting that chloroplast ROS and/or redox status play a major role in the progress of LCD. To better understand these effects, we compare here the transcriptomic alterations caused by Xcv inoculation on leaves of Fld-expressing tobacco plants and their wild-type siblings. About 29% of leaf-expressed genes were affected by Xcv and/or Fld. Surprisingly, 5.8% of them (1,111 genes) were regulated by Fld in the absence of infection, presumably representing pathways responsive to chloroplast ROS production and/or redox status during normal growth conditions. While the majority (∼75%) of pathogen-responsive genes were not affected by Fld, many Xcv responses were exacerbated, attenuated, or regulated in opposite direction by expression of this protein. Particularly interesting was a group of 384 genes displaying Xcv responses that were already triggered by Fld in the absence of infection, suggesting that the transgenic plants had a larger and more diversified suite of constitutive defenses against the attacking microorganism compared to the wild type. Fld modulated many genes involved in pathogenesis, signal transduction, transcriptional regulation and hormone-based pathways. Remarkable interactions with proteasomal protein degradation were observed. The results provide the first genome-wide, comprehensive picture illustrating the relevance of chloroplast redox status in biotic stress responses.
Collapse
Affiliation(s)
- Juan J. Pierella Karlusich
- Instituto de Biología Molecular y Celular de Rosario (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Matias D. Zurbriggen
- Instituto de Biología Molecular y Celular de Rosario (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Fahimeh Shahinnia
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Sophia Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-NurembergErlangen, Germany
| | - Uwe Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-NurembergErlangen, Germany
| | - Seyed A. Hosseini
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
- *Correspondence: Mohammad-Reza Hajirezaei, Néstor Carrillo,
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
- *Correspondence: Mohammad-Reza Hajirezaei, Néstor Carrillo,
| |
Collapse
|
22
|
Bozsó Z, Ott PG, Kámán-Tóth E, Bognár GF, Pogány M, Szatmári Á. Overlapping Yet Response-Specific Transcriptome Alterations Characterize the Nature of Tobacco-Pseudomonas syringae Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:251. [PMID: 27014286 PMCID: PMC4779890 DOI: 10.3389/fpls.2016.00251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/15/2016] [Indexed: 05/18/2023]
Abstract
In this study transcriptomic alterations of bacterially induced pattern triggered immunity (PTI) were compared with other types of tobacco-Pseudomonas interactions. In addition, using pharmacological agents we blocked some signal transduction pathways (Ca(2+) influx, kinases, phospholipases, proteasomic protein degradation) to find out how they contribute to gene expression during PTI. PTI is the first defense response of plant cells to microbes, elicited by their widely conserved molecular patterns. Tobacco is an important model of Solanaceae to study resistance responses, including defense mechanisms against bacteria. In spite of these facts the transcription regulation of tobacco genes during different types of plant bacterial interactions is not well-described. In this paper we compared the tobacco transcriptomic alterations in microarray experiments induced by (i) PTI inducer Pseudomonas syringae pv. syringae type III secretion mutant (hrcC) at earlier (6 h post inoculation) and later (48 hpi) stages of defense, (ii) wild type P. syringae (6 hpi) that causes effector triggered immunity (ETI) and cell death (HR), and (iii) disease-causing P. syringae pv. tabaci (6 hpi). Among the different treatments the highest overlap was between the PTI and ETI at 6 hpi, however, there were groups of genes with specifically altered activity for either type of defenses. Instead of quantitative effects of the virulent P. tabaci on PTI-related genes it influenced transcription qualitatively and blocked the expression changes of a special set of genes including ones involved in signal transduction and transcription regulation. P. tabaci specifically activated or repressed other groups of genes seemingly not related to either PTI or ETI. Kinase and phospholipase A inhibitors had highest impacts on the PTI response and effects of these signal inhibitors on transcription greatly overlapped. Remarkable interactions of phospholipase C-related pathways with the proteasomal system were also observable. Genes specifically affected by virulent P. tabaci belonged to various previously identified signaling routes, suggesting that compatible pathogens may modulate diverse signaling pathways of PTI to overcome plant defense.
Collapse
|
23
|
Regulatory Proteolysis in Arabidopsis-Pathogen Interactions. Int J Mol Sci 2015; 16:23177-94. [PMID: 26404238 PMCID: PMC4632692 DOI: 10.3390/ijms161023177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/16/2022] Open
Abstract
Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.
