1
|
Refahi Y, Zoghlami A, Viné T, Terryn C, Paës G. Plant cell wall enzymatic deconstruction: Bridging the gap between micro and nano scales. BIORESOURCE TECHNOLOGY 2024; 414:131551. [PMID: 39370009 DOI: 10.1016/j.biortech.2024.131551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Understanding lignocellulosic biomass resistance to enzymatic deconstruction is crucial for its sustainable conversion into bioproducts. Despite scientific advances, quantitative morphological analysis of plant deconstruction at cell and tissue scales remains under-explored. In this study, an original pipeline is devised, involving four-dimensional (space + time) fluorescence confocal imaging, and a novel computational tool, to track and quantify deconstruction at cell and tissue scales. By applying this pipeline to poplar wood, dynamics of cellular parameters was computed and cellulose conversion during enzymatic deconstruction was measured. Results showed that enzymatic deconstruction predominantly impacts cell wall volume rather than surface area. Additionally, a negative correlation was observed between pre-hydrolysis compactness measures and volumetric cell wall deconstruction rate, whose strength was modulated by enzymatic activity. Results also revealed a strong positive correlation between average volumetric cell wall deconstruction rate and cellulose conversion rate. These findings link key deconstruction parameters across nano and micro scales.
Collapse
Affiliation(s)
- Yassin Refahi
- Université de Reims-Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims 51100, France
| | - Aya Zoghlami
- Université de Reims-Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims 51100, France
| | - Thibaut Viné
- Université de Reims-Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims 51100, France
| | - Christine Terryn
- Platform of Cellular and Tissular Imaging (PICT), Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Gabriel Paës
- Université de Reims-Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims 51100, France
| |
Collapse
|
2
|
Stange P, Kersting J, Sivaprakasam Padmanaban PB, Schnitzler JP, Rosenkranz M, Karl T, Benz JP. The decision for or against mycoparasitic attack by Trichoderma spp. is taken already at a distance in a prey-specific manner and benefits plant-beneficial interactions. Fungal Biol Biotechnol 2024; 11:14. [PMID: 39252125 PMCID: PMC11384713 DOI: 10.1186/s40694-024-00183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The application of plant-beneficial microorganisms as bio-fertilizer and biocontrol agents has gained traction in recent years, as both agriculture and forestry are facing the challenges of poor soils and climate change. Trichoderma spp. are gaining popularity in agriculture and forestry due to their multifaceted roles in promoting plant growth through e.g. nutrient translocation, hormone production, induction of plant systemic resistance, but also direct antagonism of other fungi. However, the mycotrophic nature of the genus bears the risk of possible interference with other native plant-beneficial fungi, such as ectomycorrhiza, in the rhizosphere. Such interference could yield unpredictable consequences for the host plants of these ecosystems. So far, it remains unclear, whether Trichoderma is able to differentiate between plant-beneficial and plant-pathogenic fungi during the process of plant colonization. RESULTS We investigated whether Trichoderma spp. can differentiate between beneficial ectomycorrhizal fungi (represented by Laccaria bicolor and Hebeloma cylindrosporum) and pathogenic fungi (represented by Fusarium graminearum and Alternaria alternata) in different confrontation scenarios, including a newly developed olfactometer "race tube"-like system. Using two independent species, T. harzianum and T. atrobrunneum, with plant-growth-promoting and immune-stimulating properties towards Populus x canescens, our study revealed robustly accelerated growth towards phytopathogens, while showing a contrary response to ectomycorrhizal fungi. Transcriptomic analyses identified distinct genetic programs during interaction corresponding to the lifestyles, emphasizing the expression of mycoparasitism-related genes only in the presence of phytopathogens. CONCLUSION The findings reveal a critical mode of fungal community interactions belowground and suggest that Trichoderma spp. can distinguish between fungal partners of different lifestyles already at a distance. This sheds light on the entangled interactions of fungi in the rhizosphere and emphasizes the potential benefits of using Trichoderma spp. as a biocontrol agent and bio-fertilizer in tree plantations.
Collapse
Affiliation(s)
- Pia Stange
- Professorship for Fungal Biotechnology in Wood Science, Wood Research Munich, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Johannes Kersting
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | | | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Helmholtz Munich, Neuherberg, Germany
- Institute of Plant Sciences, Ecology and Conservation Biology, University of Regensburg, Regensburg, Germany
| | - Tanja Karl
- Professorship for Fungal Biotechnology in Wood Science, Wood Research Munich, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J Philipp Benz
- Professorship for Fungal Biotechnology in Wood Science, Wood Research Munich, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
3
|
Shi H, Lipka U, Polle A. Different ectomycorrhizal fungal species impact poplar growth but not phosphorus utilization under low P supply. TREE PHYSIOLOGY 2024; 44:tpae074. [PMID: 38916255 DOI: 10.1093/treephys/tpae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Tree growth is often limited by phosphorus (P) availability. The trade-off between P homeostasis and growth is unknown. Ectomycorrhizal fungi (EMF) facilitate P availability but this trait varies among different fungal species and isolates. Here, we tested the hypotheses that (i) colonization with EMF boosts plant growth under P-limited conditions and that (ii) the poplars show P homeostasis because increased P uptake is used for growth and not for P accumulation in the tissues. We used two P treatments (high phosphate [HP]: 64 μM Pi, low phosphate [LP]: 0.64 μM Pi in the nutrient solution) and four fungal treatments (Paxillus involutus MAJ, Paxillus involutus NAU, Laccaria bicolor dikaryon LBD, Laccaria bicolor monokaryon LBM) in addition to non-inoculated poplar plants (NI) to measure growth, biomass, gas exchange and P contents. High phosphate (HP) stimulated growth compared with LP conditions. Poplars colonized with MAJ, NAU and NI showed higher growth and biomass production than those with LBD or LBM. Photosynthesis rates of poplars with lower biomass production were similar to or higher than those of plants with higher growth rates. The tissue concentrations of P were higher under HP than LP conditions and rarely affected by ectomycorrhizal colonization. Under LP, the plants produced 44% greater biomass per unit of P than under HP. At a given P supply, the tissue concentration was stable irrespective of the growth rate indicating P homeostasis. Laccaria bicolor caused growth inhibition, irrespective of P availability. These results suggest that in young poplars distinct species-specific ectomycorrhizal traits overshadowed potential growth benefits.
Collapse
Affiliation(s)
- Huili Shi
- Forest Botany and Tree Physiology, Georg-August University of Göttingen, Büsgenweg 2, Göttingen 37077, Germany
| | - Ulrike Lipka
- Forest Botany and Tree Physiology, Georg-August University of Göttingen, Büsgenweg 2, Göttingen 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Georg-August University of Göttingen, Büsgenweg 2, Göttingen 37077, Germany
- Laboratory for Radioisotopes, Georg-August University of Göttingen, Büsgenweg 2, Göttingen 37077, Germany
| |
Collapse
|
4
|
Becklin KM, Viele BM, Coleman HD. Nutrient conditions mediate mycorrhizal effects on biomass production and cell wall chemistry in poplar. TREE PHYSIOLOGY 2023; 43:1571-1583. [PMID: 37166359 DOI: 10.1093/treephys/tpad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
Large-scale biofuel production from lignocellulosic feedstock is limited by the financial and environmental costs associated with growing and processing lignocellulosic material and the resilience of these plants to environmental stress. Symbiotic associations with arbuscular (AM) and ectomycorrhizal (EM) fungi represent a potential strategy for expanding feedstock production while reducing nutrient inputs. Comparing AM and EM effects on wood production and chemical composition is a necessary step in developing biofuel feedstocks. Here, we assessed the productivity, biomass allocation and secondary cell wall (SCW) composition of greenhouse-grown Populus tremuloidesMichx. inoculated with either AM or EM fungi. Given the long-term goal of reducing nutrient inputs for biofuel production, we further tested the effects of nutrient availability and nitrogen:phosphorus stoichiometry on mycorrhizal responses. Associations with both AM and EM fungi increased plant biomass by 14-74% depending on the nutrient conditions but had minimal effects on SCW composition. Mycorrhizal plants, especially those inoculated with EM fungi, also allocated a greater portion of their biomass to roots, which could be beneficial in the field where plants are likely to experience both water and nutrient stress. Leaf nutrient content was weakly but positively correlated with wood production in mycorrhizal plants. Surprisingly, phosphorus played a larger role in EM plants compared with AM plants. Relative nitrogen and phosphorus availability were correlated with shifts in SCW composition. For AM associations, the benefit of increased wood biomass may be partially offset by increased lignin content, a trait that affects downstream processing of lignocellulosic tissue for biofuels. By comparing AM and EM effects on the productivity and chemical composition of lignocellulosic tissue, this work links broad functional diversity in mycorrhizal associations to key biofuel traits and highlights the importance of considering both biotic and abiotic factors when developing strategies for sustainable biofuel production.
