1
|
Li J, Zhang L, Li C, Chen W, Wang T, Tan L, Qiu Y, Song S, Li B, Li L. The Pentatricopeptide Repeat Protein OsPPR674 Regulates Rice Growth and Drought Sensitivity by Modulating RNA Editing of the Mitochondrial Transcript ccmC. Int J Mol Sci 2025; 26:2646. [PMID: 40141287 PMCID: PMC11941812 DOI: 10.3390/ijms26062646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
The P-type pentatricopeptide repeat (PPR) proteins are crucial for RNA editing and post-transcriptional regulation in plant organelles, particularly mitochondria. This study investigates the role of OsPPR674 in rice, focusing on its function in mitochondrial RNA editing. Using CRISPR/Cas9 technology, we generated ppr674 mutant and examined its phenotypic and molecular characteristics. The results indicate that ppr674 exhibits reduced plant height, decreased seed-setting rate, and poor drought tolerance. Further analysis revealed that in the ppr674 mutant, RNA editing at the 299th nucleotide position of the mitochondrial ccmC gene (C-to-U conversion) was abolished. REMSAs showed that GST-PPR674 specifically binds to RNA probes targeting this ccmC-299 site, confirming its role in this editing process. In summary, these results suggest that OsPPR674 plays a pivotal role in mitochondrial RNA editing, emphasizing the significance of PPR proteins in organelle function and plant development.
Collapse
Affiliation(s)
- Jinglei Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; (J.L.); (L.T.); (Y.Q.); (S.S.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Longhui Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Chenyang Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Weijun Chen
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Tiankang Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Lvni Tan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; (J.L.); (L.T.); (Y.Q.); (S.S.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Yingxin Qiu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; (J.L.); (L.T.); (Y.Q.); (S.S.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Shufeng Song
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; (J.L.); (L.T.); (Y.Q.); (S.S.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Bin Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Li Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; (J.L.); (L.T.); (Y.Q.); (S.S.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| |
Collapse
|
2
|
Zhang C, Wang L, Wang Z, Dai Q, Feng H, Xu S, Liu X, Tang J, Yu H. OsPRDA1 Interacts With OsFSD2 To Promote Chloroplast Development by Regulating Chloroplast Gene Expression in Rice. RICE (NEW YORK, N.Y.) 2025; 18:14. [PMID: 40069478 PMCID: PMC11896912 DOI: 10.1186/s12284-025-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Chloroplasts are vital for photosynthesis, and their development necessitates proper expression of chloroplast genes. However, the regulatory mechanisms underlying rice chloroplast gene expression have not been fully elucidated. In this study, we obtained an albino mutant of rice, white seedling and lethal 1 (wsl1), which displays significantly decreased chlorophyll contents and impaired chloroplast ultrastructure. The causal gene Oryza sativa PEP-RELATED DEVELOPMENT ARRESTED 1 (OsPRDA1) was isolated using Mutmap + and verified by gene editing and complementary assays. The expression of OsPRDA1 is induced by light, and OsPRDA1 is localized in chloroplasts. Transcription sequencing revealed that genes related to photosynthesis were differentially expressed in wsl1. The expression levels of the examined plastid-encoded RNA polymerase (PEP)-dependent chloroplast genes are downregulated due to the mutation of OsPRDA1. Moreover, OsPRDA1 interacts with OsFSD2, a member of PEP-associated proteins (PAPs). Knockout of OsFSD2 leads to the albino and seedling-lethal phenotype and downregulation of PEP-dependent chloroplast genes. Together, our results demonstrated that OsPRDA1 plays essential roles in rice chloroplast development, probably by facilitating the function of the PAP complex and chloroplast gene expression.
Collapse
Affiliation(s)
- Chao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Lengjing Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Zirui Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Qiang Dai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Haiyang Feng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Shu Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xueju Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Jiaqi Tang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Hengxiu Yu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Ahrens FM, do Prado PFV, Hillen HS, Pfannschmidt T. The plastid-encoded RNA polymerase of plant chloroplasts. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00031-7. [PMID: 40011163 DOI: 10.1016/j.tplants.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
Plant chloroplasts possess a dedicated genome (plastome) and a prokaryotic-type plastid-encoded RNA polymerase (PEP) that mediates its expression. PEP is composed of five bacteria-like core proteins and 16 nucleus-encoded PEP-associated proteins (PAPs). These are essential for PEP-driven transcription and chloroplast biogenesis, but their functions and structural arrangement in the PEP complex remained largely enigmatic. Recently, four independently determined cryogenic-electron microscopy (cryo-EM) structures of purified plant PEP complexes reported features of the prokaryotic core and the arrangement of PAPs around it, identified potential functional domains and cofactors, and described the interactions of PEP with DNA. We explore these data and critically discuss the proposed regulatory impact of PAPs on the transcription process. We further address the evolutionary implications and describe fields for future investigation.
Collapse
Affiliation(s)
- Frederik M Ahrens
- Institute for Botany and Plant Physiology, Gottfried-Wilhelm-Leibniz University Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Paula F V do Prado
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, 37075 Göttingen, Germany; Research Group Structure and Function of Molecular Machines, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany
| | - Thomas Pfannschmidt
- Institute for Botany and Plant Physiology, Gottfried-Wilhelm-Leibniz University Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany.
| |
Collapse
|
4
|
Qiu Z, Wen S, Sun P, Chen D, Wang C, Song X, Xiao L, Zhang P, Zhao D, Wen C, Guan P, Du X, Sun Y, Xu C, Song J. RAS, a Pentatricopeptide Repeat Protein, Interacts with OsTRX z to Regulate Chloroplast Gene Transcription and RNA Processing. PLANTS (BASEL, SWITZERLAND) 2025; 14:247. [PMID: 39861600 PMCID: PMC11768195 DOI: 10.3390/plants14020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Thioredoxin z (TRX z) plays a significant role in chloroplast development by regulating the transcription of chloroplast genes. In this study, we identified a pentatricopeptide repeat (PPR) protein, rice albino seedling-lethal (RAS), that interacts with OsTRX z. This interaction was initially discovered by using a yeast two-hybrid (Y2H) screening technique and was further validated through Y2H and bimolecular fluorescence complementation (BiFC) experiments. RAS contains 16 PPR motifs and features a small MutS-related (SMR) domain at its C-terminus. CRISPR/Cas9-generated ras mutants exhibited an albino seedling-lethal phenotype characterized by abnormal chloroplast structures and a significantly reduced chlorophyll content. RAS localizes to the chloroplast and is predominantly expressed in young leaves. Mutations in RAS affect RNA editing at the rpl2, rps14, and ndhA sites, as well as RNA splicing at the rpl2, atpF, and ndhA transcripts within the chloroplast. Furthermore, the expression levels of genes associated with chloroplast formation are altered in the ras mutant. Both OsTRX z and RAS were found to interact with chloroplast signal recognition particle (cpSRP) proteins, indicating that their proper localization within the chloroplast may be dependent on the SRP pathway. Collectively, our findings highlight the critical role of RAS in chloroplast development, as it is involved in RNA processing and the regulation of chloroplast gene expression.
Collapse
Affiliation(s)
- Zhennan Qiu
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Shiyong Wen
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Peinan Sun
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Dongdong Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
| | - Chunmiao Wang
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Xiliang Song
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Liying Xiao
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Peiliang Zhang
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Dongying Zhao
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Cuiping Wen
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Peiyan Guan
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Xuechu Du
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Yinghui Sun
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Chenshan Xu
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Jian Song
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| |
Collapse
|
5
|
Ikeda N, Kamimura M, Uesugi K, Kobayashi T, Che FS. Choline chloride and N-allylglycine promote plant growth by increasing the efficiency of photosynthesis. Biosci Biotechnol Biochem 2024; 89:51-61. [PMID: 39439204 DOI: 10.1093/bbb/zbae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
We previously reported that choline chloride and N-allylglycine stimulate photosynthesis in wheat protoplasts. Treatment of Arabidopsis thaliana and Brassica rapa plants with both compounds promoted growth and photosynthesis. To clarify the relationship between the enhancement of photosynthesis and increased growth, A. thaliana T87 cells, which show photosynthesis-dependent growth, and YG1 cells, which use sugar in the medium for growth, were treated with choline chloride or N-allylglycine. Only the T87 cells showed increased growth, suggesting that choline chloride and N-allylglycine promote growth by increasing photosynthetic activity. Transcriptome analysis using choline chloride- and N-allylglycine-treated plants showed that the most abundant transcripts corresponded to photosynthetic electron transfer-related genes among the genes upregulated by both compounds. Furthermore, the compounds also upregulate genes encoding transcription factors that may control the expression of these photosynthetic genes. These results suggest that choline chloride and N-allylglycine promote photosynthesis through increased expression of photosynthetic electron transfer-related genes.
Collapse
Affiliation(s)
- Naoki Ikeda
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Mayu Kamimura
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Kousaku Uesugi
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | | | - Fang-Sik Che
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- Genome Editing Research Institute, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| |
Collapse
|
6
|
Li J, Chen S, Zhang Y, Zhao W, Yang J, Fan Y. A novel PLS-DYW type PPR protein OsASL is essential for chloroplast development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112134. [PMID: 38810885 DOI: 10.1016/j.plantsci.2024.112134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Oryza longistaminata (OL), an AA-genome African wild rice which can propagate clonally via rhizome, is an important germplasm for improvement of Asian cultivated rice, however recessive lethal alleles can hitchhike clonal propagation in heterozygous state. Selfing of OL is difficult due to its self-incompatibility, but simple selfing of hybrid progeny between OL and O. sativa is effective to disclose and eliminate recessive lethal alleles. Here, we identified an exhibited albino-lethal phenotype mutant, from an F2 population between OL and O. sativa, named it albino seedling-lethal (asl). The leaves of asl mutant showed abnormal chloroplast development. The albino characteristics of asl were determined to be governed by a set of recessive nuclear genes through genetic analysis. Map-based cloning experiments found that a single nucleotide variation (G to A) was detected in the exon of OsASL in OL, which causes a premature stop codon. OsASL encodes a PLS-type PPR protein with 12 pentratricopeptide repeat domains, and is translocalized to chloroplasts. Complementation and knockout transgenic experiments further confirmed that OsASL is responsible for the albino-lethal phenotype. Loss-of-function OsASL (i.e. osasl) resulted in devoid of intron splicing of chloroplast RNA atpF, ndhA, rpl2 and rps12, and also RNA editing of ndhB, but facilitates the RNA editing of rpl2 in the plastid. Transcriptome sequencing showed that OsASL was mainly involved in chlorophyll synthesis pathway. The expression of Chlorophyll-associated genes were significantly decreased in asl plants, especially PEP (plastid-encoded RNA polymerase)-mediated genes. Our results suggest that OsASL is crucial for RNA editing, RNA splicing of chloroplast RNA group II genes, and plays an essential role in chloroplast development during early leaf development in rice.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shufang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Weidong Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiangyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| | - Yourong Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
7
|
Fan X, Yuan K, Zheng Y. The complete chloroplast genome and phylogenetic analysis of Cyperus brevifolius (Rottb.) Hassk. 1844 (Cyperaceae). Mitochondrial DNA B Resour 2024; 9:621-624. [PMID: 38737394 PMCID: PMC11086023 DOI: 10.1080/23802359.2024.2349769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
The medicinal plant Cyperus brevifolius (Rottb.) Hassk. 1844 has a long history of use in traditional Chinese medicine. In this study, we determined and systematically analyzed the complete chloroplast (cp) genome of C. brevifolius. The genome is 183,717 bp in length with a GC content of 33.24%. It comprises four distinct regions: a large-single copy (LSC) region of 101,190 bp, a small-single copy (SSC) region of 10,366 bp, and two inverted repeat (IR) regions of 36,079 bp each. A total of 137 genes are present in the genome including 89 protein-coding genes, 40 tRNA genes, and eight rRNA genes. Phylogenetic analysis reveals that C. brevifolius belongs to the Cyperus genus. This newly sequenced cp genome provides valuable insights for future genetic and genomic studies on Cyperus.
