1
|
Liu J, Zhou M, Li X, Li T, Jiang H, Zhao L, Chen S, Tian J, Han W. Phosphorus Addition Reduces Seedling Growth and Survival for the Arbuscular Mycorrhizal Tree Cinnamomum camphora (Lauraceae) and Ectomycorrhizal Tree Castanopsis sclerophylla (Fagaceae) in Fragmented Forests in Eastern China. PLANTS (BASEL, SWITZERLAND) 2023; 12:2946. [PMID: 37631158 PMCID: PMC10458558 DOI: 10.3390/plants12162946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Global changes in nutrient deposition rates and habitat fragmentation are likely to have profound effects on plant communities, particularly in the nutrient-limited systems of the tropics and subtropics. However, it remains unclear how increased phosphorus (P) supply affects seedling growth in P-deficient subtropical fragmented forests. To explore this, we applied P to 11 islands in a subtropical Chinese archipelago and examined the results in combination with a contemporary greenhouse experiment to test the influence of P addition on seedling growth and survival. We measured the growth (i.e., base area) and mortality rate of seedlings for one arbuscular mycorrhizal (AM) and one ectomycorrhizal (EcM) tree species separately and calculated their relative growth rate and mortality when compared with P addition and control treatment on each island. We also measured three functional traits and the biomass of seedlings in the greenhouse experiment. Results showed that P addition significantly increased the mortality of AM and EcM seedlings and reduced the growth rate of EcM seedlings. The relative growth rate of AM seedlings, but not EcM seedlings, significantly decreased as the island area decreased, suggesting that P addition could promote the relative growth rate of AM seedlings on larger islands. The greenhouse experiment showed that P addition could reduce the specific root length of AM and EcM seedlings and reduce the aboveground and total biomass of seedlings, indicating that P addition may affect the resource acquisition of seedlings, thereby affecting their survival and growth. Our study reveals the synergistic influence of habitat fragmentation and P deposition, which may affect the regeneration of forest communities and biodiversity maintenance in fragmented habitats.
Collapse
Affiliation(s)
- Jinliang Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Mengsi Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
| | - Xue Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
| | - Tianxiang Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
| | - Haoyue Jiang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
| | - Luping Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
| | - Shuman Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
| | - Jingying Tian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
| | - Wenjuan Han
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
2
|
Wei X, Fu Y, Yu R, Wu L, Wu Z, Tian P, Li S, Yang X, Yang M. Comprehensive sequence and expression profile analysis of the phosphate transporter gene family in soybean. Sci Rep 2022; 12:20883. [PMID: 36463363 PMCID: PMC9719489 DOI: 10.1038/s41598-022-25378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
The family of phosphate transporters (PHTs) mediates the uptake and translocation of Pi inside the plants. However, little is known about transporters in soybean. Therefore, Searched the Genome Database for Soybean, 57 GmPHTs family members were identified in soybean, Phylogenetic analysis suggested that members of the PHTs gene family can be divided into six clades. Collinearity analysis revealed that most of the GmPHT genes shared syntenic relationships with PHTs members in Arabidopsis thaliana and that large segment duplication played a major driving force for GmPHTs evolution in addition to tandem duplication. Further analysis of the promoter revealed that light-responsive elements and abiotic stress-responsive elements were widely distributed within the promoter regions of GmPHT genes. Based on RNA-seq data, GmPHTs showed different expression patterns in roots and leaves of soybean treated with long-term low phosphorus and short-term low phosphorus, in addition, the expression levels of GmPHT genes can be regulated by drought stresses, it was implied that the induced expression of GmPHTs could promote phosphorus uptake and transport in soybean and thus adapt to low phosphorus and drought stress, which is the first step dissection of Pi transport system and probably refers to new roles of PHTs genes in soybean.