Collapse
Affiliation(s)
- Katie M Becklin
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, USA
| | - Bethanie M Viele
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, USA
| | - Heather D Coleman
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, USA
| |
Collapse
|
5
|
Zhou F, Wu H, Chen Y, Wang M, Tuskan GA, Yin T. Function and molecular mechanism of a poplar placenta limited MIXTA gene in regulating differentiation of plant epidermal cells. Int J Biol Macromol 2023; 242:124743. [PMID: 37150377 DOI: 10.1016/j.ijbiomac.2023.124743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
The placenta in fruits of most plants either desiccate and shrink as the fruits mature or develop further to form the fleshy tissues. In poplars, placental epidermal cells protrude collectively to produce catkin fibers. In this study, three carpel limited MIXTA genes, PdeMIXTA02, PdeMIXTA03, PdeMIXTA04, were find to specifically expressed in carpel immediately after pollination. Heterologous expression of the three genes in Arabidopsis demonstrated that PdeMIXTA04 significantly promoted trichomes density and could restore trichomes in the trichomeless mutant. By contrast, such functions were not observed with PdeMIXTA02, PdeMIXTA03. In situ hybridization revealed that PdeMIXTA04 was explicitly expressed in poplar placental epidermal cells. We also confirmed trichome-specific expression of the PdeMIXTA04 promoter. Multiple experimental proofs have confirmed the interaction between PdeMIXTA04, PdeMYC and PdeWD40, indicating PdeMIXTA04 functioned through the MYB-bHLH-WD40 ternary complex. Our work provided distinctive understanding of the molecular mechanism triggering differentiation of poplar catkins.
Collapse
Affiliation(s)
- Fangwei Zhou
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Huaitong Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Yingnan Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Mingxiu Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Gerald A Tuskan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Tongming Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Dreischhoff S, Das IS, Häffner F, Wolf AM, Polle A, Kasper KH. Fast and easy bioassay for the necrotizing fungus Botrytis cinerea on poplar leaves. PLANT METHODS 2023; 19:32. [PMID: 36991511 PMCID: PMC10061990 DOI: 10.1186/s13007-023-01011-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Necrotizing pathogens pose an immense economic and ecological threat to trees and forests, but the molecular analysis of these pathogens is still in its infancy because of lacking model systems. To close this gap, we developed a reliable bioassay for the widespread necrotic pathogen Botrytis cinerea on poplars (Populus sp.), which are established model organisms to study tree molecular biology. RESULTS Botrytis cinerea was isolated from Populus x canescens leaves. We developed an infection system using fungal agar plugs, which are easy to handle. The method does not require costly machinery and results in very high infection success and significant fungal proliferation within four days. We successfully tested the fungal plug infection on 18 poplar species from five different sections. Emerging necroses were phenotypically and anatomically examined in Populus x canescens leaves. We adapted methods for image analyses of necrotic areas. We calibrated B. cinerea DNA against Ct-values obtained by quantitative real-time polymerase chain reaction and measured the amounts of fungal DNA in infected leaves. Increases in necrotic area and fungal DNA were strictly correlated within the first four days after inoculation. Methyl jasmonate pretreatment of poplar leaves decreased the spreading of the infection. CONCLUSIONS We provide a simple and rapid protocol to study the effects of a necrotizing pathogen on poplar leaves. The bioassay and fungal DNA quantification for Botrytis cinerea set the stage for in-depth molecular studies of immunity and resistance to a generalist necrotic pathogen in trees.
Collapse
Affiliation(s)
- Steven Dreischhoff
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Ishani Shankar Das
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Felix Häffner
- Department Aquatic Ecosystem Analysis, Helmholtz Center for Environmental Research-UFZ, Magdeburg, Germany
| | | | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Karl Henrik Kasper
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany.
| |
Collapse
|
7
|
Grünhofer P, Stöcker T, Guo Y, Li R, Lin J, Ranathunge K, Schoof H, Schreiber L. Populus × canescens root suberization in reaction to osmotic and salt stress is limited to the developing younger root tip region. PHYSIOLOGIA PLANTARUM 2022; 174:e13765. [PMID: 36281836 DOI: 10.1111/ppl.13765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Populus is a valuable and fast-growing tree species commonly cultivated for economic and scientific purposes. But most of the poplar species are sensitive to drought and salt stress. Thus, we compared the physiological effects of osmotic stress (PEG8000) and salt treatment (NaCl) on poplar roots to identify potential strategies for future breeding or genetic engineering approaches. We investigated root anatomy using epifluorescence microscopy, changes in root suberin composition and amount using gas chromatography, transcriptional reprogramming using RNA sequencing, and modifications of root transport physiology using a pressure chamber. Poplar roots reacted to the imposed stress conditions, especially in the developing younger root tip region, with remarkable differences between both types of stress. Overall, the increase in suberin content was surprisingly small, but the expression of key suberin biosynthesis genes was strongly induced. Significant reductions of the radial water transport in roots were only observed for the osmotic and not the hydrostatic hydraulic conductivity. Our data indicate that the genetic enhancement of root suberization processes in poplar might be a promising target to convey increased tolerance, especially against toxic sodium chloride.
Collapse
Affiliation(s)
- Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Tyll Stöcker
- Department of Crop Bioinformatics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Yayu Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Kosala Ranathunge
- UWA School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Heiko Schoof
- Department of Crop Bioinformatics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Kasper K, Abreu IN, Feussner K, Zienkiewicz K, Herrfurth C, Ischebeck T, Janz D, Majcherczyk A, Schmitt K, Valerius O, Braus GH, Feussner I, Polle A. Multi-omics analysis of xylem sap uncovers dynamic modulation of poplar defenses by ammonium and nitrate. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:282-303. [PMID: 35535561 DOI: 10.1111/tpj.15802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 06/14/2023]
Abstract
Xylem sap is the major transport route for nutrients from roots to shoots. In the present study, we investigated how variations in nitrogen (N) nutrition affected the metabolome and proteome of xylem sap and the growth of the xylem endophyte Brennaria salicis, and we also report transcriptional re-wiring of leaf defenses in poplar (Populus × canescens). We supplied poplars with high, intermediate or low concentrations of ammonium or nitrate. We identified 288 unique proteins in xylem sap. Approximately 85% of the xylem sap proteins were shared among ammonium- and nitrate-supplied plants. The number of proteins increased with increasing N supply but the major functional categories (catabolic processes, cell wall-related enzymes, defense) were unaffected. Ammonium nutrition caused higher abundances of amino acids and carbohydrates, whereas nitrate caused higher malate levels in xylem sap. Pipecolic acid and N-hydroxy-pipecolic acid increased, whereas salicylic acid and jasmonoyl-isoleucine decreased, with increasing N nutrition. Untargeted metabolome analyses revealed 2179 features in xylem sap, of which 863 were differentially affected by N treatments. We identified 124 metabolites, mainly from specialized metabolism of the groups of salicinoids, phenylpropanoids, phenolics, flavonoids, and benzoates. Their abundances increased with decreasing N, except coumarins. Brennaria salicis growth was reduced in nutrient-supplemented xylem sap of low- and high- NO3- -fed plants compared to that of NH4+ -fed plants. The drastic changes in xylem sap composition caused massive changes in the transcriptional landscape of leaves and recruited defenses related to systemic acquired and induced systemic resistance. Our study uncovers unexpected complexity and variability of xylem composition with consequences for plant defenses.
Collapse
Affiliation(s)
- Karl Kasper
- Forest Botany and Tree Physiology, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Ilka N Abreu
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Andrzej Majcherczyk
- Molecular Wood Biotechnology and Technical Mycology, University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Kerstin Schmitt
- Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
- Service Unit for Proteomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
| | - Oliver Valerius
- Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
- Service Unit for Proteomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
| | - Gerhard H Braus
- Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
- Service Unit for Proteomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| |
Collapse
|
9
|
Grünhofer P, Herzig L, Sent S, Zeisler-Diehl VV, Schreiber L. Increased cuticular wax deposition does not change residual foliar transpiration. PLANT, CELL & ENVIRONMENT 2022; 45:1157-1171. [PMID: 35102563 DOI: 10.1111/pce.14274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The effect of contrasting environmental growth conditions (in vitro tissue culture, ex vitro acclimatisation, climate chamber, greenhouse and outdoor) on leaf development, cuticular wax composition, and foliar transpiration of detached leaves of the Populus × canescens clone 84 K were investigated. Our results show that total amounts of cuticular wax increased more than 10-fold when cultivated in different growth conditions, whereas qualitative wax composition did not change. With exception of plants directly taken from tissue culture showing rapid dehydration, rates of water loss (residual foliar transpiration) of intact but detached leaves were constant and independent from growth conditions and thus independent from increasing wax amounts. Since cuticular transpiration measured with isolated astomatous P. × canescens cuticles was identical to residual foliar transpiration rates of detached leaves, our results confirm that cuticular transpiration of P. × canescens leaves can be predicted with high accuracy from residual transpiration of detached leaves after stomatal closure. Our results convincingly show that more than 10-fold increased wax amounts in P. × canescens cuticles do not lead to decreased rates of residual (cuticular) transpiration.