Collapse
Affiliation(s)
- Xia Fan
- College of Biology and Agriculture Resources, Huanggang Normal University, Huanggang, China
| | - Kai Yuan
- College of Biology and Agriculture Resources, Huanggang Normal University, Huanggang, China
| | - Yongliang Zheng
- College of Biology and Agriculture Resources, Huanggang Normal University, Huanggang, China
| |
Collapse
|
8
|
Xu M, Zhang X, Cao J, Liu J, He Y, Guan Q, Tian X, Tang J, Li X, Ren D, Bu Q, Wang Z. OsPGL3A encodes a DYW-type pentatricopeptide repeat protein involved in chloroplast RNA processing and regulated chloroplast development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:29. [PMID: 38549701 PMCID: PMC10965880 DOI: 10.1007/s11032-024-01468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/19/2024] [Indexed: 04/24/2024]
Abstract
The chloroplast serves as the primary site of photosynthesis, and its development plays a crucial role in regulating plant growth and morphogenesis. The Pentatricopeptide Repeat Sequence (PPR) proteins constitute a vast protein family that function in the post-transcriptional modification of RNA within plant organelles. In this study, we characterized mutant of rice with pale green leaves (pgl3a). The chlorophyll content of pgl3a at the seedling stage was significantly reduced compared to the wild type (WT). Transmission electron microscopy (TEM) and quantitative PCR analysis revealed that pgl3a exhibited aberrant chloroplast development compared to the wild type (WT), accompanied by significant alterations in gene expression levels associated with chloroplast development and photosynthesis. The Mutmap analysis revealed that a single base deletionin the coding region of Os03g0136700 in pgl3a. By employing CRISPR/Cas9 mediated gene editing, two homozygous cr-pgl3a mutants were generated and exhibited a similar phenotype to pgl3a, thereby confirming that Os03g0136700 was responsible for pgl3a. Consequently, it was designated as OsPGL3A. OsPGL3A belongs to the DYW-type PPR protein family and is localized in chloroplasts. Furthermore, we demonstrated that the RNA editing efficiency of rps8-182 and rpoC2-4106, and the splicing efficiency of ycf3-1 were significantly decreased in pgl3a mutants compared to WT. Collectively, these results indicate that OsPGL3A plays a crucial role in chloroplast development by regulating the editing and splicing of chloroplast genes in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01468-7.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xinying Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Jinzhe Cao
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin, 150040 Heilongjiang China
| | - Jiali Liu
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin, 150040 Heilongjiang China
| | - Yiyuan He
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qingjie Guan
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin, 150040 Heilongjiang China
| | - Xiaojie Tian
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang China
| | - Jiaqi Tang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang China
| | - Xiufeng Li
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang China
| | - Deyong Ren
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006 People’s Republic of China
| | - Qingyun Bu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang China
| | - Zhenyu Wang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang China
| |
Collapse
|
9
|
Li B, Zhang J, Tian P, Gao X, Song X, Pan X, Wu Y. Cytological, Physiological, and Transcriptomic Analyses of the Leaf Color Mutant Yellow Leaf 20 ( yl20) in Eggplant ( Solanum melongena L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:855. [PMID: 38592960 PMCID: PMC10974653 DOI: 10.3390/plants13060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
Leaf color mutants are ideal materials for studying chlorophyll metabolism, chloroplast development, and photosynthesis in plants. We discovered a novel eggplant (Solanum melongena L.) mutant yl20 (yellow leaf 20) that exhibits yellow leaves. In this study, we compared the leaves of the mutant yl20 and wild type (WT) plants for cytological, physiological, and transcriptomic analyses. The results showed that the mutant yl20 exhibits abnormal chloroplast ultrastructure, reduced chlorophyll and carotenoid contents, and lower photosynthetic efficiency compared to the WT. Transcriptome data indicated 3267 and 478 differentially expressed genes (DEGs) between WT and yl20 lines in the cotyledon and euphylla stages, respectively, where most DEGs were downregulated in the yl20. Gene Ontology (GO) analysis revealed the "plastid-encoded plastid RNA polymerase complex" and the "chloroplast-related" terms were significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the significantly enriched DEGs were involved in flavone and flavonol biosynthesis, porphyrin and chlorophyll metabolism, etc. We speculated that these DEGs involved in significant terms were closely related to the leaf color development of the mutant yl20. Our results provide a possible explanation for the altered phenotype of leaf color mutants in eggplant and lay a theoretical foundation for plant breeding.
Collapse
Affiliation(s)
- Bing Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
- Hebei Vegetable Technology Innovation Center, Shijiazhuang 050051, China
| | - Jingjing Zhang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
| | - Peng Tian
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
| | - Xiurui Gao
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
| | - Xue Song
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
| | - Xiuqing Pan
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
- Hebei Vegetable Technology Innovation Center, Shijiazhuang 050051, China
| | - Yanrong Wu
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
- Hebei Vegetable Technology Innovation Center, Shijiazhuang 050051, China
| |
Collapse
|
10
|
Wu XX, Mu WH, Li F, Sun SY, Cui CJ, Kim C, Zhou F, Zhang Y. Cryo-EM structures of the plant plastid-encoded RNA polymerase. Cell 2024; 187:1127-1144.e21. [PMID: 38428393 DOI: 10.1016/j.cell.2024.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Chloroplasts are green plastids in the cytoplasm of eukaryotic algae and plants responsible for photosynthesis. The plastid-encoded RNA polymerase (PEP) plays an essential role during chloroplast biogenesis from proplastids and functions as the predominant RNA polymerase in mature chloroplasts. The PEP-centered transcription apparatus comprises a bacterial-origin PEP core and more than a dozen eukaryotic-origin PEP-associated proteins (PAPs) encoded in the nucleus. Here, we determined the cryo-EM structures of Nicotiana tabacum (tobacco) PEP-PAP apoenzyme and PEP-PAP transcription elongation complexes at near-atomic resolutions. Our data show the PEP core adopts a typical fold as bacterial RNAP. Fifteen PAPs bind at the periphery of the PEP core, facilitate assembling the PEP-PAP supercomplex, protect the complex from oxidation damage, and likely couple gene transcription with RNA processing. Our results report the high-resolution architecture of the chloroplast transcription apparatus and provide the structural basis for the mechanistic and functional study of transcription regulation in chloroplasts.
Collapse
Affiliation(s)
- Xiao-Xian Wu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wen-Hui Mu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Fan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu-Yi Sun
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao-Jun Cui
- University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
11
|
Seo DH, Jang J, Park D, Yoon Y, Choi YD, Jang G. PEP-ASSOCIATED PROTEIN 3 regulates rice tiller formation and grain yield by controlling chloroplast biogenesis. PLANT PHYSIOLOGY 2024; 194:805-818. [PMID: 37819034 PMCID: PMC10828210 DOI: 10.1093/plphys/kiad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/15/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Plastid-encoded RNA polymerase (PEP) plays a pivotal role in chloroplast development by governing the transcription of chloroplast genes, and PEP-associated proteins (PAPs) modulate PEP transcriptional activity. Therefore, PAPs provide an intriguing target for those efforts to improve yield, by enhancing chloroplast development. In this study, we identified the rice (Oryza sativa) OsPAP3 gene and characterized its function in chloroplast development. OsPAP3 expression was light-dependent and leaf-specific, similar to the PEP-dependent chloroplast gene RUBISCO LARGE SUBUNIT (OsRbcL), and OsPAP3 protein localized to chloroplast nucleoids where PEP functions. Analysis of loss-of-function and gain-of-function mutants showed that the expression of OsPAP3 is tightly linked to chloroplast gene expression and chloroplast biogenesis in rice. Homozygous knockout mutants of OsPAP3 had fewer chloroplasts than wild type, whereas plants overexpressing OsPAP3 had more chloroplasts. Also, OsPAP3 knockout suppressed the PEP-dependent expression of chloroplast genes, but OsPAP3 overexpression increased their expression. These findings indicate that OsPAP3 regulates chloroplast biogenesis in rice by controlling the PEP-dependent expression of chloroplast genes. More importantly, data from 3 seasons of field cultivation revealed that the overexpression of OsPAP3 improves rice grain yield by approximately 25%, largely due to increased tiller formation. Collectively, these observations suggest that OsPAP3 regulates rice growth and productivity by promoting chloroplast development.
Collapse
Affiliation(s)
- Deok Hyun Seo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jinwoo Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dongryeol Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Yang Do Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
12
|
Hao J, Lu Y, Dang M, Xia R, Xu L, Zhu Z, Yu Y. The complete chloroplast genome sequence of Plectranthus hadiensis (Lamiaceae) and phylogenetic analysis. Mitochondrial DNA B Resour 2023; 8:1049-1053. [PMID: 37810612 PMCID: PMC10557565 DOI: 10.1080/23802359.2023.2262689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Plants of the genus Plectranthus are used for the treatment of digestive problems, skin diseases, and allergies, with a wide variety of uses. Here, the complete chloroplast genome sequence of Plectranthus hadiensis (Benth. ex E.Mey) Codd. 1788 was assembled and characterized for the first time. The full length of the chloroplast genome is 152,484 bp, consisting of a small single-copy region of 17,686 bp, a large single-copy region of 83,380 bp, and a pair of inverted repeats of 51,418 bp. The overall GC content is 37.73%. The chloroplast genome contains 131 unique genes, including 87 protein-coding genes, 36 transfer RNA genes, and eight ribosomal RNA genes. Phylogenetic tree construction based on the complete chloroplast genome sequences of 25 species (23 Nepetoideae, two Ajugoideae) of the Lamiaceae family showed that P. hadiensis exhibited the closest relationship with Isodon.
Collapse
Affiliation(s)
- Jiaojiao Hao
- College of Horticulture Science, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang A&F University, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Hangzhou, China
| | - Yanchi Lu
- College of Horticulture Science, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang A&F University, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Hangzhou, China
| | - Menghuan Dang
- College of Horticulture Science, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang A&F University, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Hangzhou, China
| | - Rui Xia
- College of Horticulture Science, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang A&F University, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Hangzhou, China
| | - Liai Xu
- College of Horticulture Science, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang A&F University, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Hangzhou, China
| | - Zhujun Zhu
- College of Horticulture Science, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang A&F University, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Hangzhou, China
| | - Youjian Yu
- College of Horticulture Science, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang A&F University, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Hangzhou, China
| |
Collapse
|
13
|
Wu Y, Zheng Y, Xu W, Zhang Z, Li L, Wang Y, Cui J, Wang QM. Chimeric deletion mutation of rpoC2 underlies the leaf-patterning of Clivia miniata var. variegata. PLANT CELL REPORTS 2023; 42:1419-1431. [PMID: 37326841 DOI: 10.1007/s00299-023-03039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
KEY MESSAGE The deletion mutated rpoC2 leads to yellow stripes of Clivia miniata var. variegata by down regulating the transcription of 28 chloroplast genes and disturbing chloroplast biogenesis and thylakoid membrane development. Clivia miniata var. variegata (Cmvv) is a common mutant of Clivia miniata but its genetic basis is unclear. Here, we found that a 425 bp deletion mutation of chloroplast rpoC2 underlies the yellow stripes (YSs) of Cmvv. Both RNA polymerase PEP and NEP coexist in seed-plant chloroplasts and the β″ subunit of PEP is encoded by rpoC2. The rpoC2 mutation changed the discontinuous cleft domain required to form the PEP central cleft for DNA binding from 1103 to 59 aa. RNA-Seq revealed that 28 chloroplast genes (cpDEGs) were all down-regulated in YSs, of which, four involved in chloroplast protein translation and 21 of photosynthesis system (PS)I, PSII, cytochrome b6/f complex and ATP synthase are crucial for chloroplast biogenesis/development. The accuracy and reliability of RNA-Seq was verified by qRT-PCR. Moreover, the chlorophyll (Chl) a/b content, ratio of Chla/Chlb and photosynthetic rate (Pn) of YS decreased significantly. Meanwhile, chloroplasts of the YS mesophyll cells were smaller, irregular in shape, contain almost no thylakoid membrane, and even proplastid was found in YS. These findings indicate that the rpoC2 mutation down-regulated expression of the 28 cpDEGs, which disturb chloroplast biogenesis and its thylakoid membrane development. Thus, there are not enough PSI and II components to bind Chl, so that the corresponding areas of the leaf are yellow and show a low Pn. In this study, the molecular mechanism of three phenotypes of F1 (Cmvv ♀ × C. miniata ♂) was revealed, which lays a foundation for the breeding of variegated plants.