Collapse
Affiliation(s)
- Xiaoshuang Wei
- grid.464353.30000 0000 9888 756XCollege of Agronomy, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Yu Fu
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Renjie Yu
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Lei Wu
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Zhihai Wu
- grid.464353.30000 0000 9888 756XCollege of Agronomy, Jilin Agricultural University, Changchun, 130118 Jilin China ,grid.464353.30000 0000 9888 756XNational Crop Variety Approval and Characterization Station, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Ping Tian
- grid.464353.30000 0000 9888 756XCollege of Agronomy, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Siyuan Li
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Xue Yang
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Meiying Yang
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Changchun, 130118 Jilin China
| |
Collapse
|
3
|
Yu Z, Guoyi Z, Liu L, Manzoni S, Ciais P, Goll D, Peñuelas J, Sardans J, Wang W, Zhu J, Li L, Yan J, Liu J, Tang X. Natural forests promote phosphorus retention in soil. GLOBAL CHANGE BIOLOGY 2022; 28:1678-1689. [PMID: 34787937 DOI: 10.1111/gcb.15996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Soil phosphorus (P) availability often limits plant productivity. Classical theories suggest that total P content declines at the temporal scale of pedogenesis, and ecosystems develop toward the efficient use of scarce P during succession. However, the trajectory of ecosystem P within shorter time scales of succession remains unclear. We analyzed changes to P pools at the early (I), middle (II), and late (III) stages of growth of plantation forests (PFs) and the successional stages of natural forests (NFs) at 1969 sites in China. We found significantly lower P contents at later growth stages compared to earlier ones in the PF (p < .05), but higher contents at late successional stages than in earlier stages in the NF (p < .05). Our results indicate that increasing P demand of natural vegetation during succession, may raise, retain, and accumulate P from deeper soil layers. In contrast, ecosystem P in PF was depleted by the more rapidly increasing demand outpacing the development of a P-efficient system. We advocate for more studies to illuminate the mechanisms for determining the divergent changes, which would improve forest management and avoid the vast degradation of PF ecosystems suffering from the ongoing depletion of P.
Collapse
Affiliation(s)
- Zhen Yu
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, China
| | - Zhou Guoyi
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, China
- South China Institute of Botany, Chinese Academy of Sciences, Guangzhou, China
| | - Lei Liu
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, China
| | | | - Philippe Ciais
- Laboratoire des Sciences du Climat et l'Environnement, Gif-sur-Yvette, France
| | - Daniel Goll
- LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris Saclay, Gif-sur-Yvette, France
| | - Josep Peñuelas
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Catalonia, Spain
- CREAF, Catalonia, Spain
| | - Jordi Sardans
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Catalonia, Spain
- CREAF, Catalonia, Spain
| | - Wantong Wang
- College of Tourism, Henan Normal University, Xinxiang, China
| | - Jie Zhu
- South China Institute of Botany, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Li
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, China
| | - Junhua Yan
- South China Institute of Botany, Chinese Academy of Sciences, Guangzhou, China
| | - Juxiu Liu
- South China Institute of Botany, Chinese Academy of Sciences, Guangzhou, China
| | - Xuli Tang
- South China Institute of Botany, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Butler OM, Lewis T, Maunsell SC, Rezaei Rashti M, Elser JJ, Mackey B, Chen C. The stoichiometric signature of high‐frequency fire in forest floor food webs. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Orpheus M. Butler
- Australian Rivers Institute and Griffith School of Environment and Science Griffith University Nathan Queensland Australia
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales Australia
| | - Tom Lewis
- Department of Agriculture and Fisheries Agri‐Science Queensland University of the Sunshine Coast Maroochydore DC Queensland Australia
| | - Sarah C. Maunsell
- Department of Organismic and Evolutionary Biology Harvard University Boston Massachusetts USA
| | - Mehran Rezaei Rashti
- Australian Rivers Institute and Griffith School of Environment and Science Griffith University Nathan Queensland Australia
| | - James J. Elser
- Flathead Lake Biological Station University of Montana Polson Montana USA
| | - Brendan Mackey
- Griffith Climate Change Response Program Griffith University Gold Coast City Queensland Australia
| | - Chengrong Chen
- Australian Rivers Institute and Griffith School of Environment and Science Griffith University Nathan Queensland Australia
| |
Collapse
|
5
|
Binks RM, Steane DA, Byrne M. Genomic divergence in sympatry indicates strong reproductive barriers and cryptic species within Eucalyptus salubris. Ecol Evol 2021; 11:5096-5110. [PMID: 34025994 PMCID: PMC8131811 DOI: 10.1002/ece3.7403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
Genetic studies are increasingly detecting cryptic taxa that likely represent a significant component of global biodiversity. However, cryptic taxa are often criticized because they are typically detected serendipitously and may not receive the follow-up study required to verify their geographic or evolutionary limits. Here, we follow-up a study of Eucalyptus salubris that unexpectedly detected two divergent lineages but was not sampled sufficiently to make clear interpretations. We undertook comprehensive sampling for an independent genomic analysis (3,605 SNPs) to investigate whether the two purported lineages remain discrete genetic entities or if they intergrade throughout the species' range. We also assessed morphological and ecological traits, and sequenced chloroplast DNA. SNP results showed strong genome-wide divergence (F ST = 0.252) between two discrete lineages: one dominated the north and one the southern regions of the species' range. Within lineages, gene flow was high, with low differentiation (mean F ST = 0.056) spanning hundreds of kilometers. In the central region, the lineages were interspersed but maintained their genomic distinctiveness: an indirect demonstration of reproductive isolation. Populations of the southern lineage exhibited significantly lower specific leaf area and occurred on soils with lower phosphorus relative to the northern lineage. Finally, two major chloroplast haplotypes were associated with each lineage but were shared between lineages in the central distribution. Together, these results suggest that these lineages have non-contemporary origins and that ecotypic adaptive processes strengthened their divergence more recently. We conclude that these lineages warrant taxonomic recognition as separate species and provide fascinating insight into eucalypt speciation.