Collapse
|
24
|
Cregeen S, Radisek S, Mandelc S, Turk B, Stajner N, Jakse J, Javornik B. Different Gene Expressions of Resistant and Susceptible Hop Cultivars in Response to Infection with a Highly Aggressive Strain of Verticillium albo-atrum. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:689-704. [PMID: 25999664 PMCID: PMC4432018 DOI: 10.1007/s11105-014-0767-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Verticillium wilt has become a serious threat to hop production in Europe due to outbreaks of lethal wilt caused by a highly virulent strain of Verticillium albo-atrum. In order to enhance our understanding of resistance mechanisms, the fungal colonization patterns and interactions of resistant and susceptible hop cultivars infected with V. albo-atrum were analysed in time course experiments. Quantification of fungal DNA showed marked differences in spatial and temporal fungal colonization patterns in the two cultivars. Two differential display methods obtained 217 transcripts with altered expression, of which 84 showed similarity to plant proteins and 8 to fungal proteins. Gene ontology categorised them into cellular and metabolic processes, response to stimuli, biological regulation, biogenesis and localization. The expression patterns of 17 transcripts with possible implication in plant immunity were examined by real-time PCR (RT-qPCR). Our results showed strong expression of genes encoding pathogenesis-related (PR) proteins in susceptible plants and strong upregulation of genes implicated in ubiquitination and vesicle trafficking in the incompatible interaction and their downregulation in susceptible plants, suggesting the involvement of these processes in the hop resistance reaction. In the resistant cultivar, the RT-qPCR expression patterns of most genes showed their peak at 20 dpi and declined towards 30 dpi, comparable to the gene expression pattern of in planta detected fungal protein and coinciding with the highest fungal biomass in plants at 15 dpi. These expression patterns suggest that the defence response in the resistant cultivar is strong enough at 20 dpi to restrict further fungus colonization.
Collapse
Affiliation(s)
- Sara Cregeen
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Sebastjan Radisek
- Slovenian Institute for Hop Research and Brewing, Cesta ŽalskegaTabora 2, SI-3320 Žalec, Slovenia
| | - Stanislav Mandelc
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Boris Turk
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Natasa Stajner
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Jernej Jakse
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Branka Javornik
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
25
|
Üstün S, Börnke F. Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways. FRONTIERS IN PLANT SCIENCE 2014; 5:736. [PMID: 25566304 PMCID: PMC4270169 DOI: 10.3389/fpls.2014.00736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/03/2014] [Indexed: 05/26/2023]
Abstract
In eukaryotes, regulated protein turnover is required during many cellular processes, including defense against pathogens. Ubiquitination and degradation of ubiquitinated proteins via the ubiquitin-proteasome system (UPS) is the main pathway for the turnover of intracellular proteins in eukaryotes. The extensive utilization of the UPS in host cells makes it an ideal pivot for the manipulation of cellular processes by pathogens. Like many other Gram-negative bacteria, Xanthomonas species secrete a suite of type-III effector proteins (T3Es) into their host cells to promote virulence. Some of these T3Es exploit the plant UPS to interfere with immunity. This review summarizes T3E examples from the genus Xanthomonas with a proven or suggested interaction with the host UPS or UPS-like systems and also discusses the apparent paradox that arises from the presence of T3Es that inhibit the UPS in general while others rely on its activity for their function.
Collapse
Affiliation(s)
- Suayib Üstün
- Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
| | - Frederik Börnke
- Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
- Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| |
Collapse
|
26
|
Callis J. The ubiquitination machinery of the ubiquitin system. THE ARABIDOPSIS BOOK 2014; 12:e0174. [PMID: 25320573 PMCID: PMC4196676 DOI: 10.1199/tab.0174] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The protein ubiquitin is a covalent modifier of proteins, including itself. The ubiquitin system encompasses the enzymes required for catalysing attachment of ubiquitin to substrates as well as proteins that bind to ubiquitinated proteins leading them to their final fate. Also included are activities that remove ubiquitin independent of, or in concert with, proteolysis of the substrate, either by the proteasome or proteases in the vacuole. In addition to ubiquitin encoded by a family of fusion proteins, there are proteins with ubiquitin-like domains, likely forming ubiquitin's β-grasp fold, but incapable of covalent modification. However, they serve as protein-protein interaction platforms within the ubiquitin system. Multi-gene families encode all of these types of activities. Within the ubiquitination machinery "half" of the ubiquitin system are redundant, partially redundant, and unique components affecting diverse developmental and environmental responses in plants. Notably, multiple aspects of biotic and abiotic stress responses require, or are modulated by, ubiquitination. Finally, aspects of the ubiquitin system have broad utility: as components to enhance gene expression or to regulate protein abundance. This review focuses on the ubiquitination machinery: ubiquitin, unique aspects about the synthesis of ubiquitin and organization of its gene family, ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases, or E3s. Given the large number of E3s in Arabidopsis this review covers the U box, HECT and RING type E3s, with the exception of the cullin-based E3s.