Collapse
Affiliation(s)
- Yiming Wu
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yi Zheng
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Weiman Xu
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Lujia Li
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yucheng Wang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jianguo Cui
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Qin-Mei Wang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
14
|
Kim KR, Park SY, Kim H, Hong JM, Kim SY, Yu JN. Complete Chloroplast Genome Determination of Ranunculus sceleratus from Republic of Korea (Ranunculaceae) and Comparative Chloroplast Genomes of the Members of the Ranunculus Genus. Genes (Basel) 2023; 14:1149. [PMID: 37372329 DOI: 10.3390/genes14061149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Ranunculus sceleratus (family: Ranunculaceae) is a medicinally and economically important plant; however, gaps in taxonomic and species identification limit its practical applicability. This study aimed to sequence the chloroplast genome of R. sceleratus from Republic of Korea. Chloroplast sequences were compared and analyzed among Ranunculus species. The chloroplast genome was assembled from Illumina HiSeq 2500 sequencing raw data. The genome was 156,329 bp and had a typical quadripartite structure comprising a small single-copy region, a large single-copy region, and two inverted repeats. Fifty-three simple sequence repeats were identified in the four quadrant structural regions. The region between the ndhC and trnV-UAC genes could be useful as a genetic marker to distinguish between R. sceleratus populations from Republic of Korea and China. The Ranunculus species formed a single lineage. To differentiate between Ranunculus species, we identified 16 hotspot regions and confirmed their potential using specific barcodes based on phylogenetic tree and BLAST-based analyses. The ndhE, ndhF, rpl23, atpF, rps4, and rpoA genes had a high posterior probability of codon sites in positive selection, while the amino acid site varied between Ranunculus species and other genera. Comparison of the Ranunculus genomes provides useful information regarding species identification and evolution that could guide future phylogenetic analyses.
Collapse
Affiliation(s)
- Kang-Rae Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - So Young Park
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Heesoo Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Jeong Min Hong
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Sun-Yu Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Jeong-Nam Yu
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| |
Collapse
|
15
|
Timilsena PR, Barrett CF, Piñeyro-Nelson A, Wafula EK, Ayyampalayam S, McNeal JR, Yukawa T, Givnish TJ, Graham SW, Pires JC, Davis JI, Ané C, Stevenson DW, Leebens-Mack J, Martínez-Salas E, Álvarez-Buylla ER, dePamphilis CW. Phylotranscriptomic Analyses of Mycoheterotrophic Monocots Show a Continuum of Convergent Evolutionary Changes in Expressed Nuclear Genes From Three Independent Nonphotosynthetic Lineages. Genome Biol Evol 2023; 15:evac183. [PMID: 36582124 PMCID: PMC9887272 DOI: 10.1093/gbe/evac183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022] Open
Abstract
Mycoheterotrophy is an alternative nutritional strategy whereby plants obtain sugars and other nutrients from soil fungi. Mycoheterotrophy and associated loss of photosynthesis have evolved repeatedly in plants, particularly in monocots. Although reductive evolution of plastomes in mycoheterotrophs is well documented, the dynamics of nuclear genome evolution remains largely unknown. Transcriptome datasets were generated from four mycoheterotrophs in three families (Orchidaceae, Burmanniaceae, Triuridaceae) and related green plants and used for phylogenomic analyses to resolve relationships among the mycoheterotrophs, their relatives, and representatives across the monocots. Phylogenetic trees based on 602 genes were mostly congruent with plastome phylogenies, except for an Asparagales + Liliales clade inferred in the nuclear trees. Reduction and loss of chlorophyll synthesis and photosynthetic gene expression and relaxation of purifying selection on retained genes were progressive, with greater loss in older nonphotosynthetic lineages. One hundred seventy-four of 1375 plant benchmark universally conserved orthologous genes were undetected in any mycoheterotroph transcriptome or the genome of the mycoheterotrophic orchid Gastrodia but were expressed in green relatives, providing evidence for massively convergent gene loss in nonphotosynthetic lineages. We designate this set of deleted or undetected genes Missing in Mycoheterotrophs (MIM). MIM genes encode not only mainly photosynthetic or plastid membrane proteins but also a diverse set of plastid processes, genes of unknown function, mitochondrial, and cellular processes. Transcription of a photosystem II gene (psb29) in all lineages implies a nonphotosynthetic function for this and other genes retained in mycoheterotrophs. Nonphotosynthetic plants enable novel insights into gene function as well as gene expression shifts, gene loss, and convergence in nuclear genomes.
Collapse
Affiliation(s)
- Prakash Raj Timilsena
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Craig F Barrett
- Department of Biology, West Virginia University, Morgantown, West Virginia
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | | | - Joel R McNeal
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Georgia
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Museum of Nature and Science, 1-1, Amakubo 4, Tsukuba, 305-0005, Japan
| | - Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4Canada
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri–Columbia, Columbia, Missouri
| | - Jerrold I Davis
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 1485
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin
| | | | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia, 3060
| | - Esteban Martínez-Salas
- Departmento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Elena R Álvarez-Buylla
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
16
|
Rice TCD8 Encoding a Multi-Domain GTPase Is Crucial for Chloroplast Development of Early Leaf Stage at Low Temperatures. BIOLOGY 2022; 11:biology11121738. [PMID: 36552248 PMCID: PMC9774597 DOI: 10.3390/biology11121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
The multi-domain GTPase (MnmE) is conservative from bacteria to human and participates in tRNA modified synthesis. However, our understanding of how the MnmE is involved in plant chloroplast development is scarce, let alone in rice. A novel rice mutant, thermo-sensitive chlorophyll-deficient mutant 8 (tcd8) was identified in this study, which apparently presented an albino phenotype at 20 °C but a normal green over 24 °C, coincided with chloroplast development and chlorophyll content. Map-based cloning and complementary test revealed the TCD8 encoded a multi-domain GTPase localized in chloroplasts. In addition, the disturbance of TCD8 suppressed the transcripts of certain chloroplast-related genes at low temperature, although the genes were recoverable to nearly normal levels at high temperature (32 °C), indicating that TCD8 governs chloroplast development at low temperature. The multi-domain GTPase gene in rice is first reported in this study, which endorses the importance in exploring chloroplast development in rice.
Collapse
|
17
|
Liebers M, Cozzi C, Uecker F, Chambon L, Blanvillain R, Pfannschmidt T. Biogenic signals from plastids and their role in chloroplast development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7105-7125. [PMID: 36002302 DOI: 10.1093/jxb/erac344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant seeds do not contain differentiated chloroplasts. Upon germination, the seedlings thus need to gain photoautotrophy before storage energies are depleted. This requires the coordinated expression of photosynthesis genes encoded in nuclear and plastid genomes. Chloroplast biogenesis needs to be additionally coordinated with the light regulation network that controls seedling development. This coordination is achieved by nucleus to plastid signals called anterograde and plastid to nucleus signals termed retrograde. Retrograde signals sent from plastids during initial chloroplast biogenesis are also called biogenic signals. They have been recognized as highly important for proper chloroplast biogenesis and for seedling development. The molecular nature, transport, targets, and signalling function of biogenic signals are, however, under debate. Several studies disproved the involvement of a number of key components that were at the base of initial models of retrograde signalling. New models now propose major roles for a functional feedback between plastid and cytosolic protein homeostasis in signalling plastid dysfunction as well as the action of dually localized nucleo-plastidic proteins that coordinate chloroplast biogenesis with light-dependent control of seedling development. This review provides a survey of the developments in this research field, summarizes the unsolved questions, highlights several recent advances, and discusses potential new working modes.
Collapse
Affiliation(s)
- Monique Liebers
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Carolina Cozzi
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Finia Uecker
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Louise Chambon
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Robert Blanvillain
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Thomas Pfannschmidt
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
18
|
Wang Y, Yang Z, Zhang M, Ai P. A chloroplast-localized pentatricopeptide repeat protein involved in RNA editing and splicing and its effects on chloroplast development in rice. BMC PLANT BIOLOGY 2022; 22:437. [PMID: 36096762 PMCID: PMC9469629 DOI: 10.1186/s12870-022-03819-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The chloroplast is the organelle responsible for photosynthesis in higher plants. The generation of functional chloroplasts depends on the precise coordination of gene expression in the nucleus and chloroplasts and is essential for the development of plants. However, little is known about nuclear-plastid regulatory mechanisms at the early stage of chloroplast generation in rice. RESULTS In this study, we identified a rice (Oryza sativa) mutant that exhibited albino and seedling-lethal phenotypes and named it ssa1(seedling stage albino1). Transmission electron microscopy (TEM) analysis indicated that the chloroplasts of ssa1 did not have organized thylakoid lamellae and that the chloroplast structure was destroyed. Genetic analysis revealed that the albino phenotypes of ssa1 were controlled by a pair of recessive nuclear genes. Map-based cloning experiments found that SSA1 encoded a pentapeptide repeat (PPR) protein that was allelic to OSOTP51,which was previously reported to participate in Photosystem I (PSI) assembly. The albino phenotype was reversed to the wild type (WT) phenotype when the normal SSA1 sequence was expressed in ssa1 under the drive of the actin promoter. Knockout experiments further created mutants ssa1-2/1-9, which had a phenotype similar to that of ssa1. SSA1 consisted of 7 pentatricopeptide repeat domains and two C-terminal LAGLIDADG tandem sequence motifs and was located in the chloroplast. GUS staining and qRT-PCR analysis showed that SSA1 was mainly expressed in young leaves and stems. In the ssa1 mutants, plastid genes transcribed by plastid-encoded RNA polymerase decreased, while those transcribed by nuclear-encoded RNA polymerase increased at the mRNA level. Loss-of-function SSA1 destroys RNA editing of ndhB-737 and intron splicing of atpF and ycf3-2 in the plastid genome. Yeast two-hybrid and BiFC assays revealed that SSA1 physically interacted with two new RNA editing partners, OsMORF8 and OsTRXz, which have potential functions in RNA editing and chloroplast biogenesis. CONCLUSIONS Rice SSA1 encodes a pentatricopeptide repeat protein, which is targeted to the chloroplast. SSA1 regulates early chloroplast development and plays a critical role in RNA editing and intron splicing in rice. These data will facilitate efforts to further elucidate the molecular mechanism of chloroplast biogenesis.
Collapse
Affiliation(s)
- Yanwei Wang
- Collage of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China
| | - Zhimin Yang
- Collage of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China
| | - Meng Zhang
- Collage of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China
| | - Pengfei Ai
- Collage of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China.
| |
Collapse
|
19
|
Bychkov IA, Andreeva AA, Kudryakova NV, Pojidaeva ES, Kusnetsov VV. The role of PAP4/FSD3 and PAP9/FSD2 in heat stress responses of chloroplast genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111359. [PMID: 35738478 DOI: 10.1016/j.plantsci.2022.111359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Chloroplasts' mechanisms of adaptation to elevated temperatures are largely determined by the gene expression of the plastid transcription apparatus. Gene disruption of iron-containing superoxide dismutase PAP4/FSD3 and PAP9/FSD2, which are parts of the DNA-RNA polymerase complex of plastids, contributed to a decrease in resistance to oxidative stress caused by the prolonged action of elevated temperatures (5 days, 30 °C). Under heat stress conditions, pap4/fsd3 and pap9/fsd2 mutants showed a decline in chlorophyll content and photosynthesis level, as measured by photosynthetic parameters, and a different amplitude of HSP gene response to heat stress. The expression of nuclear- and plastid-encoded photosynthesis genes and corresponding proteins was strongly inhibited in the mutants as compared with wild-type plants and was further suppressed or displayed no additional changes at 30 °C. NEP-dependent plastid genes, as well as NEP genes RPOTp and RPOTmp, were also downregulated in the mutants by high temperature or remained stable, unlike in wild-type seedlings where these genes were strongly upregulated. The results obtained correspond to the concept of the complex effect of various forms of reactive oxygen species under all types of stresses, including heat stress, and confirm the hypothesis of a new regulatory function in plastid transcription acquired by enzymatic proteins during evolution.