Collapse
Affiliation(s)
- Rachel M. Binks
- Biodiversity and Conservation ScienceDepartment of Biodiversity, Conservation and AttractionsBentley Delivery CentreBentleyWAAustralia
| | - Dorothy A. Steane
- School of Natural Sciences and ARC Training Centre for Forest ValueUniversity of TasmaniaHobartTasmaniaAustralia
- CSIRO Land and WaterSandy BayTasmaniaAustralia
| | - Margaret Byrne
- Biodiversity and Conservation ScienceDepartment of Biodiversity, Conservation and AttractionsBentley Delivery CentreBentleyWAAustralia
| |
Collapse
|
6
|
Qin F, Yu S. Compatible Mycorrhizal Types Contribute to a Better Design for Mixed Eucalyptus Plantations. FRONTIERS IN PLANT SCIENCE 2021; 12:616726. [PMID: 33643349 PMCID: PMC7907608 DOI: 10.3389/fpls.2021.616726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Mixed-species forest plantation is a sound option to facilitate ecological restoration, plant diversity and ecosystem functions. Compatible species combinations are conducive to reconstruct plant communities that can persist at a low cost without further management and even develop into natural forest communities. However, our understanding of how the compatibility of mycorrhizal types mediates species coexistence is still limited, especially in a novel agroforestry system. Here, we assessed the effects of mycorrhizal association type on the survival and growth of native woody species in mixed-species Eucalyptus plantations. To uncover how mycorrhizal type regulates plant-soil feedbacks, we first conducted a pot experiments by treating distinct mycorrhizal plants with soil microbes from their own or other mycorrhizal types. We then compared the growth response of arbuscular mycorrhizal plants and ectomycorrhizal plants to different soil microbial compositions associated with Eucalyptus plants. We found that the type of mycorrhizal association had a significant impact on the survival and growth of native tree species in the Eucalyptus plantations. The strength and direction of the plant-soil feedbacks of focal tree species depended on mycorrhizal type. Non-mycorrhizal plants had consistent negative feedbacks with the highest survival in the Eucalyptus plantations, whereas nitrogen-fixing plants had consistent positive feedbacks and the lowest survival. Arbuscular mycorrhizal and ectomycorrhizal plants performed varied feedback responses to soil microbes from distinct mycorrhizal plant species. Non-mycorrhizal plants grew better with Eucalyptus soil microbes while nitrogen-fixing plants grew worse with their own conspecific soil microbes. Different soil microbial compositions of Eucalyptus consistently increased the aboveground growth of arbuscular mycorrhizal plants, but the non-mycorrhizal microbial composition of the Eucalyptus soil resulted in greater belowground growth of ectomycorrhizal plants. Overall, Eucalyptus plants induced an unfavorable soil community, impeding coexistence with other mycorrhizal plants. Our study provides consistent observational and experimental evidence that mycorrhizal-mediated plant-microbial feedback on species coexistence among woody species. These findings are with important implications to optimize the species combinations for better design of mixed forest plantations.