Collapse
Affiliation(s)
- Judy Callis
- Department of Molecular and Cellular Biology, University of California-Davis, Davis CA 95616
| |
Collapse
|
27
|
Majovsky P, Naumann C, Lee CW, Lassowskat I, Trujillo M, Dissmeyer N, Hoehenwarter W. Targeted proteomics analysis of protein degradation in plant signaling on an LTQ-Orbitrap mass spectrometer. J Proteome Res 2014; 13:4246-58. [PMID: 25130057 DOI: 10.1021/pr500164j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeted proteomics has become increasingly popular recently because of its ability to precisely quantify selected proteins in complex cellular backgrounds. Here, we demonstrated the utility of an LTQ-Orbitrap Velos Pro mass spectrometer in targeted parallel reaction monitoring (PRM) despite its unconventional dual ion trap configuration. We evaluated absolute specificity (>99%) and sensitivity (100 amol on column in 1 μg of total cellular extract) using full and mass range scans as survey scans together with data-dependent (DDA) and targeted MS/MS acquisition. The instrument duty cycle was a critical parameter limiting sensitivity, necessitating peptide retention time scheduling. We assessed synthetic peptide and recombinant peptide standards to predict or experimentally determine target peptide retention times. We applied optimized PRM to protein degradation in signaling regulation, an area that is receiving increased attention in plant physiology. We quantified relative abundance of selected proteins in plants that are mutant for enzymatic components of the N-end rule degradation (NERD) pathway such as the two tRNA-arginyl-transferases ATE1 and ATE2 and the two E3 ubiquitin ligases PROTEOLYSIS1 and 6. We found a number of upregulated proteins, which might represent degradation targets. We also targeted FLAGELLIN SENSITIVE2 (FLS2), a pattern recognition receptor responsible for pathogen sensing, in ubiquitin ligase mutants to assay the attenuation of plant immunity by degradation of the receptor.
Collapse
Affiliation(s)
- Petra Majovsky
- Proteome Analytics Research Group, ‡Independent Junior Research Group on Protein Recognition and Degradation, §Independent Junior Research Group Ubiquitination in Immunity, and ∥Cellular Signaling Group, Department of Stress and Developmental Biology (SEB), Leibniz Institute of Plant Biochemistry (IPB) , Halle (Saale) D-06120, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Vogelmann K, Subert C, Danzberger N, Drechsel G, Bergler J, Kotur T, Burmester T, Hoth S. Plasma membrane-association of SAUL1-type plant U-box armadillo repeat proteins is conserved in land plants. FRONTIERS IN PLANT SCIENCE 2014; 5:37. [PMID: 24600457 PMCID: PMC3928556 DOI: 10.3389/fpls.2014.00037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/27/2014] [Indexed: 05/08/2023]
Abstract
Post-translational protein modification plays a pivotal role in the regulation and specific turnover of proteins. One of these important modifications is the ubiquitination of target proteins, which can occur at distinct cellular compartments. At the plasma membrane, ubiquitination regulates the internalization and thus trafficking of membrane proteins such as receptors and channels. The Arabidopsis plant U-box (PUB) armadillo repeat (PUB-ARM) ubiquitin ligase SAUL1 (SENESCENCE-ASSOCIATED UBIQUITIN LIGASE1) is part of the ubiquitination machinery at the plasma membrane. In contrast to most other PUB-ARM proteins, SAUL1 carries additional C-terminal ARM repeats responsible for plasma membrane-association. Here, we demonstrated that the C-terminal ARM repeat domain is also essential and sufficient to mediate plasma membrane-association of the closest Arabidopis paralog AtPUB43. We investigated targeting of PUB-ARM ubiquitin ligases of different plant species to find out whether plasma membrane-association of SAUL1-type PUB-ARM proteins is conserved. Phylogenetic analysis identified orthologs of SAUL1 in these plant species. Intracellular localization of transiently expressed GFP fusion proteins revealed that indeed plasma membrane-association due to additional C-terminal ARM repeats represents a conserved feature of SAUL1-type proteins. Analyses of transgenic Arabidopsis plants overexpressing N-terminally masked or truncated proteins revealed that interfering with the function of SAUL1-type proteins resulted in severe growth defects. Our results suggest an ancient origin of ubiquitination at the plasma membrane in the evolution of land plants.