Collapse
Affiliation(s)
- Ivan A Bychkov
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| | - Aleksandra A Andreeva
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| | - Natalia V Kudryakova
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia.
| | - Elena S Pojidaeva
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| | - Victor V Kusnetsov
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| |
Collapse
|
20
|
Three-Dimensional Envelope and Subunit Interactions of the Plastid-Encoded RNA Polymerase from Sinapis alba. Int J Mol Sci 2022; 23:ijms23179922. [PMID: 36077319 PMCID: PMC9456514 DOI: 10.3390/ijms23179922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
RNA polymerases (RNAPs) are found in all living organisms. In the chloroplasts, the plastid-encoded RNA polymerase (PEP) is a prokaryotic-type multimeric RNAP involved in the selective transcription of the plastid genome. One of its active states requires the assembly of nuclear-encoded PEP-Associated Proteins (PAPs) on the catalytic core, producing a complex of more than 900 kDa, regarded as essential for chloroplast biogenesis. In this study, sequence alignments of the catalytic core subunits across various chloroplasts of the green lineage and prokaryotes combined with structural data show that variations are observed at the surface of the core, whereas internal amino acids associated with the catalytic activity are conserved. A purification procedure compatible with a structural analysis was used to enrich the native PEP from Sinapis alba chloroplasts. A mass spectrometry (MS)-based proteomic analysis revealed the core components, the PAPs and additional proteins, such as FLN2 and pTAC18. MS coupled with crosslinking (XL-MS) provided the initial structural information in the form of protein clusters, highlighting the relative position of some subunits with the surfaces of their interactions. Using negative stain electron microscopy, the PEP three-dimensional envelope was calculated. Particles classification shows that the protrusions are very well-conserved, offering a framework for the future positioning of all the PAPs. Overall, the results show that PEP-associated proteins are firmly and specifically associated with the catalytic core, giving to the plastid transcriptional complex a singular structure compared to other RNAPs.
Collapse
|
21
|
Ren W, Wang YR, Zhao HD, Wang YZ, Wang ZF. The complete chloroplast genome of Carex laevissima Nakai (Cyperaceae). Mitochondrial DNA B Resour 2022; 7:1421-1423. [PMID: 35937903 PMCID: PMC9347471 DOI: 10.1080/23802359.2022.2107455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Carex laevissima Nakai 1914 (Cyperaceae) is vital for ecological conservation and land virescence, and has high ornamental value. Here the chloroplast genome of Carex laevissima was assembled and systematically analyzed for further genetic research of Carex plants. The chloroplast sequence of Carex laevissima was 188,029 bp in length, including two inverted repeat (IR) regions of 36,699 bp each, a large single-copy (LSC) region of 106,171 bp and a small single-copy region (SSC) of 8460 bp. The overall GC content is 34.0%. It contains 133 genes, including 89 protein-coding, 36 tRNA, and eight rRNA genes. Phylogenetic analysis showed that Carex laevissima is most closely related to Carex neurocarpa.
Collapse
Affiliation(s)
- Wei Ren
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Ya-ru Wang
- School of Life Science, Jilin Normal University, Siping, China
| | - Han-dong Zhao
- Changchun Agricultural Expo Garden, Changchun, China
| | - Ying-zhe Wang
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhi-feng Wang
- Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
22
|
Light Intensity- and Spectrum-Dependent Redox Regulation of Plant Metabolism. Antioxidants (Basel) 2022; 11:antiox11071311. [PMID: 35883801 PMCID: PMC9312225 DOI: 10.3390/antiox11071311] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Both light intensity and spectrum (280–800 nm) affect photosynthesis and, consequently, the formation of reactive oxygen species (ROS) during photosynthetic electron transport. ROS, together with antioxidants, determine the redox environment in tissues and cells, which in turn has a major role in the adjustment of metabolism to changes in environmental conditions. This process is very important since there are great spatial (latitude, altitude) and temporal (daily, seasonal) changes in light conditions which are accompanied by fluctuations in temperature, water supply, and biotic stresses. The blue and red spectral regimens are decisive in the regulation of metabolism because of the absorption maximums of chlorophylls and the sensitivity of photoreceptors. Based on recent publications, photoreceptor-controlled transcription factors such as ELONGATED HYPOCOTYL5 (HY5) and changes in the cellular redox environment may have a major role in the coordinated fine-tuning of metabolic processes during changes in light conditions. This review gives an overview of the current knowledge of the light-associated redox control of basic metabolic pathways (carbon, nitrogen, amino acid, sulphur, lipid, and nucleic acid metabolism), secondary metabolism (terpenoids, flavonoids, and alkaloids), and related molecular mechanisms. Light condition-related reprogramming of metabolism is the basis for proper growth and development of plants; therefore, its better understanding can contribute to more efficient crop production in the future.
Collapse
|
23
|
Xiong HB, Pan HM, Long QY, Wang ZY, Qu WT, Mei T, Zhang N, Xu XF, Yang ZN, Yu QB. AtNusG, a chloroplast nucleoid protein of bacterial origin linking chloroplast transcriptional and translational machineries, is required for proper chloroplast gene expression in Arabidopsis thaliana. Nucleic Acids Res 2022; 50:6715-6734. [PMID: 35736138 PMCID: PMC9262611 DOI: 10.1093/nar/gkac501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
In Escherichia coli, transcription-translation coupling is mediated by NusG. Although chloroplasts are descendants of endosymbiotic prokaryotes, the mechanism underlying this coupling in chloroplasts remains unclear. Here, we report transcription-translation coupling through AtNusG in chloroplasts. AtNusG is localized in chloroplast nucleoids and is closely associated with the chloroplast PEP complex by interacting with its essential component PAP9. It also comigrates with chloroplast ribosomes and interacts with their two components PRPS5 (uS5c) and PRPS10 (uS10c). These data suggest that the transcription and translation machineries are coupled in chloroplasts. In the atnusg mutant, the accumulation of chloroplast-encoded photosynthetic gene transcripts, such as psbA, psbB, psbC and psbD, was not obviously changed, but that of their proteins was clearly decreased. Chloroplast polysomic analysis indicated that the decrease in these proteins was due to the reduced efficiency of their translation in this mutant, leading to reduced photosynthetic efficiency and enhanced sensitivity to cold stress. These data indicate that AtNusG-mediated coupling between transcription and translation in chloroplasts ensures the rapid establishment of photosynthetic capacity for plant growth and the response to environmental changes. Therefore, our study reveals a conserved mechanism of transcription-translation coupling between chloroplasts and E. coli, which perhaps represents a regulatory mechanism of chloroplast gene expression. This study provides insights into the underlying mechanisms of chloroplast gene expression in higher plants.
Collapse
Affiliation(s)
| | | | | | - Zi-Yuan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wan-Tong Qu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tong Mei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nan Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiao-Feng Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Correspondence may also be addressed to Zhong-Nan Yang. Tel: +86 21 64324650;
| | - Qing-Bo Yu
- To whom correspondence should be addressed. Tel: +86 21 64324812;
| |
Collapse
|
24
|
Yavari N, Gazestani VH, Wu BS, MacPherson S, Kushalappa A, Lefsrud MG. Comparative proteomics analysis of Arabidopsis thaliana response to light-emitting diode of narrow wavelength 450 nm, 595 nm, and 650 nm. J Proteomics 2022; 265:104635. [PMID: 35659537 DOI: 10.1016/j.jprot.2022.104635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
Abstract
Incident light is a central modulator of plant growth and development. However, there are still open questions surrounding wavelength-specific plant proteomic responses. Here we applied tandem mass tag based quantitative proteomics technology to acquire an in-depth view of proteome changes in Arabidopsis thaliana response to narrow wavelength blue (B; 450 nm), amber (A; 595 nm), or red (R; 650 nm) light treatments. A total of 16,707 proteins were identified with 9120 proteins quantified across all three light treatments in three biological replicates. This enabled examination of changes in the abundance for proteins with low abundance and important regulatory roles including transcription factors and hormone signaling. Importantly, 18% (1631 proteins) of the A. thaliana proteome is differentially abundant in response to narrow wavelength lights, and changes in proteome correlate well with different morphologies exhibited by plants. To showcase the usefulness of this resource, data were placed in the context of more than thirty published datasets, providing orthogonal validation and further insights into light-specific biological pathways, including Systemic Acquired Resistance and Shade Avoidance Syndrome. This high-resolution resource for A. thaliana provides baseline data and a tool for defining molecular mechanisms that control fundamental aspects of plant response to changing light conditions, with implications in plant development and adaptation. SIGNIFICANCE: Understanding of molecular mechanisms involved in wavelength-specific response of plant is question of widespread interest both to basic researchers and to those interested in applying such knowledge to the engineering of novel proteins, as well as targeted lighting systems. Here we sought to generate a high-resolution labeling proteomic profile of plant leaves, based on exposure to specific narrow-wavelength lights. Although changes in plant physiology in response to light spectral composition is well documented, there is limited knowledge on the roles of specific light wavelengths and their impact. Most previous studies have utilized relatively broad wavebands in their experiments. These multi-wavelengths lights function in a complex signaling network, which provide major challenges in inference of wavelength-specific molecular processes that underly the plant response. Besides, most studies have compared the effect of blue and red wavelengths comparing with FL, as control. As FL light consists the mixed spectra composition of both red and blue as well as numerous other wavelengths, comparing undeniably results in inconsistent and overlapping responses that will hamper effects to elucidate the plant response to specific wavelengths [1, 2]. Monitoring plant proteome response to specific wavelengths and further compare the changes to one another, rather than comparing plants proteome to FL, is thus necessary to gain the clear insights to specific underlying biological pathways and their effect consequences in plant response. Here, we employed narrow wavelength LED lights in our design to eliminate the potential overlap in molecular responses by ensuring non-overlapping wavelengths in the light treatments. We further applied TMT-labeling technology to gain a high-resolution view on the associates of proteome changes. Our proteomics data provides an in-depth coverage suitable for system-wide analyses, providing deep insights on plant physiological processes particularly because of the tremendous increase in the amount of identified proteins which outreach the other biological data.