Collapse
Affiliation(s)
- Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Lena Herzig
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Sophie Sent
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Viktoria V Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Sivaprakasam Padmanaban PB, Rosenkranz M, Zhu P, Kaling M, Schmidt A, Schmitt-Kopplin P, Polle A, Schnitzler JP. Mycorrhiza-Tree-Herbivore Interactions: Alterations in Poplar Metabolome and Volatilome. Metabolites 2022; 12:metabo12020093. [PMID: 35208168 PMCID: PMC8880370 DOI: 10.3390/metabo12020093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Plants are continuously interacting with other organisms to optimize their performance in a changing environment. Mycorrhization is known to affect the plant growth and nutrient status, but it also can lead to adjusted plant defense and alter interactions with other trophic levels. Here, we studied the effect of Laccaria bicolor-mycorrhization on the poplar (Populus x canescens) metabolome and volatilome on trees with and without a poplar leaf beetle (Chrysomela populi) infestation. We analyzed the leaf and root metabolomes employing liquid chromatography–mass spectrometry, and the leaf volatilome employing headspace sorptive extraction combined with gas-chromatography–mass spectrometry. Mycorrhization caused distinct metabolic adjustments in roots, young/infested leaves and old/not directly infested leaves. Mycorrhization adjusted the lipid composition, the abundance of peptides and, especially upon herbivory, the level of various phenolic compounds. The greatest change in leaf volatile organic compound (VOC) emissions occurred four to eight days following the beetle infestation. Together, these results prove that mycorrhization affects the whole plant metabolome and may influence poplar aboveground interactions. The herbivores and the mycorrhizal fungi interact with each other indirectly through a common host plant, a result that emphasizes the importance of community approach in chemical ecology.
Collapse
Affiliation(s)
- Prasath Balaji Sivaprakasam Padmanaban
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Neuherberg, Germany; (P.B.S.P.); (P.Z.); (M.K.)
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Neuherberg, Germany; (P.B.S.P.); (P.Z.); (M.K.)
- Correspondence: (M.R.); (J.-P.S.); Tel.: +49-89-3187-4469 (M.R.); +49-89-3187-2413 (J.-P.S.)
| | - Peiyuan Zhu
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Neuherberg, Germany; (P.B.S.P.); (P.Z.); (M.K.)
| | - Moritz Kaling
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Neuherberg, Germany; (P.B.S.P.); (P.Z.); (M.K.)
| | - Anna Schmidt
- Department of Forest Botany and Tree Physiology, University of Göttingen, 37077 Göttingen, Germany; (A.S.); (A.P.)
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, 85764 Neuherberg, Germany;
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Andrea Polle
- Department of Forest Botany and Tree Physiology, University of Göttingen, 37077 Göttingen, Germany; (A.S.); (A.P.)
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Neuherberg, Germany; (P.B.S.P.); (P.Z.); (M.K.)
- Correspondence: (M.R.); (J.-P.S.); Tel.: +49-89-3187-4469 (M.R.); +49-89-3187-2413 (J.-P.S.)
| |
Collapse
|
11
|
Grünhofer P, Guo Y, Li R, Lin J, Schreiber L. Hydroponic cultivation conditions allowing the reproducible investigation of poplar root suberization and water transport. PLANT METHODS 2021; 17:129. [PMID: 34911563 PMCID: PMC8672600 DOI: 10.1186/s13007-021-00831-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND With increasing joint research cooperation on national and international levels, there is a high need for harmonized and reproducible cultivation conditions and experimental protocols in order to ensure the best comparability and reliability of acquired data. As a result, not only comparisons of findings of different laboratories working with the same species but also of entirely different species would be facilitated. As Populus is becoming an increasingly important genus in modern science and agroforestry, the integration of findings with previously gained knowledge of other crop species is of high significance. RESULTS To ease and ensure the comparability of investigations of root suberization and water transport, on a high degree of methodological reproducibility, we set up a hydroponics-based experimental pipeline. This includes plant cultivation, root histochemistry, analytical investigation, and root water transport measurement. A 5-week-long hydroponic cultivation period including an optional final week of stress application resulted in a highly consistent poplar root development. The poplar roots were of conical geometry and exhibited a typical Casparian band development with subsequent continuously increasing suberization of the endodermis. Poplar root suberin was composed of the most frequently described suberin substance classes, but also high amounts of benzoic acid derivatives could be identified. Root transport physiology experiments revealed that poplar roots in this developmental stage have a two- to tenfold higher hydrostatic than osmotic hydraulic conductivity. Lastly, the hydroponic cultivation allowed the application of gradually defined osmotic stress conditions illustrating the precise adjustability of hydroponic experiments as well as the previously reported sensitivity of poplar plants to water deficits. CONCLUSIONS By maintaining a high degree of harmonization, we were able to compare our results to previously published data on root suberization and water transport of barley and other crop species. Regarding hydroponic poplar cultivation, we enabled high reliability, reproducibility, and comparability for future experiments. In contrast to abiotic stress conditions applied during axenic tissue culture cultivation, this experimental pipeline offers great advantages including the growth of roots in the dark, easy access to root systems before, during, and after stress conditions, and the more accurate definition of the developmental stages of the roots.
Collapse
Affiliation(s)
- Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | - Yayu Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 10083, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 10083, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 10083, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| |
Collapse
|
12
|
Ectomycorrhizal Fungal Strains Facilitate Cd 2+ Enrichment in a Woody Hyperaccumulator under Co-Existing Stress of Cadmium and Salt. Int J Mol Sci 2021; 22:ijms222111651. [PMID: 34769083 PMCID: PMC8583747 DOI: 10.3390/ijms222111651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Cadmium (Cd2+) pollution occurring in salt-affected soils has become an increasing environmental concern in the world. Fast-growing poplars have been widely utilized for phytoremediation of soil contaminating heavy metals (HMs). However, the woody Cd2+-hyperaccumulator, Populus × canescens, is relatively salt-sensitive and therefore cannot be directly used to remediate HMs from salt-affected soils. The aim of the present study was to testify whether colonization of P. × canescens with ectomycorrhizal (EM) fungi, a strategy known to enhance salt tolerance, provides an opportunity for affordable remediation of Cd2+-polluted saline soils. Ectomycorrhization with Paxillus involutus strains facilitated Cd2+ enrichment in P. × canescens upon CdCl2 exposures (50 μM, 30 min to 24 h). The fungus-stimulated Cd2+ in roots was significantly restricted by inhibitors of plasmalemma H+-ATPases and Ca2+-permeable channels (CaPCs), but stimulated by an activator of plasmalemma H+-ATPases. NaCl (100 mM) lowered the transient and steady-state Cd2+ influx in roots and fungal mycelia. Noteworthy, P. involutus colonization partly reverted the salt suppression of Cd2+ uptake in poplar roots. EM fungus colonization upregulated transcription of plasmalemma H+-ATPases (PcHA4, 8, 11) and annexins (PcANN1, 2, 4), which might mediate Cd2+ conductance through CaPCs. EM roots retained relatively highly expressed PcHAs and PcANNs, thus facilitating Cd2+ enrichment under co-occurring stress of cadmium and salinity. We conclude that ectomycorrhization of woody hyperaccumulator species such as poplar could improve phytoremediation of Cd2+ in salt-affected areas.
Collapse
|
13
|
Yu D, Janz D, Zienkiewicz K, Herrfurth C, Feussner I, Chen S, Polle A. Wood Formation under Severe Drought Invokes Adjustment of the Hormonal and Transcriptional Landscape in Poplar. Int J Mol Sci 2021; 22:9899. [PMID: 34576062 PMCID: PMC8493802 DOI: 10.3390/ijms22189899] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Drought is a severe environmental stress that exerts negative effects on plant growth. In trees, drought leads to reduced secondary growth and altered wood anatomy. The mechanisms underlying wood stress adaptation are not well understood. Here, we investigated the physiological, anatomical, hormonal, and transcriptional responses of poplar to strong drought. Drought-stressed xylem was characterized by higher vessel frequencies, smaller vessel lumina, and thicker secondary fiber cell walls. These changes were accompanied by strong increases in abscisic acid (ABA) and antagonistic changes in salicylic acid in wood. Transcriptional evidence supported ABA biosynthesis and signaling in wood. Since ABA signaling activates the fiber-thickening factor NST1, we expected upregulation of the secondary cell wall (SCW) cascade under stress. By contrast, transcription factors and biosynthesis genes for SCW formation were down-regulated, whereas a small set of cellulose synthase-like genes and a huge array of genes involved in cell wall modification were up-regulated in drought-stressed wood. Therefore, we suggest that ABA signaling monitors normal SCW biosynthesis and that drought causes a switch from normal to "stress wood" formation recruiting a dedicated set of genes for cell wall biosynthesis and remodeling. This proposition implies that drought-induced changes in cell wall properties underlie regulatory mechanisms distinct from those of normal wood.
Collapse
Affiliation(s)
- Dade Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
- Forest Botany and Tree Physiology, Büsgen-Institute, University of Goettingen, 37077 Göttingen, Germany;
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen-Institute, University of Goettingen, 37077 Göttingen, Germany;
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-Von-Haller Institute, University of Goettingen, 37077 Göttingen, Germany; (K.Z.); (C.H.); (I.F.)
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-Von-Haller Institute, University of Goettingen, 37077 Göttingen, Germany; (K.Z.); (C.H.); (I.F.)
- Service Unit for Metabolomics and Lipidomics, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-Von-Haller Institute, University of Goettingen, 37077 Göttingen, Germany; (K.Z.); (C.H.); (I.F.)