Collapse
Affiliation(s)
- Katja Vogelmann
- Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität HamburgHamburg, Germany
| | - Christa Subert
- Department Biologie, Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | - Nina Danzberger
- Department Biologie, Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | - Gabriele Drechsel
- Zentrum für Molekularbiologie der Pflanzen, Allgemeine Genetik, Universität TübingenTübingen, Germany
| | - Johannes Bergler
- Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität HamburgHamburg, Germany
| | - Tanja Kotur
- Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität HamburgHamburg, Germany
| | - Thorsten Burmester
- Stoffwechselphysiologie, Biozentrum Grindel, Universität HamburgHamburg, Germany
| | - Stefan Hoth
- Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität HamburgHamburg, Germany
- *Correspondence: Stefan Hoth, Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany e-mail:
| |
Collapse
|
29
|
Bhattacharjee S, Garner CM, Gassmann W. New clues in the nucleus: transcriptional reprogramming in effector-triggered immunity. FRONTIERS IN PLANT SCIENCE 2013; 4:364. [PMID: 24062762 PMCID: PMC3772313 DOI: 10.3389/fpls.2013.00364] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/27/2013] [Indexed: 05/05/2023]
Abstract
The robustness of plant effector-triggered immunity is correlated with massive alterations of the host transcriptome. Yet the molecular mechanisms that cause and underlie this reprogramming remain obscure. Here we will review recent advances in deciphering nuclear functions of plant immune receptors and of associated proteins. Important open questions remain, such as the identities of the primary transcription factors involved in control of effector-triggered immune responses, and indeed whether this can be generalized or whether particular effector-resistance protein interactions impinge on distinct sectors in the transcriptional response web. Multiple lines of evidence have implicated WRKY transcription factors at the core of responses to microbe-associated molecular patterns and in intersections with effector-triggered immunity. Recent findings from yeast two-hybrid studies suggest that members of the TCP transcription factor family are targets of several effectors from diverse pathogens. Additional transcription factor families that are directly or indirectly involved in effector-triggered immunity are likely to be identified.
Collapse
Affiliation(s)
- Saikat Bhattacharjee
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of MissouriColumbia, MO, USA
- *Correspondence: Saikat Bhattacharjee, Division of Plant Sciences, University of Missouri, 314, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA e-mail:
| | - Christopher M. Garner
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of MissouriColumbia, MO, USA
- Division of Biological Sciences, University of MissouriColumbia, MO, USA
| | - Walter Gassmann
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of MissouriColumbia, MO, USA
| |
Collapse
|
30
|
Stegmann M, Anderson RG, Westphal L, Rosahl S, McDowell JM, Trujillo M. The exocyst subunit Exo70B1 is involved in the immune response of Arabidopsis thaliana to different pathogens and cell death. PLANT SIGNALING & BEHAVIOR 2013; 8:e27421. [PMID: 24389869 PMCID: PMC4091220 DOI: 10.4161/psb.27421] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 05/20/2023]
Abstract
Components of the vesicle trafficking machinery are central to the immune response in plants. The role of vesicle trafficking during pre-invasive penetration resistance has been well documented. However, emerging evidence also implicates vesicle trafficking in early immune signaling. Here we report that Exo70B1, a subunit of the exocyst complex which mediates early tethering during exocytosis is involved in resistance. We show that exo70B1 mutants display pathogen-specific immuno-compromised phenotypes. We also show that exo70B1 mutants display lesion-mimic cell death, which in combination with the reduced responsiveness to pathogen-associated molecular patterns (PAMPs) results in complex immunity-related phenotypes.
Collapse
Affiliation(s)
- Martin Stegmann
- Leibniz Institute of Plant Biochemistry; Halle, (Saale) Germany
| | - Ryan G Anderson
- Department of Plant Pathology, Physiology, & Weed Science; Virginia Tech; Blacksburg, VA USA
| | - Lore Westphal
- Leibniz Institute of Plant Biochemistry; Halle, (Saale) Germany
| | - Sabine Rosahl
- Leibniz Institute of Plant Biochemistry; Halle, (Saale) Germany
| | - John M McDowell
- Department of Plant Pathology, Physiology, & Weed Science; Virginia Tech; Blacksburg, VA USA
| | - Marco Trujillo
- Leibniz Institute of Plant Biochemistry; Halle, (Saale) Germany
- Correspondence to: Marco Trujillo,
| |
Collapse
|
31
|
Jones AME, Monaghan J, Ntoukakis V. Editorial: Mechanisms regulating immunity in plants. FRONTIERS IN PLANT SCIENCE 2013; 4:64. [PMID: 23544032 PMCID: PMC3608907 DOI: 10.3389/fpls.2013.00064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 03/07/2013] [Indexed: 05/12/2023]
Affiliation(s)
| | - Jacqueline Monaghan
- The Sainsbury Laboratory, Norwich Research ParkNorwich, UK
- *Correspondence: ; ;
| | - Vardis Ntoukakis
- School of Life Sciences, University of WarwickCoventry, UK
- *Correspondence: ; ;
| |
Collapse
|