Collapse
Affiliation(s)
- Nafiseh Yavari
- Department of Bioresource Engineering, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, Quebec, Canada; Department of Electro-Chemistry Engineering, Dexcom, Inc., 6340 Sequence Dr., San Diego, CA, USA.
| | - Vahid H Gazestani
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 75 Ames Street, Cambridge, MA, USA
| | - Bo-Sen Wu
- Department of Bioresource Engineering, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, Quebec, Canada
| | - Sarah MacPherson
- Department of Bioresource Engineering, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, Quebec, Canada
| | - Ajjamada Kushalappa
- Department of Plant Science, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, Quebec, Canada
| | - Mark G Lefsrud
- Department of Bioresource Engineering, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, Quebec, Canada
| |
Collapse
|
25
|
Liang J, Zhang Q, Liu Y, Zhang J, Wang W, Zhang Z. Chlorosis seedling lethality 1 encoding a MAP3K protein is essential for chloroplast development in rice. BMC PLANT BIOLOGY 2022; 22:20. [PMID: 34991480 PMCID: PMC8734211 DOI: 10.1186/s12870-021-03404-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/17/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) cascades are conserved signaling modules in eukaryotic organisms and play essential roles in immunity and stress responses. However, the role of MAPKs in chloroplast development remains to be evidently established. RESULTS In this study, a rice chlorosis seedling lethality 1 (csl1) mutant with a Zhonghua11 (ZH11, japonica) background was isolated. Seedlings of the mutant were characterized by chlorotic leaves and death after the trefoil stage, and chloroplasts were observed to contain accumulated starch granules. Molecular cloning revealed that OsCSL1 encoded a MAPK kinase kinase22 (MKKK22) targeted to the endoplasmic reticulum (ER), and functional complementation of OsCSL1 was found to restore the normal phenotype in csl1 plants. The CRISPR/Cas9 technology was used for targeted disruption of OsCSL1, and the OsCSL1-Cas9 lines obtained therein exhibited yellow seedlings which phenocopied the csl1 mutant. CSL1/MKKK22 was observed to establish direct interaction with MKK4, and altered expression of MKK1 and MKK4 was detected in the csl1 mutant. Additionally, disruption of OsCSL1 led to reduced expression of chloroplast-associated genes, including chlorophyll biosynthetic genes, plastid-encoded RNA polymerases, nuclear-encoded RNA polymerase, and nuclear-encoded chloroplast genes. CONCLUSIONS The findings of this study revealed that OsCSL1 played roles in regulating the expression of multiple chloroplast synthesis-related genes, thereby affecting their functions, and leading to wide-ranging defects, including chlorotic seedlings and severely disrupted chloroplasts containing accumulated starch granules.
Collapse
Affiliation(s)
- Jiayan Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiuxin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yiran Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingjing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
26
|
Yang C, Yan W, Chang H, Sun C. Arabidopsis CIA2 and CIL have distinct and overlapping functions in regulating chloroplast and flower development. PLANT DIRECT 2022; 6:e380. [PMID: 35106435 PMCID: PMC8786619 DOI: 10.1002/pld3.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 12/26/2021] [Indexed: 05/05/2023]
Abstract
Arabidopsis CHLOROPLAST IMPORT APPARATUS 2 (CIA2) and its paralogous protein CIA2-LIKE (CIL) are nuclear transcription factors containing a C-terminal CCT motif. CIA2 promotes the expression of nuclear genes encoding chloroplast-localized translocons and ribosomal proteins, thereby increasing the efficiency of protein import and synthesis in chloroplasts. We have previously reported that CIA2 and CIL form a homodimer or heterodimer through their C-terminal sequences and interact with other nuclear proteins, such as CONSTANS (CO), via their N-terminal sequences, but the function of CIL had remained unclear. In this study, we verified through transgenic cia2 mutant plants expressing the CIL coding sequence that CIL is partially functionally redundant to CIA2 during vegetative growth. We also compared phenotypes and gene expression profiles of wildtype Col-0, cia2, cil, and cia2/cil mutants. Our results indicate that CIA2 and CIL coordinate chloroplast biogenesis and function mainly by upregulating the expression of the nuclear factor GOLDEN2-LIKE 1 (GLK1) and chloroplast transcription-, translation-, protein import-, and photosynthesis-related genes, with CIA2 playing a more crucial role. Furthermore, we compared flowering phenotypes in single, double, and triple mutant plants of co, cia2, and cil. We found that CIA2 and CIL participate in modulating long-day floral development. Notably, CIA2 increases flower number and height of the inflorescence main axis, whereas CIL promotes flowering.
Collapse
Affiliation(s)
- Chun‐Yen Yang
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Wen‐You Yan
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Hsin‐Yen Chang
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Chih‐Wen Sun
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
27
|
Kong M, Wu Y, Wang Z, Qu W, Lan Y, Chen X, Liu Y, Shahnaz P, Yang Z, Yu Q, Mi H. A Novel Chloroplast Protein RNA Processing 8 Is Required for the Expression of Chloroplast Genes and Chloroplast Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:700975. [PMID: 34956248 PMCID: PMC8695849 DOI: 10.3389/fpls.2021.700975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Chloroplast development involves the coordinated expression of both plastids- and nuclear-encoded genes in higher plants. However, the underlying mechanism still remains largely unknown. In this study, we isolated and characterized an Arabidopsis mutant with an albino lethality phenotype named RNA processing 8 (rp8). Genetic complementation analysis demonstrated that the gene AT4G37920 (RP8) was responsible for the mutated phenotype. The RP8 gene was strongly expressed in photosynthetic tissues at both transcription and translation protein levels. The RP8 protein is localized in the chloroplast and associated with the thylakoid. Disruption of the RP8 gene led to a defect in the accumulation of the rpoA mature transcript, which reduced the level of the RpoA protein, and affected the transcription of PEP-dependent genes. The abundance of the chloroplast rRNA, including 23S, 16S, 4.5S, and 5S rRNA, were reduced in the rp8 mutant, respectively, and the amounts of chloroplast ribosome proteins, such as, PRPS1(uS1c), PRPS5(uS5c), PRPL2 (uL2c), and PRPL4 (uL4c), were substantially decreased in the rp8 mutant, which indicated that knockout of RP8 seriously affected chloroplast translational machinery. Accordingly, the accumulation of photosynthetic proteins was seriously reduced. Taken together, these results indicate that the RP8 protein plays an important regulatory role in the rpoA transcript processing, which is required for the expression of chloroplast genes and chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- Mengmeng Kong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yaozong Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ziyuan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wantong Qu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yixin Lan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yanyun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Perveen Shahnaz
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhongnan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qingbo Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
28
|
Zhao Y, Xu W, Zhang Y, Sun S, Wang L, Zhong S, Zhao X, Liu B. PPR647 Protein Is Required for Chloroplast RNA Editing, Splicing and Chloroplast Development in Maize. Int J Mol Sci 2021; 22:ijms222011162. [PMID: 34681824 PMCID: PMC8537648 DOI: 10.3390/ijms222011162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Chloroplasts play an essential role in plant growth and development. Any factors affecting chloroplast development will lead to abnormal plant growth. Here, we characterized a new maize mutant, albino seedling mutant 81647 (as-81647), which exhibits an entirely albino phenotype in leaves and eventually died before the three-leaf stage. Transmission electron microscopy (TEM) demonstrated that the chloroplast thylakoid membrane was impaired and the granum lamellae significantly decreased in as-81647. Map-based cloning and transgenic analysis confirmed that PPR647 encodes a new chloroplast protein consisting of 11 pentratricopeptide repeat domains. Quantitative real-time PCR (qRT-PCR) assays and transcriptome analysis (RNA-seq) showed that the PPR647 mutation significantly disrupted the expression of PEP-dependent plastid genes. In addition, RNA splicing and RNA editing of multiple chloroplast genes showed severe defects in as-81647. These results indicated that PPR647 is crucial for RNA editing, RNA splicing of chloroplast genes, and plays an essential role in chloroplast development.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (W.X.); (Y.Z.); (S.S.); (L.W.); (S.Z.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China;
| | - Wei Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (W.X.); (Y.Z.); (S.S.); (L.W.); (S.Z.)
| | - Yongzhong Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (W.X.); (Y.Z.); (S.S.); (L.W.); (S.Z.)
| | - Shilei Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (W.X.); (Y.Z.); (S.S.); (L.W.); (S.Z.)
| | - Lijing Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (W.X.); (Y.Z.); (S.S.); (L.W.); (S.Z.)
| | - Shiyi Zhong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (W.X.); (Y.Z.); (S.S.); (L.W.); (S.Z.)
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China;
| | - Baoshen Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (W.X.); (Y.Z.); (S.S.); (L.W.); (S.Z.)
- Correspondence: ; Tel.: +86-0538-8242226
| |
Collapse
|
29
|
Liu X, Zhang X, Cao R, Jiao G, Hu S, Shao G, Sheng Z, Xie L, Tang S, Wei X, Hu P. CDE4 encodes a pentatricopeptide repeat protein involved in chloroplast RNA splicing and affects chloroplast development under low-temperature conditions in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1724-1739. [PMID: 34219386 DOI: 10.1111/jipb.13147] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/30/2021] [Indexed: 05/24/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins play important roles in the post-transcriptional modification of organellar RNAs in plants. However, the function of most PPR proteins remains unknown. Here, we characterized the rice (Oryza sativa L.) chlorophyll deficient 4 (cde4) mutant which exhibits an albino phenotype during early leaf development, with decreased chlorophyll contents and abnormal chloroplasts at low-temperature (20°C). Positional cloning revealed that CDE4 encodes a P-type PPR protein localized in chloroplasts. In the cde4 mutant, plastid-encoded polymerase (PEP)-dependent transcript levels were significantly reduced, but transcript levels of nuclear-encoded genes were increased compared to wild-type plants at 20°C. CDE4 directly binds to the transcripts of the chloroplast genes rpl2, ndhA, and ndhB. Intron splicing of these transcripts was defective in the cde4 mutant at 20°C, but was normal at 32°C. Moreover, CDE4 interacts with the guanylate kinase VIRESCENT 2 (V2); overexpression of V2 enhanced CDE4 protein stability, thereby rescuing the cde4 phenotype at 20°C. Our results suggest that CDE4 participates in plastid RNA splicing and plays an important role in rice chloroplast development under low-temperature conditions.
Collapse
Affiliation(s)
- Xinyong Liu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xichun Zhang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
30
|
Wang M, Li K, Li Y, Mi L, Hu Z, Guo S, Song CP, Duan Z. An Exon Skipping in CRS1 Is Associated with Perturbed Chloroplast Development in Maize. Int J Mol Sci 2021; 22:ijms221910668. [PMID: 34639010 PMCID: PMC8508894 DOI: 10.3390/ijms221910668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Chloroplasts of higher plants are semi-autonomous organelles that perform photosynthesis and produce hormones and metabolites. They play crucial roles in plant growth and development. Although many seedling-lethal nuclear genes or regulators required for chloroplast development have been characterized, the understanding of chloroplast development is still limited. Using a genetic screen, we isolated a mutant named ell1, with etiolated leaves and a seedling-lethal phenotype. Analysis by BN-PAGE and transmission electron microscopy revealed drastic morphological defects of chloroplasts in ell1 mutants. Genetic mapping of the mutant gene revealed a single mutation (G-to-A) at the 5′ splice site of intron 5 in CRS1, resulting in an exon skipping in CRS1, indicating that this mutation in CRS1 is responsible for the observed phenotype, which was further confirmed by genetic analysis. The incorrectly spliced CRS1 failed to mediate the splicing of atpF intron. Moreover, the quantitative analysis suggested that ZmCRS1 may participate in chloroplast transcription to regulate the development of chloroplast. Taken together, these findings improve our understanding of the ZmCRS1 protein and shed new light on the regulation of chloroplast development in maize.
Collapse
|
31
|
Andreeva AA, Kudryakova NV, Kuznetsov VV, Kusnetsov VV. Ontogenetic, Light, and Circadian Regulation of PAP Protein Genes during Seed Germination of Arabidopsis thaliana. DOKL BIOCHEM BIOPHYS 2021; 500:312-316. [PMID: 34697734 DOI: 10.1134/s1607672921050021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/23/2022]
Abstract
The expression profiles of the PAP genes, encoding proteins associated with plastid multisubunit RNA polymerase, were studied in dry seeds, during germination, and at the early stages of Arabidopsis thaliana seedling formation. A detailed analysis of the PAP transcript levels by RT-PCR showed that the transition of seeds from dormancy to active growth is accompanied by a drastic increase in the transcript accumulation of all studied genes on the first day of germination, both in the light and in the dark. Further changes in transcript levels differed among PAP genes and were apparently determined by their functional specificity. It was established for the first time that the expression of individual PAP genes is regulated by circadian rhythms, in addition to factors of ontogenetic and light nature.