- Service Unit for Metabolomics and Lipidomics, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
- Department of Plant Biochemistry, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
- Forest Botany and Tree Physiology, Büsgen-Institute, University of Goettingen, 37077 Göttingen, Germany;
- Department of Plant Biochemistry, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
| |
Collapse
|
14
|
Ectomycorrhizal fungal communities differ among parental and hybrid Populus cross types within a natural riparian habitat. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Sharmin S, Lipka U, Polle A, Eckert C. The influence of transpiration on foliar accumulation of salt and nutrients under salinity in poplar (Populus × canescens). PLoS One 2021; 16:e0253228. [PMID: 34166404 PMCID: PMC8224899 DOI: 10.1371/journal.pone.0253228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
Increasing salinity is one of the major drawbacks for plant growth. Besides the ion itself being toxic to plant cells, it greatly interferes with the supply of other macronutrients like potassium, calcium and magnesium. However, little is known about how sodium affects the translocation of these nutrients from the root to the shoot. The major driving force of this translocation process is thought to be the water flow through the xylem driven by transpiration. To dissect the effects of transpiration from those of salinity we compared salt stressed, ABA treated and combined salt- and ABA treated poplars with untreated controls. Salinity reduced the root content of major nutrients like K+, Ca2+ and Mg2+. Less Ca2+ and Mg2+ in the roots resulted in reduced leaf Ca2+ and leaf Mg2+ levels due to reduced stomatal conductance and reduced transpiration. Interestingly, leaf K+ levels were positively affected in leaves under salt stress although there was less K+ in the roots under salt. In response to ABA, transpiration was also decreased and Mg2+ and Ca2+ levels decreased comparably to the salt stress treatment, while K+ levels were not affected. Thus, our results suggest that loading and retention of leaf K+ is enhanced under salt stress compared to merely transpiration driven cation supply.
Collapse
Affiliation(s)
- Shayla Sharmin
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Ulrike Lipka
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
16
|
Kavka M, Majcherczyk A, Kües U, Polle A. Phylogeny, tissue-specific expression, and activities of root-secreted purple acid phosphatases for P uptake from ATP in P starved poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110906. [PMID: 33902862 DOI: 10.1016/j.plantsci.2021.110906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/19/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Plants secrete purple acid phosphatases (PAPs) under phosphorus (P) shortage but the contribution of plant PAPs to P acquisition is not well understood. The goals of this study were to investigate comprehensively the transcription patterns of PAPs under P shortage in poplar (Populus × canescens), to identify secreted PAPs and to characterize their contribution to mobilize organic P. Phylogenetic analyses of the PAP family revealed 33 putative members. In this study, distinct, tissue-specific P responsive expression patterns could be shown for 23 PAPs in roots and leaves. Root-associated PAP activities were localized on the root surface by in-vivo staining. The activities of root-surface PAPs increased significantly under low P availability, but were suppressed by a PAP inhibitor and corresponded to elevated P uptake from ATP as an organic P source. By proteomic analyses of the root apoplast, we identified three newly secreted proteins under P shortage: PtPAP1 (Potri.005G233400) and two proteins with unknown functions (Potri.013G100800 and Potri.001G209300). Our results, based on the combination of transcriptome and proteome analyses with phosphatase activity assays, support that PtPAP1 plays a central role in enhanced P acquisition from organic sources, when the phosphate concentrations in soil are limited.
Collapse
Affiliation(s)
- Mareike Kavka
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany; Laboratory for Radio-Isotopes, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany.
| | - Andrzej Majcherczyk
- Molecular Wood Biotechnology and Technical Mycology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany; Center of Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany; Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany; Laboratory for Radio-Isotopes, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany; Center of Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany; Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
17
|
Paparokidou C, Leake JR, Beerling DJ, Rolfe SA. Phosphate availability and ectomycorrhizal symbiosis with Pinus sylvestris have independent effects on the Paxillus involutus transcriptome. MYCORRHIZA 2021; 31:69-83. [PMID: 33200348 PMCID: PMC7782400 DOI: 10.1007/s00572-020-01001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Many plant species form symbioses with ectomycorrhizal fungi, which help them forage for limiting nutrients in the soil such as inorganic phosphate (Pi). The transcriptional responses to symbiosis and nutrient-limiting conditions in ectomycorrhizal fungal hyphae, however, are largely unknown. An artificial system was developed to study ectomycorrhizal basidiomycete Paxillus involutus growth in symbiosis with its host tree Pinus sylvestris at different Pi concentrations. RNA-seq analysis was performed on P. involutus hyphae growing under Pi-limiting conditions, either in symbiosis or alone. We show that Pi starvation and ectomycorrhizal symbiosis have an independent effect on the P. involutus transcriptome. Notably, low Pi availability induces expression of newly identified putative high-affinity Pi transporter genes, while reducing the expression of putative organic acid transporters. Additionally, low Pi availability induces a close transcriptional interplay between P and N metabolism. GTP-related signalling was found to have a positive effect in the maintenance of ectomycorrhizal symbiosis, whereas multiple putative cytochrome P450 genes were found to be downregulated, unlike arbuscular mycorrhizal fungi. We provide the first evidence of global transcriptional changes induced by low Pi availability and ectomycorrhizal symbiosis in the hyphae of P. involutus, revealing both similarities and differences with better-characterized arbuscular mycorrhizal fungi.
Collapse
Affiliation(s)
| | - Jonathan R Leake
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Stephen A Rolfe
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
18
|
Bannoud F, Bellini C. Adventitious Rooting in Populus Species: Update and Perspectives. FRONTIERS IN PLANT SCIENCE 2021; 12:668837. [PMID: 34093625 PMCID: PMC8174304 DOI: 10.3389/fpls.2021.668837] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/26/2021] [Indexed: 05/11/2023]
Abstract
Populus spp. are among the most economically important species worldwide. These trees are used not only for wood and fiber production, but also in the rehabilitation of degraded lands. Since they are clonally propagated, the ability of stem cuttings to form adventitious roots is a critical point for plant establishment and survival in the field, and consequently for the forest industry. Adventitious rooting in different Populus clones has been an agronomic trait targeted in breeding programs for many years, and many factors have been identified that affect this quantitative trait. A huge variation in the rooting capacity has been observed among the species in the Populus genus, and the responses to some of the factors affecting this trait have been shown to be genotype-dependent. This review analyses similarities and differences between results obtained from studies examining the role of internal and external factors affecting rooting of Populus species cuttings. Since rooting is the most important requirement for stand establishment in clonally propagated species, understanding the physiological and genetic mechanisms that promote this trait is essential for successful commercial deployment.
Collapse
Affiliation(s)
- Florencia Bannoud
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- *Correspondence: Florencia Bannoud,
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Catherine Bellini,
| |
Collapse
|
19
|
Vishwanathan K, Zienkiewicz K, Liu Y, Janz D, Feussner I, Polle A, Haney CH. Ectomycorrhizal fungi induce systemic resistance against insects on a nonmycorrhizal plant in a CERK1-dependent manner. THE NEW PHYTOLOGIST 2020; 228:728-740. [PMID: 32473606 DOI: 10.1111/nph.16715] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/22/2020] [Indexed: 05/19/2023]
Abstract
Below-ground microbes can induce systemic resistance against foliar pests and pathogens on diverse plant hosts. The prevalence of induced systemic resistance (ISR) among plant-microbe-pest systems raises the question of host specificity in microbial induction of ISR. To test whether ISR is limited by plant host range, we tested the ISR-inducing ectomycorrhizal fungus Laccaria bicolor on the nonmycorrhizal plant Arabidopsis thaliana. We used the cabbage looper Trichoplusia ni and bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pto) as readouts for ISR on Arabidopsis. We found that root inoculation with L. bicolor triggered ISR against T. ni and induced systemic susceptibility (ISS) against the bacterial pathogen Pto. We found that L. bicolor-triggered ISR against T. ni was dependent on jasmonic acid signaling and salicylic acid biosynthesis and signaling. Heat-killed L. bicolor and chitin were sufficient to trigger ISR against T. ni and ISS against Pto. The chitin receptor CERK1 was necessary for L. bicolor-mediated effects on systemic immunity. Collectively our findings suggest that some ISR responses might not require intimate symbiotic association, but rather might be the result of root perception of conserved microbial signals.
Collapse
Affiliation(s)
- Kishore Vishwanathan
- Department of Forest Botany and Tree Physiology, Buesgen-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Yang Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Dennis Janz
- Department of Forest Botany and Tree Physiology, Buesgen-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Andrea Polle
- Department of Forest Botany and Tree Physiology, Buesgen-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Cara H Haney
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
20
|
Szuba A, Marczak Ł, Ratajczak I, Kasprowicz-Maluśki A, Mucha J. Integrated proteomic and metabolomic analyses revealed molecular adjustments in Populus × canescens colonized with the ectomycorrhizal fungus Paxillus involutus, which limited plant host growth. Environ Microbiol 2020; 22:3754-3771. [PMID: 32608104 DOI: 10.1111/1462-2920.15146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 11/27/2022]
Abstract
Ectomycorrhizae (ECMs) are a highly context-dependent interactions that are not always beneficial for the plant host, sometimes leading to a decrease in plant growth. However, the molecular status of these plants remains unknown. We studied Populus × canescens microcuttings characterized by impaired growth in response to colonization by a Paxillus involutus strain via integrative proteomics-metabolomics analyses. The analysed strain was characterized by low compatibility and formed only mantles, not a Hartig net, in the majority of root tips. The increased abundance of photosynthetic proteins and foliar carbohydrates co-occurred with signals of intensified resource exchange via the stems of colonized plants. In the roots, intensified C metabolism resulted in the biosynthesis of secondary C compounds unavailable to the fungal partner but also C skeletons necessary to increase insufficient N uptake from the hyphae. The stress response was also detected in colonized plants but was similar to that reported previously during mutualistic ECM interactions. In colonized poplar plants, mechanisms to prevent imbalanced C/N trade-offs were activated. Root metabolism strongly depended on features of the whole plant, especially the foliar C/N budget. However, despite ECM-triggered growth impairment and the foliar nutrient status, the fungal partner was recognized to be a symbiotic partner.