Collapse
|
7
|
Nogueira dos Reis D, Guimarães Silva F, da Costa Santana R, Caetano de Oliveira T, Brito Freiberger M, Barbosa da Silva F, Monteiro Júnior E, Müller C. Growth, Physiology and Nutrient Use Efficiency in Eugenia dysenterica DC under Varying Rates of Nitrogen and Phosphorus. PLANTS 2020; 9:plants9060722. [PMID: 32521605 PMCID: PMC7355562 DOI: 10.3390/plants9060722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 11/16/2022]
Abstract
The production of high-quality seedlings and their use in commercial planting reduce pressure on natural areas. Eugenia dysenterica DC is a native fruit tree from the Brazilian Cerrado, whose nutritional requirements are still unclear. This study aimed to evaluate the effects of nitrogen (N) and phosphorus (P) supplementation on the physiology, growth and nutrient uptake, and use efficiencies of E. dysenterica seedlings grown in glasshouse conditions. The following rates were used in separate experiments: 0, 50, 100, 200, and 400 mg dm−3 N and 0, 100, 200, 400, and 600 mg dm−3 P. The experiment was conducted in a randomized block with four replications. The lowest N rate (50 mg dm−3) increased the stomatal conductance (gS) and, consequently, resulted in the highest transpiration (E), electron transport (ETR), and photosynthetic (A) rates. Also, rates of 50 mg dm−3 and 100 mg dm−3 N increased the Root Uptake Efficiency (RUE) and plant Nutrient Use Efficiency (NUE) for macronutrients and the RUE for micronutrients, stimulating plant growth. Phosphorous fertilization resulted in the maximum values for photosynthesis, electron transport rate, total dry mass, and NUE at the 200 mg dm−3 rate. The results of this study suggest that fertilization with 50 mg dm−3 N and 200 mg dm−3 P is suitable for the development of E. dysenterica seedlings.
Collapse
Affiliation(s)
- Daniele Nogueira dos Reis
- Plant Tissue Culture Laboratory, Goiano Federal Institute of Science and Technology—Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil; (D.N.d.R.); (R.d.C.S.); (T.C.d.O.); (M.B.F.)
| | - Fabiano Guimarães Silva
- Plant Tissue Culture Laboratory, Goiano Federal Institute of Science and Technology—Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil; (D.N.d.R.); (R.d.C.S.); (T.C.d.O.); (M.B.F.)
- Correspondence: ; Tel.: +55-64-3620-5617
| | - Reginaldo da Costa Santana
- Plant Tissue Culture Laboratory, Goiano Federal Institute of Science and Technology—Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil; (D.N.d.R.); (R.d.C.S.); (T.C.d.O.); (M.B.F.)
| | - Thales Caetano de Oliveira
- Plant Tissue Culture Laboratory, Goiano Federal Institute of Science and Technology—Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil; (D.N.d.R.); (R.d.C.S.); (T.C.d.O.); (M.B.F.)
| | - Mariângela Brito Freiberger
- Plant Tissue Culture Laboratory, Goiano Federal Institute of Science and Technology—Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil; (D.N.d.R.); (R.d.C.S.); (T.C.d.O.); (M.B.F.)
| | - Fábia Barbosa da Silva
- Plants Stress Study Laboratory, University of São Paulo, Luiz de QueirózAgriculture School, P.O. Box 9, 13418-900 Piracicaba, SP, Brazil;
| | - Elídio Monteiro Júnior
- Biodiversity Laboratory, Minas South Federal Institute of Science and Technology—Campus Poços de Caldas, 37713-100 Poços de Caldas, MG, Brazil;
| | - Caroline Müller
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology—Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil;
| |
Collapse
|
8
|
Hughes NM, Gigantino GM, Grace MH, Hoffman KM, Lila MA, Willans BN, Wommack AJ. Photosynthetic Profiles of Green, Purple, and Spotted-Leaf Morphotypes of Tipularia discolor (Orchidaceae). SOUTHEAST NAT 2019. [DOI: 10.1656/058.018.0415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Nicole M. Hughes
- Department of Biology, High Point University, High Point, NC 27262
| | | | - Mary H. Grace
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081
| | - Kevin M. Hoffman
- Department of Biology, High Point University, High Point, NC 27262
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081
| | | | - Andrew J. Wommack
- Department of Chemistry, High Point University, High Point, NC 27262
| |
Collapse
|
9
|
Tubert E, Vitali VA, Alvarez MS, Tubert FA, Baroli I, Amodeo G. Synthesis and evaluation of a superabsorbent-fertilizer composite for maximizing the nutrient and water use efficiency in forestry plantations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 210:239-254. [PMID: 29348059 DOI: 10.1016/j.jenvman.2017.12.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/11/2017] [Accepted: 12/24/2017] [Indexed: 05/21/2023]
Abstract
Reducing fertilizer use is a priority in the quest for sustainable forestry systems. In short rotation Eucalyptus plantations, NPK pellets are routinely added to the seedling's top soil layer at planting, potentially leading to increased seedling mortality, nutrient loss and environmental degradation. To address this triple challenge, the development of efficient fertilization practices is essential. In the present work, we synthesized a crosslinked acrylic-cellulosic superabsorbent composite (SAPH-BAL) containing small amounts of specific nutrients integrated in the polymer matrix. We analyzed the composite's chemical and rheological properties, and assessed the viability of Eucalyptus plantations supplied with it at planting. Physiological measurements confirmed the suitability of SAPH-BAL in greenhouse-grown potted seedlings subjected to different growth conditions, showing that it efficiently delivers nutrients while protecting seedlings from drought stress. Field experiments carried out at ten South American locations covering an ample range of environmental conditions confirmed the beneficial effect of SAPH-BAL on growth and survival in comparison to the conventional fertilization scheme (superabsorbent + 75 g NPK). Furthermore, it was found that plants treated with SAPH-BAL were less affected by the differences in rainfall regimes during the experiments compared to those fertilized conventionally. To the best of our knowledge this is the first report describing the successful use of superabsorbents for root targeted delivery of fertilizers in forestry operations.