Collapse
Affiliation(s)
- A A Andreeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - N V Kudryakova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| | - Vl V Kuznetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - V V Kusnetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
32
|
A Transcription Factor Regulates Gene Expression in Chloroplasts. Int J Mol Sci 2021; 22:ijms22136769. [PMID: 34202438 PMCID: PMC8268430 DOI: 10.3390/ijms22136769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
The chloroplast is a semi-autonomous organelle with its own genome. The expression of chloroplast genes depends on both chloroplasts and the nucleus. Although many nucleus-encoded proteins have been shown to localize in chloroplasts and are essential for chloroplast gene expression, it is not clear whether transcription factors can regulate gene expression in chloroplasts. Here we report that the transcription factor NAC102 localizes in both chloroplasts and nucleus in Arabidopsis. Specifically, NAC102 localizes in chloroplast nucleoids. Yeast two-hybrid assay and co-immunoprecipitation assay suggested that NAC102 interacts with chloroplast RNA polymerases. Furthermore, overexpression of NAC102 in chloroplasts leads to reduced chloroplast gene expression and chlorophyll content, indicating that NAC102 functions as a repressor in chloroplasts. Our study not only revealed that transcription factors are new regulators of chloroplast gene expression, but also discovered that transcription factors can function in chloroplasts in addition to the canonical organelle nucleus.
Collapse
|
33
|
Research Progress in the Molecular Functions of Plant mTERF Proteins. Cells 2021; 10:cells10020205. [PMID: 33494215 PMCID: PMC7909791 DOI: 10.3390/cells10020205] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Present-day chloroplast and mitochondrial genomes contain only a few dozen genes involved in ATP synthesis, photosynthesis, and gene expression. The proteins encoded by these genes are only a small fraction of the many hundreds of proteins that act in chloroplasts and mitochondria. Hence, the vast majority, including components of organellar gene expression (OGE) machineries, are encoded by nuclear genes, translated into the cytosol and imported to these organelles. Consequently, the expression of nuclear and organellar genomes has to be very precisely coordinated. Furthermore, OGE regulation is crucial to chloroplast and mitochondria biogenesis, and hence, to plant growth and development. Notwithstanding, the molecular mechanisms governing OGE are still poorly understood. Recent results have revealed the increasing importance of nuclear-encoded modular proteins capable of binding nucleic acids and regulating OGE. Mitochondrial transcription termination factor (mTERF) proteins are a good example of this category of OGE regulators. Plant mTERFs are located in chloroplasts and/or mitochondria, and have been characterized mainly from the isolation and analyses of Arabidopsis and maize mutants. These studies have revealed their fundamental roles in different plant development aspects and responses to abiotic stress. Fourteen mTERFs have been hitherto characterized in land plants, albeit to a different extent. These numbers are limited if we consider that 31 and 35 mTERFs have been, respectively, identified in maize and Arabidopsis. Notwithstanding, remarkable progress has been made in recent years to elucidate the molecular mechanisms by which mTERFs regulate OGE. Consequently, it has been experimentally demonstrated that plant mTERFs are required for the transcription termination of chloroplast genes (mTERF6 and mTERF8), transcriptional pausing and the stabilization of chloroplast transcripts (MDA1/mTERF5), intron splicing in chloroplasts (BSM/RUG2/mTERF4 and Zm-mTERF4) and mitochondria (mTERF15 and ZmSMK3) and very recently, also in the assembly of chloroplast ribosomes and translation (mTERF9). This review aims to provide a detailed update of current knowledge about the molecular functions of plant mTERF proteins. It principally focuses on new research that has made an outstanding contribution to unravel the molecular mechanisms by which plant mTERFs regulate the expression of chloroplast and mitochondrial genomes.
Collapse
|
34
|
Favier A, Gans P, Boeri Erba E, Signor L, Muthukumar SS, Pfannschmidt T, Blanvillain R, Cobessi D. The Plastid-Encoded RNA Polymerase-Associated Protein PAP9 Is a Superoxide Dismutase With Unusual Structural Features. FRONTIERS IN PLANT SCIENCE 2021; 12:668897. [PMID: 34276730 PMCID: PMC8278866 DOI: 10.3389/fpls.2021.668897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/28/2021] [Indexed: 05/09/2023]
Abstract
In Angiosperms, the plastid-encoded RNA polymerase (PEP) is a multimeric enzyme, essential for the proper expression of the plastid genome during chloroplast biogenesis. It is especially required for the light initiated expression of photosynthesis genes and the subsequent build-up of the photosynthetic apparatus. The PEP complex is composed of a prokaryotic-type core of four plastid-encoded subunits and 12 nuclear-encoded PEP-associated proteins (PAPs). Among them, there are two iron superoxide dismutases, FSD2/PAP9 and FSD3/PAP4. Superoxide dismutases usually are soluble enzymes not bound into larger protein complexes. To investigate this unusual feature, we characterized PAP9 using molecular genetics, fluorescence microscopy, mass spectrometry, X-ray diffraction, and solution-state NMR. Despite the presence of a predicted nuclear localization signal within the sequence of the predicted chloroplast transit peptide, PAP9 was mainly observed within plastids. Mass spectrometry experiments with the recombinant Arabidopsis PAP9 suggested that monomers and dimers of PAP9 could be associated to the PEP complex. In crystals, PAP9 occurred as a dimeric enzyme that displayed a similar fold to that of the FeSODs or manganese SOD (MnSODs). A zinc ion, instead of the expected iron, was found to be penta-coordinated with a trigonal-bipyramidal geometry in the catalytic center of the recombinant protein. The metal coordination involves a water molecule and highly conserved residues in FeSODs. Solution-state NMR and DOSY experiments revealed an unfolded C-terminal 34 amino-acid stretch in the stand-alone protein and few internal residues interacting with the rest of the protein. We hypothesize that this C-terminal extension had appeared during evolution as a distinct feature of the FSD2/PAP9 targeting it to the PEP complex. Close vicinity to the transcriptional apparatus may allow for the protection against the strongly oxidizing aerial environment during plant conquering of terrestrial habitats.
Collapse
Affiliation(s)
- Adrien Favier
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Pierre Gans
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | | | - Luca Signor
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | | | | | - Robert Blanvillain
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, Grenoble, France
- *Correspondence: Robert Blanvillain,
| | - David Cobessi
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- David Cobessi,
| |
Collapse
|
35
|
Alamdari K, Fisher KE, Sinson AB, Chory J, Woodson JD. Roles for the chloroplast-localized pentatricopeptide repeat protein 30 and the 'mitochondrial' transcription termination factor 9 in chloroplast quality control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:735-751. [PMID: 32779277 DOI: 10.1111/tpj.14963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/20/2020] [Indexed: 05/11/2023]
Abstract
Chloroplasts constantly experience photo-oxidative stress while performing photosynthesis. This is particularly true under abiotic stresses that lead to the accumulation of reactive oxygen species (ROS) which oxidize DNA, proteins and lipids. Reactive oxygen species can also act as signals to induce acclimation through chloroplast degradation, cell death and nuclear gene expression. To better understand the mechanisms behind ROS signaling from chloroplasts, we have used the Arabidopsis thaliana mutant plastid ferrochelatase two (fc2) that conditionally accumulates the ROS singlet oxygen (1 O2 ) leading to chloroplast degradation and eventually cell death. Here we have mapped mutations that suppress chloroplast degradation in the fc2 mutant and demonstrate that they affect two independent loci (PPR30 and mTERF9) encoding chloroplast proteins predicted to be involved in post-transcriptional gene expression. These mutants exhibited broadly reduced chloroplast gene expression, impaired chloroplast development and reduced chloroplast stress signaling. Levels of 1 O2 , however, could be uncoupled from chloroplast degradation, suggesting that PPR30 and mTERF9 are involved in ROS signaling pathways. In the wild-type background, ppr30 and mTERF9 mutants were also observed to be less susceptible to cell death induced by excess light stress. While broad inhibition of plastid transcription with rifampicin was also able to suppress cell death in fc2 mutants, specific reductions in plastid gene expression using other mutations was not always sufficient. Together these results suggest that plastid gene expression, or the expression of specific plastid genes by PPR30 and mTERF0, is a necessary prerequisite for chloroplasts to activate the 1 O2 signaling pathways to induce chloroplast quality control pathways and/or cell death.
Collapse
Affiliation(s)
- Kamran Alamdari
- The School of Plant Sciences, University of Arizona, 1140 E. South Campus Drive, 303 Forbes Building, Tucson, AZ, 85721, USA
| | - Karen E Fisher
- The School of Plant Sciences, University of Arizona, 1140 E. South Campus Drive, 303 Forbes Building, Tucson, AZ, 85721, USA
| | - Andrew B Sinson
- The Division of Biological Sciences, The University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Plant Biology Laboratory, The Salk Institute, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, The Salk Institute, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Jesse D Woodson
- The School of Plant Sciences, University of Arizona, 1140 E. South Campus Drive, 303 Forbes Building, Tucson, AZ, 85721, USA
| |
Collapse
|
36
|
Mohanta TK, Mishra AK, Khan A, Hashem A, Abd_Allah EF, Al-Harrasi A. Gene Loss and Evolution of the Plastome. Genes (Basel) 2020; 11:E1133. [PMID: 32992972 PMCID: PMC7650654 DOI: 10.3390/genes11101133] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Chloroplasts are unique organelles within the plant cells and are responsible for sustaining life forms on the earth due to their ability to conduct photosynthesis. Multiple functional genes within the chloroplast are responsible for a variety of metabolic processes that occur in the chloroplast. Considering its fundamental role in sustaining life on the earth, it is important to identify the level of diversity present in the chloroplast genome, what genes and genomic content have been lost, what genes have been transferred to the nuclear genome, duplication events, and the overall origin and evolution of the chloroplast genome. Our analysis of 2511 chloroplast genomes indicated that the genome size and number of coding DNA sequences (CDS) in the chloroplasts genome of algae are higher relative to other lineages. Approximately 10.31% of the examined species have lost the inverted repeats (IR) in the chloroplast genome that span across all the lineages. Genome-wide analyses revealed the loss of the Rbcl gene in parasitic and heterotrophic plants occurred approximately 56 Ma ago. PsaM, Psb30, ChlB, ChlL, ChlN, and Rpl21 were found to be characteristic signature genes of the chloroplast genome of algae, bryophytes, pteridophytes, and gymnosperms; however, none of these genes were found in the angiosperm or magnoliid lineage which appeared to have lost them approximately 203-156 Ma ago. A variety of chloroplast-encoded genes were lost across different species lineages throughout the evolutionary process. The Rpl20 gene, however, was found to be the most stable and intact gene in the chloroplast genome and was not lost in any of the analyzed species, suggesting that it is a signature gene of the plastome. Our evolutionary analysis indicated that chloroplast genomes evolved from multiple common ancestors ~1293 Ma ago and have undergone vivid recombination events across different taxonomic lineages.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Biotech and Omics Laboratory, Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman;
| | | | - Adil Khan
- Biotech and Omics Laboratory, Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman;
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Giza 12511, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | - Ahmed Al-Harrasi
- Natural Product Laboratory, Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
37
|
Shen L, Zhang Q, Wang Z, Wen H, Hu G, Ren D, Hu J, Zhu L, Gao Z, Zhang G, Guo L, Zeng D, Qian Q. OsCAF2 contains two CRM domains and is necessary for chloroplast development in rice. BMC PLANT BIOLOGY 2020; 20:381. [PMID: 32811438 PMCID: PMC7437035 DOI: 10.1186/s12870-020-02593-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/12/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Chloroplasts play an important role in plant growth and development. The chloroplast genome contains approximately twenty group II introns that are spliced due to proteins encoded by nuclear genes. CAF2 is one of these splicing factors that has been shown to splice group IIB introns in maize and Arabidopsis thaliana. However, the research of the OsCAF2 gene in rice is very little, and the effects of OsCAF2 genes on chloroplasts development are not well characterized. RESULTS In this study, oscaf2 mutants were obtained by editing the OsCAF2 gene in the Nipponbare variety of rice. Phenotypic analysis showed that mutations to OsCAF2 led to albino leaves at the seeding stage that eventually caused plant death, and oscaf2 mutant plants had fewer chloroplasts and damaged chloroplast structure. We speculated that OsCAF2 might participate in the splicing of group IIA and IIB introns, which differs from its orthologs in A. thaliana and maize. Through yeast two-hybrid experiments, we found that the C-terminal region of OsCAF2 interacted with OsCRS2 and formed an OsCAF2-OsCRS2 complex. In addition, the N-terminal region of OsCAF2 interacted with itself to form homodimers. CONCLUSION Taken together, this study improved our understanding of the OsCAF2 protein, and revealed additional information about the molecular mechanism of OsCAF2 in regulating of chloroplast development in rice.