Collapse
Affiliation(s)
- Agnieszka Szuba
- Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62035, Poland
| | - Łukasz Marczak
- Polish Academy of Sciences, Institute of Bioorganic Chemistry, Noskowskiego 12/14, Poznań, PL-61704, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, Poznań, PL-60625, Poland
| | | | - Joanna Mucha
- Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62035, Poland
| |
Collapse
|
21
|
Szuba A, Marczak Ł, Karliński L, Mucha J, Tomaszewski D. Regulation of the leaf proteome by inoculation of Populus × canescens with two Paxillus involutus isolates differing in root colonization rates. MYCORRHIZA 2019; 29:503-517. [PMID: 31456074 DOI: 10.1007/s00572-019-00910-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
During ectomycorrhizal symbioses, up to 30% of the carbon produced in leaves may be translocated to the fungal partner. Given that the leaf response to root colonization is largely unknown, we performed a leaf proteome analysis of Populus × canescens inoculated in vitro with two isolates of Paxillus involutus significantly differing in root colonization rates (65 ± 7% vs 14 ± 7%), together with plant growth and leaf biochemistry analyses to determine the response of plant leaves to ectomycorrhizal root colonization. The isolate that more efficiently colonized roots (isolate H) affected 9.1% of the leaf proteome compared with control plants. Simultaneously, ectomycorrhiza in isolate H-inoculated plants led to improved plant growth and an increased abundance of leaf proteins involved in protein turnover, stress response, carbohydrate metabolism, and photosynthesis. The protein increment was also correlated with increases in chlorophyll, foliar carbon, and carbohydrate contents. Although inoculation of P. × canescens roots with the other P. involutus isolate (isolate L, characterized by a low root colonization ratio) affected 6.8% of the leaf proteome compared with control plants, most proteins were downregulated. The proteomic signals of increased carbohydrate biosynthesis were not detected, and carbohydrate, carbon, and leaf pigment levels and plant biomass did not differ from the noninoculated plants. Our results revealed that the upregulation of the photosynthetic protein abundance and levels of leaf carbohydrate are positively related to rates of root colonization. Upregulation of photosynthetic proteins, chlorophyll, and leaf carbohydrate levels in ectomycorrhizal plants was positively related to root colonization rates and resulted in increased carbon translocation and sequestration underground.
Collapse
Affiliation(s)
- Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Leszek Karliński
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Dominik Tomaszewski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| |
Collapse
|
22
|
Cope KR, Bascaules A, Irving TB, Venkateshwaran M, Maeda J, Garcia K, Rush TA, Ma C, Labbé J, Jawdy S, Steigerwald E, Setzke J, Fung E, Schnell KG, Wang Y, Schlief N, Bücking H, Strauss SH, Maillet F, Jargeat P, Bécard G, Puech-Pagès V, Ané JM. The Ectomycorrhizal Fungus Laccaria bicolor Produces Lipochitooligosaccharides and Uses the Common Symbiosis Pathway to Colonize Populus Roots. THE PLANT CELL 2019; 31:2386-2410. [PMID: 31416823 PMCID: PMC6790088 DOI: 10.1105/tpc.18.00676] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 05/17/2019] [Accepted: 08/06/2019] [Indexed: 05/21/2023]
Abstract
Mycorrhizal fungi form mutualistic associations with the roots of most land plants and provide them with mineral nutrients from the soil in exchange for fixed carbon derived from photosynthesis. The common symbiosis pathway (CSP) is a conserved molecular signaling pathway in all plants capable of associating with arbuscular mycorrhizal fungi. It is required not only for arbuscular mycorrhizal symbiosis but also for rhizobia-legume and actinorhizal symbioses. Given its role in such diverse symbiotic associations, we hypothesized that the CSP also plays a role in ectomycorrhizal associations. We showed that the ectomycorrhizal fungus Laccaria bicolor produces an array of lipochitooligosaccharides (LCOs) that can trigger both root hair branching in legumes and, most importantly, calcium spiking in the host plant Populus in a CASTOR/POLLUX-dependent manner. Nonsulfated LCOs enhanced lateral root development in Populus in a calcium/calmodulin-dependent protein kinase (CCaMK)-dependent manner, and sulfated LCOs enhanced the colonization of Populus by L. bicolor Compared with the wild-type Populus, the colonization of CASTOR/POLLUX and CCaMK RNA interference lines by L. bicolor was reduced. Our work demonstrates that similar to other root symbioses, L. bicolor uses the CSP for the full establishment of its mutualistic association with Populus.
Collapse
Affiliation(s)
- Kevin R Cope
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Adeline Bascaules
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Junko Maeda
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Kevin Garcia
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Tomás A Rush
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Edward Steigerwald
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Jonathan Setzke
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Emmeline Fung
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Kimberly G Schnell
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Yunqian Wang
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Nathaniel Schlief
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Heike Bücking
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota 57007
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331
| | - Fabienne Maillet
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Patricia Jargeat
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- Laboratoire Evolution et Diversité Biologique, Université de Toulouse, UPS, CNRS, IRD, 31077 Toulouse, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Virginie Puech-Pagès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
23
|
Yu D, Wildhagen H, Tylewicz S, Miskolczi PC, Bhalerao RP, Polle A. Abscisic acid signalling mediates biomass trade-off and allocation in poplar. THE NEW PHYTOLOGIST 2019; 223:1192-1203. [PMID: 31050802 DOI: 10.1111/nph.15878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Abscisic acid (ABA) is a well known stress hormone regulating drought adaptation of plants. Here, we hypothesised that genetic engineering of genes involved in ABA stress signalling and photoperiodic regulation affected drought resistance by trade-off with biomass production in perennial poplar trees. We grew Populus tremula × tremuloides wild-type (T89) and various transgenic lines (two transformation events of 35S::abi1-1, 35S::RCAR, RCAR:RNAi, 35S::ABI3, 35S::AREB3, 35S::FDL1, FDL1:RNAi, 35S::FDL2 and FDL2:RNAi) outdoors and exposed them to drought in the second growth period. After the winter, the surviving lines showed a huge variation in stomatal conductance, leaf size, whole-plant leaf area, tree height, stem diameter, and biomass. Whole-plant leaf area was a strong predictor for woody biomass production. The 35S::AREB3 lines were compromised in biomass production under well irrigated conditions compared with wild-type poplars but were resilient to drought. ABA signalling regulated FDL1 and FDL2 expression under stress. Poplar lines overexpressing FDL1 or FDL2 were drought-sensitive; they shed leaves and lost root biomass, whereas the FDL RNAi lines showed higher biomass allocation to roots under drought. These results assign a new function in drought acclimation to FDL genes aside from photoperiodic regulation. Our results imply a critical role for ABA-mediated processes in balancing biomass production and climate adaptation.
Collapse
Affiliation(s)
- Dade Yu
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Henning Wildhagen
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Szymon Tylewicz
- Forest Genetics and Plant Physiology, Umea Plant Science Centre, 90736, Umea, Sweden
| | - Pal C Miskolczi
- Forest Genetics and Plant Physiology, Umea Plant Science Centre, 90736, Umea, Sweden
| | - Rishikesh P Bhalerao
- Forest Genetics and Plant Physiology, Umea Plant Science Centre, 90736, Umea, Sweden
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| |
Collapse
|
24
|
Carbonare LD, White MD, Shukla V, Francini A, Perata P, Flashman E, Sebastiani L, Licausi F. Zinc Excess Induces a Hypoxia-Like Response by Inhibiting Cysteine Oxidases in Poplar Roots. PLANT PHYSIOLOGY 2019; 180:1614-1628. [PMID: 31019003 PMCID: PMC6752924 DOI: 10.1104/pp.18.01458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/12/2019] [Indexed: 05/24/2023]
Abstract
Poplar (Populus spp.) is a tree species considered for the remediation of soil contaminated by metals, including zinc (Zn). To improve poplar's capacity for Zn assimilation and compartmentalization, it is necessary to understand the physiological and biochemical mechanisms that enable these features as well as their regulation at the molecular level. We observed that the molecular response of poplar roots to Zn excess overlapped with that activated by hypoxia. Therefore, we tested the effect of Zn excess on hypoxia-sensing components and investigated the consequence of root hypoxia on poplar fitness and Zn accumulation capacity. Our results suggest that high intracellular Zn concentrations mimic iron deficiency and inhibit the activity of the oxygen sensors Plant Cysteine Oxidases, leading to the stabilization and activation of ERF-VII transcription factors, which are key regulators of the molecular response to hypoxia. Remarkably, excess Zn and waterlogging similarly decreased poplar growth and development. Simultaneous excess Zn and waterlogging did not exacerbate these parameters, although Zn uptake was limited. This study unveils the contribution of the oxygen-sensing machinery to the Zn excess response in poplar, which may be exploited to improve Zn tolerance and increase Zn accumulation capacity in plants.