Collapse
Affiliation(s)
- E Tubert
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, (C1428EGA), Buenos Aires, Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Argentina
| | - V A Vitali
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, (C1428EGA), Buenos Aires, Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Argentina
| | - M S Alvarez
- Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Centro de Investigaciones del Mar y la Atmósfera (CIMA), Instituto Franco Argentino sobre Estudios del Clima y sus Impactos (UMI IFAECI)/CNRS, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - F A Tubert
- Tetraquímica S.A., Hurlingham, Buenos Aires, Argentina
| | - I Baroli
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, (C1428EGA), Buenos Aires, Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Argentina
| | - G Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, (C1428EGA), Buenos Aires, Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Argentina.
| |
Collapse
|
10
|
Butler OM, Elser JJ, Lewis T, Mackey B, Chen C. The phosphorus‐rich signature of fire in the soil–plant system: a global meta‐analysis. Ecol Lett 2018; 21:335-344. [DOI: 10.1111/ele.12896] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/06/2017] [Accepted: 11/19/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Orpheus M. Butler
- Australian Rivers Institute and Griffith School of Environment Griffith University Nathan QLD Australia
| | - James J. Elser
- Flathead Lake Biological Station University of Montana Polson MT
| | - Tom Lewis
- Department of Agriculture and Fisheries University of the Sunshine Coast Sippy Downs QLD
| | - Brendan Mackey
- Griffith Climate Change Response Program Griffith University Gold Coast Qld Australia
| | - Chengrong Chen
- Australian Rivers Institute and Griffith School of Environment Griffith University Nathan QLD Australia
| |
Collapse
|
11
|
Holste EK, Kobe RK, Gehring CA. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi. MYCORRHIZA 2017; 27:211-223. [PMID: 27838856 DOI: 10.1007/s00572-016-0744-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 05/14/2023]
Abstract
Experiments with plant species that can host both arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) are important to separating the roles of fungal type and plant species and understanding the influence of the types of symbioses on plant growth and nutrient acquisition. We examined the effects of mycorrhizal fungal type on the growth and tissue nutrient content of two tree species (Eucalyptus grandis and Quercus costaricensis) grown under four nutrient treatments (combinations of low versus high nitrogen (N) and phosphorus (P) with different N:P ratios) in the greenhouse. Trees were inoculated with unidentified field mixtures of AMF or EMF species cultivated on root fragments of AMF- or EMF-specific bait plants. In E. grandis, inoculation with both AMF and EMF positively affected belowground plant dry weight and negatively affected aboveground dry weight, while only inoculation with AMF increased tissue nutrient content. Conversely, Q. costaricensis dry weight and nutrient content did not differ significantly among inoculation treatments, potentially due to its dependence on cotyledon reserves for growth. Mineral nutrition of both tree species differed with the ratio of N to P applied while growth did not. Our results demonstrate that both tree species' characteristics and the soil nutrient environment can affect how AMF and EMF interact with their host plants. This research highlights the importance of mycorrhizal fungal-tree-soil interactions during early seedling growth and suggests that differences between AMF and EMF associations may be crucial to understanding forest ecosystem functioning.
Collapse
Affiliation(s)
- Ellen K Holste
- Department of Forestry, Michigan State University, 480 Wilson Road, Natural Resource Building, Room 126, 48824, East Lansing, MI, USA.
| | - Richard K Kobe
- Department of Forestry, Michigan State University, 480 Wilson Road, Natural Resource Building, Room 126, 48824, East Lansing, MI, USA
| | - Catherine A Gehring
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 S. Beaver Street, 86011, Flagstaff, AZ, USA
| |
Collapse
|