Collapse
Affiliation(s)
- Lan Shen
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Zhongwei Wang
- Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Hongling Wen
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Guanglian Hu
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.
| |
Collapse
|
38
|
Liu X, Cao PH, Huang QQ, Yang YR, Tao DD. Disruption of a Rice Chloroplast-Targeted Gene OsHMBPP Causes a Seedling-Lethal Albino Phenotype. RICE (NEW YORK, N.Y.) 2020; 13:51. [PMID: 32712772 PMCID: PMC7382669 DOI: 10.1186/s12284-020-00408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/06/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Chloroplast development is coordinately regulated by plastid- and nuclear-encoding genes. Although many regulators have been reported to be involved in chloroplast development, new factors remain to be identified, given the complexity of this process. RESULTS In this study, we characterized a rice mutant lethal albinic seedling 1(las1)form of a 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (OsHMBPP) that was targeted to the chloroplasts. The LAS1 mutation caused the albino lethal phenotype in seedlings. Transmission electron microscopy indicated that las1 were defective in early chloroplast development. LAS1 is preferentially expressed in leaves, implying its role in controlling chloroplast development. The expression levels of many chloroplast-encoded genes were altered significantly in las1. The expression levels of nuclear-encoded gene involved in Chl biosynthesis were also decreased in las1. We further investigated plastidic RNA editing in las1 and found that the edit efficiency of four chloroplast genes were markly altered. Compared with WT, las1 exhibited defective in biogenesis of chloroplast ribosomes. CONCLUSIONS Our results show that LAS1/OsHMBPP plays an essential role in the early chloroplast development in rice.
Collapse
Affiliation(s)
- X Liu
- Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake, Regional Cooperative Innovation Center for Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, 223300, China.
| | - P H Cao
- Suzhou Academy of Agricultural Sciences, Suzhou, 215155, China
| | - Q Q Huang
- Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake, Regional Cooperative Innovation Center for Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, 223300, China
| | - Y R Yang
- Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake, Regional Cooperative Innovation Center for Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, 223300, China
| | - D D Tao
- Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake, Regional Cooperative Innovation Center for Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
39
|
Tadini L, Jeran N, Peracchio C, Masiero S, Colombo M, Pesaresi P. The plastid transcription machinery and its coordination with the expression of nuclear genome: Plastid-Encoded Polymerase, Nuclear-Encoded Polymerase and the Genomes Uncoupled 1-mediated retrograde communication. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190399. [PMID: 32362266 DOI: 10.1098/rstb.2019.0399] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Plastid genes in higher plants are transcribed by at least two different RNA polymerases, the plastid-encoded RNA polymerase (PEP), a bacteria-like core enzyme whose subunits are encoded by plastid genes (rpoA, rpoB, rpoC1 and rpoC2), and the nuclear-encoded plastid RNA polymerase (NEP), a monomeric bacteriophage-type RNA polymerase. Both PEP and NEP enzymes are active in non-green plastids and in chloroplasts at all developmental stages. Their transcriptional activity is affected by endogenous and exogenous factors and requires a strict coordination within the plastid and with the nuclear gene expression machinery. This review focuses on the different molecular mechanisms underlying chloroplast transcription regulation and its coordination with the photosynthesis-associated nuclear genes (PhANGs) expression. Particular attention is given to the link between NEP and PEP activity and the GUN1- (Genomes Uncoupled 1) mediated chloroplast-to-nucleus retrograde communication with respect to the Δrpo adaptive response, i.e. the increased accumulation of NEP-dependent transcripts upon depletion of PEP activity, and the editing-level changes observed in NEP-dependent transcripts, including rpoB and rpoC1, in gun1 cotyledons after norflurazon or lincomycin treatment. The role of cytosolic preproteins and HSP90 chaperone as components of the GUN1-retrograde signalling pathway, when chloroplast biogenesis is inhibited in Arabidopsis cotyledons, is also discussed. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Luca Tadini
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Nicolaj Jeran
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Carlotta Peracchio
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| |
Collapse
|
40
|
Tadini L, Peracchio C, Trotta A, Colombo M, Mancini I, Jeran N, Costa A, Faoro F, Marsoni M, Vannini C, Aro EM, Pesaresi P. GUN1 influences the accumulation of NEP-dependent transcripts and chloroplast protein import in Arabidopsis cotyledons upon perturbation of chloroplast protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1198-1220. [PMID: 31648387 DOI: 10.1111/tpj.14585] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 05/21/2023]
Abstract
Correct chloroplast development and function require co-ordinated expression of chloroplast and nuclear genes. This is achieved through chloroplast signals that modulate nuclear gene expression in accordance with the chloroplast's needs. Genetic evidence indicates that GUN1, a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal Small MutS-Related (SMR) domain, is involved in integrating multiple developmental and stress-related signals in both young seedlings and adult leaves. Recently, GUN1 was found to interact physically with factors involved in chloroplast protein homeostasis, and with enzymes of tetrapyrrole biosynthesis in adult leaves that function in various retrograde signalling pathways. Here we show that following perturbation of chloroplast protein homeostasis: (i) by growth in lincomycin-containing medium; or (ii) in mutants defective in either the FtsH protease complex (ftsh), plastid ribosome activity (prps21-1 and prpl11-1) or plastid protein import and folding (cphsc70-1), GUN1 influences NEP-dependent transcript accumulation during cotyledon greening and also intervenes in chloroplast protein import.
Collapse
Affiliation(s)
- Luca Tadini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Carlotta Peracchio
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Andrea Trotta
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy
| | - Ilaria Mancini
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Nicolaj Jeran
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Franco Faoro
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, 20133, Milano, Italy
| | - Milena Marsoni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Candida Vannini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| |
Collapse
|
41
|
Jiang D, Tang R, Shi Y, Ke X, Wang Y, Che Y, Luan S, Hou X. Arabidopsis Seedling Lethal 1 Interacting With Plastid-Encoded RNA Polymerase Complex Proteins Is Essential for Chloroplast Development. FRONTIERS IN PLANT SCIENCE 2020; 11:602782. [PMID: 33391315 PMCID: PMC7772139 DOI: 10.3389/fpls.2020.602782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/27/2020] [Indexed: 05/16/2023]
Abstract
Mitochondrial transcription termination factors (mTERFs) are highly conserved proteins in metazoans. Plants have many more mTERF proteins than animals. The functions and the underlying mechanisms of plants' mTERFs remain largely unknown. In plants, mTERF family proteins are present in both mitochondria and plastids and are involved in gene expression in these organelles through different mechanisms. In this study, we screened Arabidopsis mutants with pigment-defective phenotypes and isolated a T-DNA insertion mutant exhibiting seedling-lethal and albino phenotypes [seedling lethal 1 (sl1)]. The SL1 gene encodes an mTERF protein localized in the chloroplast stroma. The sl1 mutant showed severe defects in chloroplast development, photosystem assembly, and the accumulation of photosynthetic proteins. Furthermore, the transcript levels of some plastid-encoded proteins were significantly reduced in the mutant, suggesting that SL1/mTERF3 may function in the chloroplast gene expression. Indeed, SL1/mTERF3 interacted with PAP12/PTAC7, PAP5/PTAC12, and PAP7/PTAC14 in the subgroup of DNA/RNA metabolism in the plastid-encoded RNA polymerase (PEP) complex. Taken together, the characterization of the plant chloroplast mTERF protein, SL1/mTERF3, that associated with PEP complex proteins provided new insights into RNA transcription in the chloroplast.
Collapse
Affiliation(s)
- Deyuan Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Renjie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yafei Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangsheng Ke
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yetao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yufen Che
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Sheng Luan,
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- *Correspondence: Xin Hou,
| |
Collapse
|
42
|
Xiong HB, Wang J, Huang C, Rochaix JD, Lin FM, Zhang JX, Ye LS, Shi XH, Yu QB, Yang ZN. mTERF8, a Member of the Mitochondrial Transcription Termination Factor Family, Is Involved in the Transcription Termination of Chloroplast Gene psbJ. PLANT PHYSIOLOGY 2020; 182:408-423. [PMID: 31685645 PMCID: PMC6945865 DOI: 10.1104/pp.19.00906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/21/2019] [Indexed: 05/28/2023]
Abstract
Members of the mitochondrial transcription terminator factor (mTERF) family, originally identified in vertebrate mitochondria, are involved in the termination of organellular transcription. In plants, mTERF proteins are mainly localized in chloroplasts and mitochondria. In Arabidopsis (Arabidopsis thaliana), mTERF8/pTAC15 was identified in the plastid-encoded RNA polymerase (PEP) complex, the major RNA polymerase of chloroplasts. In this work, we demonstrate that mTERF8 is associated with the PEP complex. An mTERF8 knockout line displayed a wild-type-like phenotype under standard growth conditions, but showed impaired efficiency of photosystem II electron flow. Transcription of most chloroplast genes was not substantially affected in the mterf8 mutant; however, the level of the psbJ transcript from the psbEFLJ polycistron was increased. RNA blot analysis showed that a larger transcript accumulates in mterf8 than in the wild type. Thus, abnormal transcription and/or RNA processing occur for the psbEFLJ polycistron. Circular reverse transcription PCR and sequence analysis showed that the psbJ transcript terminates 95 nucleotides downstream of the translation stop codon in the wild type, whereas its termination is aberrant in mterf8 Both electrophoresis mobility shift assays and chloroplast chromatin immunoprecipitation analysis showed that mTERF8 specifically binds to the 3' terminal region of psbJ Transcription analysis using the in vitro T7 RNA polymerase system showed that mTERF8 terminates psbJ transcription. Together, these results suggest that mTERF8 is specifically involved in the transcription termination of the chloroplast gene psbJ.
Collapse
Affiliation(s)
- Hai-Bo Xiong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jing Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chao Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Fei-Min Lin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jia-Xing Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lin-Shan Ye
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiao-He Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qing-Bo Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
43
|
Zhu X, Ze M, Yin J, Chern M, Wang M, Zhang X, Deng R, Li Y, Liao H, Wang L, Tu B, Song L, He M, Li S, Wang WM, Chen X, Wang J, Li W. A phosphofructokinase B-type carbohydrate kinase family protein, PFKB1, is essential for chloroplast development at early seedling stage in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110295. [PMID: 31779907 DOI: 10.1016/j.plantsci.2019.110295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/03/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Among the phosphofructokinase B-type carbohydrate kinase (PCK) family proteins, only few proteins, like the FRUCTOKINASE-LIKE 1 and 2, have been functionally characterized in regulation of chloroplast development. Here, we report the involvement of a PCK protein PFKB1 in chloroplast development by identification of a new rice mutant, revertible early yellowing Kitaake 2 [rey(k2)]. The mutant rey(k2) shows yellow leaf phenotype, reduced photosynthetic pigments, and retarded chloroplast development during early stages of seedlings, but gradually recovered at later stages. The phenotype of rey(k2) is resulted from the disruption of the PFKB1 protein. The Pfkb1 gene is ubiquitously expressed, and its protein is mainly targeted to the chloroplast and, in some cells, to the nucleus. In addition, the PFKB1 protein possesses phosphofructokinase activity in vitro. The rey(k2) mutant affects RNA levels of chloroplast-associated genes. In particular, the nuclear-encoded RNA polymerase (NEP)-dependent genes are expressed at a sustained high level in rey(k2) even after turning green, indicating that PFKB1 is essential for suppressing the expression of NEP-dependent genes. Taken together, our study suggests that PFKB1 functions as a novel regulator indispensable for early chloroplast development, at least partly by regulating chloroplast-associated genes.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Mu Ze
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Mingrui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Xiang Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Rui Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Yongzhen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Haicheng Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China.