Collapse
Affiliation(s)
| | - Mark D White
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Vinay Shukla
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Alessandra Francini
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Emily Flashman
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Luca Sebastiani
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Francesco Licausi
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Biology Department, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
25
|
Millet LJ, Aufrecht J, Labbé J, Uehling J, Vilgalys R, Estes ML, Miquel Guennoc C, Deveau A, Olsson S, Bonito G, Doktycz MJ, Retterer ST. Increasing access to microfluidics for studying fungi and other branched biological structures. Fungal Biol Biotechnol 2019; 6:1. [PMID: 31198578 PMCID: PMC6556955 DOI: 10.1186/s40694-019-0071-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/15/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Microfluidic systems are well-suited for studying mixed biological communities for improving industrial processes of fermentation, biofuel production, and pharmaceutical production. The results of which have the potential to resolve the underlying mechanisms of growth and transport in these complex branched living systems. Microfluidics provide controlled environments and improved optical access for real-time and high-resolution imaging studies that allow high-content and quantitative analyses. Studying growing branched structures and the dynamics of cellular interactions with both biotic and abiotic cues provides context for molecule production and genetic manipulations. To make progress in this arena, technical and logistical barriers must be overcome to more effectively deploy microfluidics in biological disciplines. A principle technical barrier is the process of assembling, sterilizing, and hydrating the microfluidic system; the lack of the necessary equipment for the preparatory process is a contributing factor to this barrier. To improve access to microfluidic systems, we present the development, characterization, and implementation of a microfluidics assembly and packaging process that builds on self-priming point-of-care principles to achieve "ready-to-use microfluidics." RESULTS We present results from domestic and international collaborations using novel microfluidic architectures prepared with a unique packaging protocol. We implement this approach by focusing primarily on filamentous fungi; we also demonstrate the utility of this approach for collaborations on plants and neurons. In this work we (1) determine the shelf-life of ready-to-use microfluidics, (2) demonstrate biofilm-like colonization on fungi, (3) describe bacterial motility on fungal hyphae (fungal highway), (4) report material-dependent bacterial-fungal colonization, (5) demonstrate germination of vacuum-sealed Arabidopsis seeds in microfluidics stored for up to 2 weeks, and (6) observe bidirectional cytoplasmic streaming in fungi. CONCLUSIONS This pre-packaging approach provides a simple, one step process to initiate microfluidics in any setting for fungal studies, bacteria-fungal interactions, and other biological inquiries. This process improves access to microfluidics for controlling biological microenvironments, and further enabling visual and quantitative analysis of fungal cultures.
Collapse
Affiliation(s)
- Larry J. Millet
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS 6445, Oak Ridge, TN 37831 USA
- The Bredesen Center, University of Tennessee-Knoxville, Knoxville, TN 37996 USA
| | - Jayde Aufrecht
- The Bredesen Center, University of Tennessee-Knoxville, Knoxville, TN 37996 USA
- The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, PO Box 2008, MS 6445, Oak Ridge, TN 37831 USA
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS 6445, Oak Ridge, TN 37831 USA
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996 USA
| | - Jessie Uehling
- Biology Department, Duke University, Box 90338, Durham, NC 27708 USA
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94703 USA
| | - Rytas Vilgalys
- Biology Department, Duke University, Box 90338, Durham, NC 27708 USA
| | - Myka L. Estes
- The Center for Neuroscience, University of California Davis, One Shields Avenue, Davis, CA 95618 USA
| | - Cora Miquel Guennoc
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS 6445, Oak Ridge, TN 37831 USA
- Institut national de la recherche agronomique (INRA), Centre INRA-Lorraine, 54280 Champenoux, France
| | - Aurélie Deveau
- Institut national de la recherche agronomique (INRA), Centre INRA-Lorraine, 54280 Champenoux, France
| | - Stefan Olsson
- Fujian Agricultural and Forestry University, Fuzhou City, 350002 Fujian Province China
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Mitchel J. Doktycz
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS 6445, Oak Ridge, TN 37831 USA
- The Bredesen Center, University of Tennessee-Knoxville, Knoxville, TN 37996 USA
| | - Scott T. Retterer
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS 6445, Oak Ridge, TN 37831 USA
- The Bredesen Center, University of Tennessee-Knoxville, Knoxville, TN 37996 USA
- The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, PO Box 2008, MS 6445, Oak Ridge, TN 37831 USA
| |
Collapse
|
26
|
Sa G, Yao J, Deng C, Liu J, Zhang Y, Zhu Z, Zhang Y, Ma X, Zhao R, Lin S, Lu C, Polle A, Chen S. Amelioration of nitrate uptake under salt stress by ectomycorrhiza with and without a Hartig net. THE NEW PHYTOLOGIST 2019; 222:1951-1964. [PMID: 30756398 PMCID: PMC6594093 DOI: 10.1111/nph.15740] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/01/2019] [Indexed: 05/13/2023]
Abstract
Salt stress is an important environmental cue impeding poplar nitrogen nutrition. Here, we characterized the impact of salinity on proton-driven nitrate fluxes in ectomycorrhizal roots and the importance of a Hartig net for nitrate uptake. We employed two Paxillus involutus strains for root colonization: MAJ, which forms typical ectomycorrhizal structures (mantle and Hartig net), and NAU, colonizing roots with a thin, loose hyphal sheath. Fungus-colonized and noncolonized Populus × canescens were exposed to sodium chloride and used to measure root surface pH, nitrate (NO3- ) flux and transcription of NO3- transporters (NRTs; PcNRT1.1, -1.2, -2.1), and plasmalemma proton ATPases (HAs; PcHA4, -8, -11). Paxillus colonization enhanced root NO3- uptake, decreased surface pH, and stimulated NRTs and HA4 of the host regardless the presence or absence of a Hartig net. Under salt stress, noncolonized roots exhibited strong net NO3- efflux, whereas beneficial effects of fungal colonization on surface pH and HAs prevented NO3- loss. Inhibition of HAs abolished NO3- influx under all conditions. We found that stimulation of HAs was crucial for the beneficial influence of ectomycorrhiza on NO3- uptake, whereas the presence of a Hartig net was not required for improved NO3- translocation. Mycorrhizas may contribute to host adaptation to salt-affected environments by keeping up NO3- nutrition.
Collapse
Affiliation(s)
- Gang Sa
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
- Gansu Provincial Key Laboratory of Aridland Crop SciencesGansu Agricultural UniversityLanzhou730070China
| | - Jun Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Jian Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Yinan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Zhimei Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Yuhong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Xujun Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
- Urat Desert‐Grassland Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of ScienceLanzhou730000China
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Cunfu Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
- Forest Botany and Tree PhysiologyUniversity of GoettingenGöttingen37077Germany
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| |
Collapse
|
27
|
Noirot-Gros MF, Shinde S, Larsen PE, Zerbs S, Korajczyk PJ, Kemner KM, Noirot PH. Dynamics of Aspen Roots Colonization by Pseudomonads Reveals Strain-Specific and Mycorrhizal-Specific Patterns of Biofilm Formation. Front Microbiol 2018; 9:853. [PMID: 29774013 PMCID: PMC5943511 DOI: 10.3389/fmicb.2018.00853] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/13/2018] [Indexed: 12/20/2022] Open
Abstract
Rhizosphere-associated Pseudomonas fluorescens are known plant growth promoting (PGP) and mycorrhizal helper bacteria (MHB) of many plants and ectomycorrhizal fungi. We investigated the spatial and temporal dynamics of colonization of mycorrhizal and non-mycorrhizal Aspen seedlings roots by the P. fluorescens strains SBW25, WH6, Pf0-1, and the P. protegens strain Pf-5. Seedlings were grown in laboratory vertical plates systems, inoculated with a fluorescently labeled Pseudomonas strain, and root colonization was monitored over a period of 5 weeks. We observed unexpected diversity of bacterial assemblies on seedling roots that changed over time and were strongly affected by root mycorrhization. P. fluorescens SBW25 and WH6 stains developed highly structured biofilms with internal void spaces forming channels. On mycorrhizal roots bacteria appeared encased in a mucilaginous substance in which they aligned side by side in parallel arrangements. The different phenotypic classes of bacterial assemblies observed for the four Pseudomonas strains were summarized in a single model describing transitions between phenotypic classes. Our findings also reveal that bacterial assembly phenotypes are driven by interactions with mucilaginous materials present at roots.