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China.
| |
Collapse
|
44
|
Wang X, Zhao L, Man Y, Li X, Wang L, Xiao J. PDM4, a Pentatricopeptide Repeat Protein, Affects Chloroplast Gene Expression and Chloroplast Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:1198. [PMID: 32849743 PMCID: PMC7432182 DOI: 10.3389/fpls.2020.01198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/23/2020] [Indexed: 05/10/2023]
Abstract
Extensive studies have been carried out on chloroplast gene expression and chloroplast development; however, the regulatory mechanism is still largely unknown. Here, we characterized Pigment-Defective Mutant4 (PDM4), a P-type PPR protein localized in chloroplast. The pdm4 mutant showed seedling-lethal and albino phenotype under heterotrophic growth conditions. Transmission electron microscopic analysis revealed that thylakoid structure was totally disrupted in pdm4 mutant and eventually led to the breakdown of chloroplasts. The levels of several chloroplast- and nuclear-encoded proteins are strongly reduced in pdm4 mutant. Besides, transcript profile analysis detected that, in pdm4 mutant, the expression of plastid-encoded RNA polymerase-dependent genes was markedly affected, and deviant chloroplast rRNA processing was also observed. In addition, we found that PDM4 functions in the splicing of group II introns and may also be involved in the assembly of the 50S ribosomal particle. Our results demonstrate that PDM4 plays an important role in chloroplast gene expression and chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- Xinwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Lirong Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianwei Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- *Correspondence: Jianwei Xiao,
| |
Collapse
|
45
|
Lee S, Joung YH, Kim JK, Do Choi Y, Jang G. An isoform of the plastid RNA polymerase-associated protein FSD3 negatively regulates chloroplast development. BMC PLANT BIOLOGY 2019; 19:524. [PMID: 31775615 PMCID: PMC6882211 DOI: 10.1186/s12870-019-2128-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Plastid-encoded RNA polymerase (PEP) plays an essential role in chloroplast development by governing the expression of genes involved in photosynthesis. At least 12 PEP-associated proteins (PAPs), including FSD3/PAP4, regulate PEP activity and chloroplast development by modulating formation of the PEP complex. RESULTS In this study, we identified FSD3S, a splicing variant of FSD3; the FSD3 and FSD3S transcripts encode proteins with identical N-termini, but different C-termini. Characterization of FSD3 and FSD3S proteins showed that the C-terminal region of FSD3S contains a transmembrane domain, which promotes FSD3S localization to the chloroplast membrane but not to nucleoids, in contrast to FSD3, which localizes to the chloroplast nucleoid. We also found that overexpression of FSD3S negatively affects photosynthetic activity and chloroplast development by reducing expression of genes involved in photosynthesis. In addition, FSD3S failed to complement the chloroplast developmental defects in the fsd3 mutant. CONCLUSION These results suggest FSD3 and FSD3S, with their distinct localization patterns, have different functions in chloroplast development, and FSD3S negatively regulates expression of PEP-dependent chloroplast genes, and development of chloroplasts.
Collapse
Affiliation(s)
- Sangyool Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Young Hee Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/Green BioScience and Technology, Seoul National University, Pyeongchang, 25354 Republic of Korea
| | - Yang Do Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- The National Academy of Sciences, Seoul, 06579 Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
46
|
He J, Jiang Z, Gao L, You C, Ma X, Wang X, Xu X, Mo B, Chen X, Liu L. Genome-Wide Transcript and Small RNA Profiling Reveals Transcriptomic Responses to Heat Stress. PLANT PHYSIOLOGY 2019; 181:609-629. [PMID: 31395615 PMCID: PMC6776850 DOI: 10.1104/pp.19.00403] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/27/2019] [Indexed: 05/17/2023]
Abstract
Because of climate change, crops will experience increasing heat stress. However, the ways in which heat stress affects crop growth and yield at the molecular level remain poorly understood. We generated spatiotemporal mRNA and small RNA transcriptome data, spanning seven tissues at three time points, to investigate the effects of heat stress on vegetative and reproductive development in maize (Zea mays). Among the small RNAs significantly induced by heat stress was a plastid-derived 19-nucleotide small RNA, which is possibly the residual footprint of a pentatricopeptide repeat protein. This suggests that heat stress induces the turnover of certain plastid transcripts. Consistently, genes responsible for photosynthesis in chloroplasts were repressed after heat stress. Analysis also revealed that the abundance of 24-nucletide small interfering RNAs from transposable elements was conspicuously reduced by heat stress in tassels and roots; nearby genes showed a similar expression trend. Finally, specific microRNA and passenger microRNA species were identified, which in other plant species have not before been reported as responsive to heat stress. This study generated an atlas of genome-wide transcriptomic responses to heat stress, revealing several key regulators as potential targets for thermotolerance improvement in maize.
Collapse
Affiliation(s)
- Juan He
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zengming Jiang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chenjiang You
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Xufeng Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaofeng Xu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
47
|
Andreeva AA, Bychkov IA, Danilova MN, Kudryakova NV, Kusnetsov VV. Cytokinins and Abscisic Acid Regulate the Expression of the Genes for Plastid Transcription Apparatus during Heat Shock. DOKL BIOCHEM BIOPHYS 2019; 486:163-167. [PMID: 31367812 DOI: 10.1134/s1607672919030013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 11/23/2022]
Abstract
The treatment of Arabidopsis thaliana plants with exogenous cytokinin (CK) followed by heat shock (HS) activated the expression of the genes for the plastid transcription machinery but adversely affected the plant viability. Abscisic acid (ABA), conversely, promoted maintaining the resistance to HS and had differentially affected different components of the plastid transcriptional complex. This hormone suppressed the accumulation of transcripts of PEP genes and the genes encoding PAP proteins, which are involved in DNA-RNA metabolism. However, it had no effect or activated the expression of NEP genes and PAP genes, which are involved in the redox regulation, as well as the genes encoding the stress-inducible trans-factor (SIG5) and the plastid transcription Ser/Thr protein kinase (cpCK2). Thus, for the adaptation of plants to elevated temperatures, both increase and decrease in the expression of the genes for the plastid transcriptional machinery with the involvement of various regulatory systems, including phytohormones, are equally significant.
Collapse
Affiliation(s)
- A A Andreeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia.,Moscow State University, 119991, Moscow, Russia
| | - I A Bychkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia
| | - M N Danilova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia
| | - N V Kudryakova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia.
| | - V V Kusnetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia.
| |
Collapse
|
48
|
Schwacke R, Ponce-Soto GY, Krause K, Bolger AM, Arsova B, Hallab A, Gruden K, Stitt M, Bolger ME, Usadel B. MapMan4: A Refined Protein Classification and Annotation Framework Applicable to Multi-Omics Data Analysis. MOLECULAR PLANT 2019; 12:879-892. [PMID: 30639314 DOI: 10.1016/j.molp.2019.01.003] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/14/2018] [Accepted: 01/01/2019] [Indexed: 05/18/2023]
Abstract
Genome sequences from over 200 plant species have already been published, with this number expected to increase rapidly due to advances in sequencing technologies. Once a new genome has been assembled and the genes identified, the functional annotation of their putative translational products, proteins, using ontologies is of key importance as it places the sequencing data in a biological context. Furthermore, to keep pace with rapid production of genome sequences, this functional annotation process must be fully automated. Here we present a redesigned and significantly enhanced MapMan4 framework, together with a revised version of the associated online Mercator annotation tool. Compared with the original MapMan, the new ontology has been expanded almost threefold and enforces stricter assignment rules. This framework was then incorporated into Mercator4, which has been upgraded to reflect current knowledge across the land plant group, providing protein annotations for all embryophytes with a comparably high quality. The annotation process has been optimized to allow a plant genome to be annotated in a matter of minutes. The output results continue to be compatible with the established MapMan desktop application.
Collapse
Affiliation(s)
- Rainer Schwacke
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Gabriel Y Ponce-Soto
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Kirsten Krause
- Department of Arctic and Marine Biology, The Arctic University of Norway, Biology Building, 9037 Tromsø, Norway
| | - Anthony M Bolger
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Worringer Weg, RWTH Aachen University, 52074 Aachen, Germany
| | - Borjana Arsova
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Asis Hallab
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Kristina Gruden
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, Department of Systems Regulation, 14476 Potsdam-Golm, Germany
| | - Marie E Bolger
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany.
| | - Björn Usadel
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany; Institute for Botany and Molecular Genetics, BioEconomy Science Center, Worringer Weg, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
49
|
Hein A, Brenner S, Knoop V. Multifarious Evolutionary Pathways of a Nuclear RNA Editing Factor: Disjunctions in Coevolution of DOT4 and Its Chloroplast Target rpoC1eU488SL. Genome Biol Evol 2019; 11:798-813. [PMID: 30753430 PMCID: PMC6424221 DOI: 10.1093/gbe/evz032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
Nuclear-encoded pentatricopeptide repeat (PPR) proteins are site-specific factors for C-to-U RNA editing in plant organelles coevolving with their targets. Losing an editing target by C-to-T conversion allows for eventual loss of its editing factor, as recently confirmed for editing factors CLB19, CRR28, and RARE1 targeting ancient chloroplast editing sites in flowering plants. Here, we report on alternative evolutionary pathways for DOT4 addressing rpoC1eU488SL, a chloroplast editing site in the RNA polymerase β' subunit mRNA. Upon loss of rpoC1eU488SL by C-to-T conversion, DOT4 got lost multiple times independently in angiosperm evolution with intermediate states of DOT4 orthologs in various stages of degeneration. Surprisingly, we now also observe degeneration and loss of DOT4 despite retention of a C in the editing position (in Carica, Coffea, Vicia, and Spirodela). We find that the cytidine remains unedited, proving that DOT4 was not replaced by another editing factor. Yet another pathway of DOT4 evolution is observed among the Poaceae. Although the rpoC1eU488SL edit has been lost through C-to-T conversion, DOT4 orthologs not only remain conserved but also have their array of PPRs extended by six additional repeats. Here, the loss of the ancient target has likely allowed DOT4 to adapt for a new function. We suggest rps3 antisense transcripts as previously demonstrated in barley (Hordeum vulgare) arising from promotor sequences newly emerging in the rpl16 intron of Poaceae as a new candidate target for the extended PPR stretch of DOT4. Altogether, DOT4 and its target show more flexible pathways for evolution than the previously explored editing factors CLB19, CRR28, and RARE1. Certain plant clades (e.g., Amaranthus, Vaccinium, Carica, the Poaceae, Fabales, and Caryophyllales) show pronounced dynamics in the evolution of editing sites and corresponding factors.
Collapse
Affiliation(s)
- Anke Hein
- IZMB – Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Germany
| | - Sarah Brenner
- IZMB – Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Germany
| | - Volker Knoop
- IZMB – Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Germany
| |
Collapse
|
50
|
Ji D, Manavski N, Meurer J, Zhang L, Chi W. Regulated chloroplast transcription termination. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:69-77. [PMID: 30414934 DOI: 10.1016/j.bbabio.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022]
Abstract
Transcription termination by the RNA polymerase (RNAP) is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of the RNAP from the DNA template. However, the functional importance of termination extends beyond the mere definition of the gene borders. Chloroplasts originate from cyanobacteria and possess their own gene expression system. Plastids have a unique hybrid transcription system consisting of two different types of RNAPs of dissimilar phylogenetic origin together with several additional nuclear encoded components. Although the basic components involved in chloroplast transcription have been identified, little attention has been paid to the chloroplast transcription termination. Recent identification and functional characterization of novel factors in regulating transcription termination in Arabidopsis chloroplasts via genetic and biochemical approaches have provided insights into the mechanisms and significance of transcription termination in chloroplast gene expression. This review provides an overview of the current knowledge of the transcription termination in chloroplasts.
Collapse
Affiliation(s)
- Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Nikolay Manavski
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moleculaire des Plantes, 12 rue du General Zimmer, 67084 Strasbourg, France
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|