Collapse
Affiliation(s)
| | - Shalaka Shinde
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Peter E Larsen
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Sarah Zerbs
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Peter J Korajczyk
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Philippe H Noirot
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| |
Collapse
|
28
|
Kaling M, Schmidt A, Moritz F, Rosenkranz M, Witting M, Kasper K, Janz D, Schmitt-Kopplin P, Schnitzler JP, Polle A. Mycorrhiza-Triggered Transcriptomic and Metabolomic Networks Impinge on Herbivore Fitness. PLANT PHYSIOLOGY 2018; 176:2639-2656. [PMID: 29439210 PMCID: PMC5884605 DOI: 10.1104/pp.17.01810] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/18/2018] [Indexed: 05/20/2023]
Abstract
Symbioses between plants and mycorrhizal fungi are ubiquitous in ecosystems and strengthen the plants' defense against aboveground herbivores. Here, we studied the underlying regulatory networks and biochemical mechanisms in leaves induced by ectomycorrhizae that modify herbivore interactions. Feeding damage and oviposition by the widespread poplar leaf beetle Chrysomela populi were reduced on the ectomycorrhizal hybrid poplar Populus × canescens Integration of transcriptomics, metabolomics, and volatile emission patterns via mass difference networks demonstrated changes in nitrogen allocation in the leaves of mycorrhizal poplars, down-regulation of phenolic pathways, and up-regulation of defensive systems, including protease inhibitors, chitinases, and aldoxime biosynthesis. Ectomycorrhizae had a systemic influence on jasmonate-related signaling transcripts. Our results suggest that ectomycorrhizae prime wounding responses and shift resources from constitutive phenol-based to specialized protective compounds. Consequently, symbiosis with ectomycorrhizal fungi enabled poplars to respond to leaf beetle feeding with a more effective arsenal of defense mechanisms compared with nonmycorrhizal poplars, thus demonstrating the importance of belowground plant-microbe associations in mitigating aboveground biotic stress.
Collapse
Affiliation(s)
- Moritz Kaling
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anna Schmidt
- Forest Botany and Tree Physiology, University of Goettingen, 37077 Goettingen, Germany
| | - Franco Moritz
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Karl Kasper
- Forest Botany and Tree Physiology, University of Goettingen, 37077 Goettingen, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, University of Goettingen, 37077 Goettingen, Germany
| | | | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, 37077 Goettingen, Germany
| |
Collapse
|
29
|
Paul S, Wildhagen H, Janz D, Polle A. Drought effects on the tissue- and cell-specific cytokinin activity in poplar. AOB PLANTS 2018; 10:plx067. [PMID: 29354257 PMCID: PMC5767954 DOI: 10.1093/aobpla/plx067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/22/2017] [Indexed: 05/03/2023]
Abstract
Climate change with increasing periods of drought is expected to reduce the yield of biomass crops such as poplars. To combat yield loss, it is important to better understand the molecular mechanisms that control growth under drought. Here, the goal was to resolve the drought-induced changes of active cytokinins, a main growth hormone in plants, at the tissue level in different cell types and organs of poplars (Populus × canescens) in comparison with growth, biomass, leaf shedding, photosynthesis and water potential. Since cytokinin response is mediated by type-A response regulators, ARR5::GUS reporter lines were used to map cytokinin activity histochemically. The expression of PtaRR3 and PtaRR10 was examined in different stem sections. Young leaves showed strong cytokinin activity in the veins and low staining under drought stress, accompanied by diminished leaf expansion. Leaf scars, at positions where drought-shedding occurred, showed strong reduction of cytokinin activity. The pith in the differentiation zone of stem showed high cytokinin activity with distinct, very active parenchymatic cells and enhanced activity close to primary xylem. This pattern was maintained under drought but the cytokinin activity was reduced. Mature phloem parenchymatic cells showed high cytokinin activity and mature wood showed no detectable cytokinin activity. Cytokinin activity in the cambium was apparent as a clear ring, which faded under drought. Xylem-localized cytokinin activities were also mirrored by the relative expression of PtaRR3, whereas PtaRR10 showed developmental but no drought-induced changes. Primary meristems exhibited high cytokinin activity regardless of drought stress, supporting a function of this phytohormone in meristem maintenance, whereas declining cytokinin activities in apical pith tissues and cambium of drought-stressed poplars linked cytokinin in these cell types with the control of primary and secondary growth processes. Changes in cytokinin activity further imply a role in drought avoidance mechanisms of poplars, especially in the reduction of leaf area.
Collapse
Affiliation(s)
- Shanty Paul
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg, Göttingen, Germany
| | - Henning Wildhagen
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg, Göttingen, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg, Göttingen, Germany
| |
Collapse
|
30
|
Kavka M, Polle A. Phosphate uptake kinetics and tissue-specific transporter expression profiles in poplar (Populus × canescens) at different phosphorus availabilities. BMC PLANT BIOLOGY 2016; 16:206. [PMID: 27663513 PMCID: PMC5035498 DOI: 10.1186/s12870-016-0892-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/06/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Phosphorus (P) is a major plant nutrient. It is transported into and allocated inside plants by four families of phosphate transporters (PHT1 to PHT4) with high or low affinity to phosphate. Here, we studied whole-plant P uptake kinetics and expression profiles of members of the PHT families under high, intermediate and low P availability in the woody crop poplar (Populus × canescens) in relation to plant performance. RESULTS Poplars exhibited strong growth reduction and increased P use efficiency in response to lower P availabilities. The relative P uptake rate increased with intermediate and decreased with low P availability. This decrease was not energy-limited because glucose addition could not rescue the uptake. The maximum P uptake rate was more than 13-times higher in P-starved than in well-supplied poplars. The Km for whole-root uptake ranged between 26 μM and 20 μM in poplars with intermediate and low P availability, respectively. In well-supplied plants, only low uptake rate was found. The minimum concentration for net P uptake from the nutrient solution was 1.1 μM. All PHT1 members studied showed significant up-regulation upon P starvation and were higher expressed in roots than leaves, with the exception of PtPHT1;3. PtPHT1;1 and PtPHT1;2 showed root- and P starvation-specific expression. Various members of the PHT2, PHT3 and PHT4 families showed higher expression in leaves than in roots, but were unresponsive to P deprivation. Other members (PtPHT3;1, PtPHT3;2, PtPHT3;6, PtPHT4;6 to PtPHT4;8) exhibited higher expression in roots than in leaves and were in most cases up-regulated in response to P deficiency. CONCLUSIONS Expression profiles of distinct members of the PHT families, especially those of PHT1 were linked with changes in P uptake and allocation at whole-plant level. The regulation was tissue-specific with lower P responsiveness in leaves than in roots. Uptake efficiency for P increased with decreasing P availability, but could not overcome a threshold of about 1 μM P in the nutrient solution. Because the P concentrations in soil solutions are generally in the lower micro-molar range, even below the apparent Km-values, our findings suggest that bare-rooted poplars are prone to suffer from P limitations in most environments.
Collapse
Affiliation(s)
- Mareike Kavka
- Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Labor für Radio-Isotope, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Andrea Polle
- Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Labor für Radio-Isotope, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| |
Collapse
|
31
|
de Mattos-Shipley K, Ford K, Alberti F, Banks A, Bailey A, Foster G. The good, the bad and the tasty: The many roles of mushrooms. Stud Mycol 2016; 85:125-157. [PMID: 28082758 PMCID: PMC5220184 DOI: 10.1016/j.simyco.2016.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Fungi are often inconspicuous in nature and this means it is all too easy to overlook their importance. Often referred to as the "Forgotten Kingdom", fungi are key components of life on this planet. The phylum Basidiomycota, considered to contain the most complex and evolutionarily advanced members of this Kingdom, includes some of the most iconic fungal species such as the gilled mushrooms, puffballs and bracket fungi. Basidiomycetes inhabit a wide range of ecological niches, carrying out vital ecosystem roles, particularly in carbon cycling and as symbiotic partners with a range of other organisms. Specifically in the context of human use, the basidiomycetes are a highly valuable food source and are increasingly medicinally important. In this review, seven main categories, or 'roles', for basidiomycetes have been suggested by the authors: as model species, edible species, toxic species, medicinal basidiomycetes, symbionts, decomposers and pathogens, and two species have been chosen as representatives of each category. Although this is in no way an exhaustive discussion of the importance of basidiomycetes, this review aims to give a broad overview of the importance of these organisms, exploring the various ways they can be exploited to the benefit of human society.
Collapse
Affiliation(s)
- K.M.J. de Mattos-Shipley
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - K.L. Ford
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - F. Alberti
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - A.M. Banks
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - A.M. Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - G.D. Foster
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
32
|
Paul S, Wildhagen H, Janz D, Teichmann T, Hänsch R, Polle A. Tissue- and Cell-Specific Cytokinin Activity in Populus × canescens Monitored by ARR5::GUS Reporter Lines in Summer and Winter. FRONTIERS IN PLANT SCIENCE 2016; 7:652. [PMID: 27242853 PMCID: PMC4865519 DOI: 10.3389/fpls.2016.00652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/28/2016] [Indexed: 05/20/2023]
Abstract
Cytokinins play an important role in vascular development. But knowledge on the cellular localization of this growth hormone in the stem and other organs of woody plants is lacking. The main focus of this study was to investigate the occurrence and cellular localization of active cytokinins in leaves, roots, and along the stem of Populus × canescens and to find out how the pattern is changed between summer and winter. An ARR5::GUS reporter construct was used to monitor distribution of active cytokinins in different tissues of transgenic poplar lines. Three transgenic lines tested under outdoor conditions showed no influence of ARR5::GUS reporter construct on the growth performance compared with the wild-type, but one line lost the reporter activity. ARR5::GUS activity indicated changes in the tissue- and cell type-specific pattern of cytokinin activity during dormancy compared with the growth phase. ARR5::GUS activity, which was present in the root tips in the growing season, disappeared in winter. In the stem apex ground tissue, ARR5::GUS activity was higher in winter than in summer. Immature leaves from tissue-culture grown plants showed inducible ARR5::GUS activity. Leaf primordia in summer showed ARR5::GUS activity, but not the expanded leaves of outdoor plants or leaf primordia in winter. In stem cross sections, the most prominent ARR5::GUS activity was detected in the cortex region and in the rays of bark in summer and in winter. In the cambial zone the ARR5::GUS activity was more pronounced in the dormant than in growth phase. The pith and the ray cells adjacent to the vessels also displayed ARR5::GUS activity. In silico analyses of the tissue-specific expression patterns of the whole PtRR type-A family of poplar showed that PtRR10, the closest ortholog to the Arabidopsis ARR5 gene, was usually the most highly expressed gene in all tissues. In conclusion, gene expression and tissue-localization indicate high activity of cytokinins not only in summer, but also in winter. The presence of the signal in meristematic tissues supports their role in meristem maintenance. The reporter lines will be useful to study the involvement of cytokinins in acclimation of poplar growth to stress.
Collapse
Affiliation(s)
- Shanty Paul
- Department of Forest Botany and Tree Physiology, Georg-August-Universität GöttingenGöttingen, Germany
| | - Henning Wildhagen
- Department of Forest Botany and Tree Physiology, Georg-August-Universität GöttingenGöttingen, Germany
| | - Dennis Janz
- Department of Forest Botany and Tree Physiology, Georg-August-Universität GöttingenGöttingen, Germany
| | - Thomas Teichmann
- Department of Forest Botany and Tree Physiology, Georg-August-Universität GöttingenGöttingen, Germany
| | - Robert Hänsch
- Department of Molecular and Cell Biology of Plants, Institute for Plant Biology, University of TechnologyBraunschweig, Germany
| | - Andrea Polle
- Department of Forest Botany and Tree Physiology, Georg-August-Universität GöttingenGöttingen, Germany
- *Correspondence: Andrea Polle,
| |
Collapse
|
33
|
Shen Z, Sun J, Yao J, Wang S, Ding M, Zhang H, Qian Z, Zhao N, Sa G, Zhao R, Shen X, Polle A, Chen S. High rates of virus-induced gene silencing by tobacco rattle virus in Populus. TREE PHYSIOLOGY 2015; 35:1016-1029. [PMID: 26209619 DOI: 10.1093/treephys/tpv064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/06/2015] [Indexed: 05/23/2023]
Abstract
Virus-induced gene silencing (VIGS) has been shown to be an effective tool for investigating gene functions in herbaceous plant species, but has rarely been tested in trees. The establishment of a fast and reliable transformation system is especially important for woody plants, many of which are recalcitrant to transformation. In this study, we established a tobacco rattle virus (TRV)-based VIGS system for two Populus species, Populus euphratica and P. × canescens. Here, TRV constructs carrying a 266 bp or a 558 bp fragment of the phytoene desaturase (PDS) gene were Agrobacterium-infiltrated into leaves of the two poplar species. Agrobacterium-mediated delivery of the shorter insert, TRV2-PePDS266, into the host poplars resulted in expected photobleaching in both tree species, but not the longer insert, PePDS558. The efficiency of VIGS was temperature-dependent, increasing by raising the temperature from 18 to 28 °C. The optimized TRV-VIGS system at 28 °C resulted in a high silencing frequency and efficiency up to 65-73 and 83-94%, respectively, in the two tested poplars. Moreover, syringe inoculation of Agrobacterium in 100 mM acetosyringone induced a more efficient silencing in the two poplar species, compared with other agroinfiltration methods, e.g., direct injection, misting and agrodrench. There were plant species-related differences in the response to VIGS because the photobleaching symptoms were more severe in P. × canescens than in P. euphratica. Furthermore, VIGS-treated P. euphratica exhibited a higher recovery rate (50%) after several weeks of the virus infection, compared with TRV-infected P. × canescens plants (20%). Expression stability of reference genes was screened to assess the relative abundance of PePDS mRNA in VIGS-treated P. euphratica and P. × canescens. PeACT7 was stably expressed in P. euphratica and UBQ-L was selected as the most suitable reference gene for P. × canescens using three different statistical approaches, geNorm, NormFinder and BestKeeper. Quantitative real-time PCR showed significant reductions in PDS transcripts (55-64%) in the photobleached leaves of both VIGS-treated poplar species. Our results demonstrate that the TRV-based VIGS provides a practical tool for gene functional analysis in Populus sp., especially in those poplar species which are otherwise recalcitrant to transformation.
Collapse
Affiliation(s)
- Zedan Shen
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, P.R. China
| | - Jian Sun
- College of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, P.R. China
| | - Jun Yao
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, P.R. China
| | - Shaojie Wang
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, P.R. China
| | - Mingquan Ding
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, P.R. China
| | - Huilong Zhang
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, P.R. China
| | - Zeyong Qian
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, P.R. China
| | - Nan Zhao
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, P.R. China
| | - Gang Sa
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, P.R. China
| | - Rui Zhao
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, P.R. China
| | - Xin Shen
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, P.R. China
| | - Andrea Polle
- Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August Universität Göttingen, Göttingen 37077, Germany
| | - Shaoliang Chen
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, P.R. China
| |
Collapse
|
34
|
Müller A, Kaling M, Faubert P, Gort G, Smid HM, Van Loon JJA, Dicke M, Kanawati B, Schmitt-Kopplin P, Polle A, Schnitzler JP, Rosenkranz M. Isoprene emission by poplar is not important for the feeding behaviour of poplar leaf beetles. BMC PLANT BIOLOGY 2015; 15:165. [PMID: 26122266 PMCID: PMC4486431 DOI: 10.1186/s12870-015-0542-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/05/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Chrysomela populi (poplar leaf beetle) is a common herbivore in poplar plantations whose infestation causes major economic losses. Because plant volatiles act as infochemicals, we tested whether isoprene, the main volatile organic compound (VOC) produced by poplars (Populus x canescens), affects the performance of C. populi employing isoprene emitting (IE) and transgenic isoprene non-emitting (NE) plants. Our hypothesis was that isoprene is sensed and affects beetle orientation or that the lack of isoprene affects plant VOC profiles and metabolome with consequences for C. populi feeding. RESULTS Electroantennographic analysis revealed that C. populi can detect higher terpenes, but not isoprene. In accordance to the inability to detect isoprene, C. populi showed no clear preference for IE or NE poplar genotypes in the choice experiments, however, the beetles consumed a little bit less leaf mass and laid fewer eggs on NE poplar trees in field experiments. Slight differences in the profiles of volatile terpenoids between IE and NE genotypes were detected by gas chromatography - mass spectrometry. Non-targeted metabolomics analysis by Fourier Transform Ion Cyclotron Resonance Mass Spectrometer revealed genotype-, time- and herbivore feeding-dependent metabolic changes both in the infested and adjacent undamaged leaves under field conditions. CONCLUSIONS We show for the first time that C. populi is unable to sense isoprene. The detected minor differences in insect feeding in choice experiments and field bioassays may be related to the revealed changes in leaf volatile emission and metabolite composition between the IE and NE poplars. Overall our results indicate that lacking isoprene emission is of minor importance for C. populi herbivory under natural conditions, and that the lack of isoprene is not expected to change the economic losses in poplar plantations caused by C. populi infestation.
Collapse
Affiliation(s)
- Anna Müller
- Büsgen Institute, Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
| | - Moritz Kaling
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.
| | - Patrick Faubert
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Département des Sciences Fondamentales, Chaire en éco-conseil, Université du Québec à Chicoutimi, 555, boul. de l'Université, Chicoutimi, Qc, G7H 2B1, Canada.
| | - Gerrit Gort
- Mathematical and Statistical Methods Group, Wageningen University, P.O. Box 100, 6700 AC, Wageningen, Netherlands.
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, NL-6700 EH, Wageningen, Netherlands.
| | - Joop J A Van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, NL-6700 EH, Wageningen, Netherlands.
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, NL-6700 EH, Wageningen, Netherlands.
| | - Basem Kanawati
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.
| | - Andrea Polle
- Büsgen Institute, Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
35
|
Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun 2015; 6:6279. [PMID: 25703994 PMCID: PMC4346619 DOI: 10.1038/ncomms7279] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 01/13/2015] [Indexed: 11/08/2022] Open
Abstract
The mutualistic association of roots with ectomycorrhizal fungi promotes plant health and is a hallmark of boreal and temperate forests worldwide. In the pre-colonization phase, before direct contact, lateral root (LR) production is massively stimulated, yet little is known about the signals exchanged during this step. Here, we identify sesquiterpenes (SQTs) as biologically active agents emitted by Laccaria bicolor while interacting with Populus or Arabidopsis. We show that inhibition of fungal SQT production by lovastatin strongly reduces LR proliferation and that (-)-thujopsene, a low-abundance SQT, is sufficient to stimulate LR formation in the absence of the fungus. Further, we show that the ectomycorrhizal ascomycote, Cenococcum geophilum, which cannot synthesize SQTs, does not promote LRs. We propose that the LR-promoting SQT signal creates a win-win situation by enhancing the root surface area for plant nutrient uptake and by improving fungal access to plant-derived carbon via root exudates.
Collapse
|