1
|
Fichtl L, Hofmann M, Kahlen K, Voss-Fels KP, Cast CS, Ollat N, Vivin P, Loose S, Nsibi M, Schmid J, Strack T, Schultz HR, Smith J, Friedel M. Towards grapevine root architectural models to adapt viticulture to drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1162506. [PMID: 36998680 PMCID: PMC10043487 DOI: 10.3389/fpls.2023.1162506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 05/31/2023]
Abstract
To sustainably adapt viticultural production to drought, the planting of rootstock genotypes adapted to a changing climate is a promising means. Rootstocks contribute to the regulation of scion vigor and water consumption, modulate scion phenological development and determine resource availability by root system architecture development. There is, however, a lack of knowledge on spatio-temporal root system development of rootstock genotypes and its interactions with environment and management that prevents efficient knowledge transfer into practice. Hence, winegrowers take only limited advantage of the large variability of existing rootstock genotypes. Models of vineyard water balance combined with root architectural models, using both static and dynamic representations of the root system, seem promising tools to match rootstock genotypes to frequently occurring future drought stress scenarios and address scientific knowledge gaps. In this perspective, we discuss how current developments in vineyard water balance modeling may provide the background for a better understanding of the interplay of rootstock genotypes, environment and management. We argue that root architecture traits are key drivers of this interplay, but our knowledge on rootstock architectures in the field remains limited both qualitatively and quantitatively. We propose phenotyping methods to help close current knowledge gaps and discuss approaches to integrate phenotyping data into different models to advance our understanding of rootstock x environment x management interactions and predict rootstock genotype performance in a changing climate. This could also provide a valuable basis for optimizing breeding efforts to develop new grapevine rootstock cultivars with optimal trait configurations for future growing conditions.
Collapse
Affiliation(s)
- Lukas Fichtl
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| | - Marco Hofmann
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| | - Katrin Kahlen
- Department of Modeling and Systems Analysis, Hochschule Geisenheim University, Geisenheim, Germany
| | - Kai P. Voss-Fels
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Clément Saint Cast
- EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Nathalie Ollat
- EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Philippe Vivin
- EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Simone Loose
- Department of Wine and Beverage Business, Hochschule Geisenheim University, Geisenheim, Germany
| | - Mariem Nsibi
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Joachim Schmid
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Timo Strack
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Hans Reiner Schultz
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| | - Jason Smith
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Orange, NSW, Australia
| | - Matthias Friedel
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
2
|
Projections of Climate Change Impacts on Flowering-Veraison Water Deficits for Riesling and Müller-Thurgau in Germany. REMOTE SENSING 2022. [DOI: 10.3390/rs14061519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With global warming, grapevine is expected to be increasingly exposed to water deficits occurring at various development stages. In this study, we aimed to investigate the potential impacts of projected climate change on water deficits from the flowering to veraison period for two main white wine cultivars (Riesling and Müller-Thurgau) in Germany. A process-based soil-crop model adapted for grapevine was utilized to simulate the flowering-veraison crop water stress indicator (CWSI) of these two varieties between 1976–2005 (baseline) and 2041–2070 (future period) based on a suite of bias-adjusted regional climate model (RCM) simulations under RCP4.5 and RCP8.5. Our evaluation indicates that the model can capture the early-ripening (Müller-Thurgau) and late-ripening (Riesling) traits, with a mean bias of prediction of ≤2 days and a well-reproduced inter-annual variability for more than 60 years. Under climate projections, the flowering stage is advanced by 10–20 days (higher in RCP8.5) between the two varieties, whereas a slightly stronger advancement is found for Müller-Thurgau than for Riesling for the veraison stage. As a result, the flowering-veraison phenophase is mostly shortened for Müller-Thurgau, whereas it is extended by up to two weeks for Riesling in cool and high-elevation areas. The length of phenophase plays an important role in projected changes of flowering-veraison mean temperature and precipitation. The late-ripening trait of Riesling makes it more exposed to increased summer temperature (mainly in August), resulting in a higher mean temperature increase for Riesling (1.5–2.5 °C) than for Müller-Thurgau (1–2 °C). As a result, an overall increased CWSI by up to 15% (ensemble median) is obtained for both varieties, whereas the upper (95th) percentile of simulations shows a strong signal of increased water deficit by up to 30%, mostly in the current winegrowing regions. Intensified water deficit stress can represent a major threat for high-quality white wine production, as only mild water deficits are acceptable. Nevertheless, considerable variabilities of CWSI were discovered among RCMs, highlighting the importance of efforts towards reducing uncertainties in climate change impact assessment.
Collapse
|
3
|
Schultz H. Water in a warmer world – is atmospheric evaporative demand changing in viticultural areas? BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191201011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The predicted developments in climate are region-specific and adaptation can only be successful considering the regional characteristics with its diverse technical, environmental, economic and social implications. One of the key concerns for many regions is the availability of water through precipitation, the distribution of precipitation throughout the year, and possible changes in evaporative demand of the atmosphere and thus water use. From rising temperatures it is mostly assumed that water holding capacity of the atmosphere will increase in the future as a function of the Clausius-Clapeyron law, which predicts an increase in the saturation vapour pressure of the atmosphere of 6–7% per degree Celsius. As a consequence, a simultaneous increase in potential evapotranspiration (ETp, the amount of water that could potentially be evaporated from soils and transpired by plants due to changes in climatic factors such as temperature, vapour pressure deficit, radiation and wind speed) is assumed in many cases, which would alter soil and plant water relations. However, the same underlying principles also predict an increase in precipitation by 1–2% per degree warming. Additionally, model predictions for many regions forecast altered precipitation patterns and thus in combination with the possibility of increased ETp, farmers around the world fear an increase in the likelyhood of water deficit and a reduction in the availability of water for irrigation. Contrary to expectations, there have been reports on a reduction in evaporative demand worldwide despite increasing temperatures. In many cases this has been related to a decrease in solar radiation observed for many areas on earth including wine growing regions in Europe until the beginning of the 80th (global dimming) of the last century. However, since then, solar radiation has increased again, but ETp did not always follow and a worldwide decrease in wind speed and pan evaporation has been observed. In order to evaluate different grape growing regions with respect to observed changes on precipitation patterns and ETp, the data of seven wine-growing areas in five countries in the Northern and Southern hemisphere across a large climatic trans-sect were analyzed (Rheingau, Germany, Burgundy, Rhone Valley, France, Napa Valley, USA, Adelaide Hills, Tasmania, Australia, Marlborough, New Zealand) were analyzed. Precipitation patterns differed vastly between locations and showed very different trends over observation periods ranging from 23 to 60 years. The ETp has increased continuously in only two of the seven wine growing areas (Rheingau and Marlborough). In most other areas, ETp has been stable during winter and summer for at least 22 years (Rhone Valley, Napa Valley, Tasmania), sometimes much longer (45 years Adelaide Hills), and has been declining in Burgundy after a period of strong increase for the last 13 years. The potential underlying factors are discussed in relation to observed shifts in precipitation patterns.
Collapse
|
4
|
Brillante L, Mathieu O, Lévêque J, van Leeuwen C, Bois B. Water status and must composition in grapevine cv. Chardonnay with different soils and topography and a mini meta-analysis of the δ 13 C/water potentials correlation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:691-697. [PMID: 28671281 DOI: 10.1002/jsfa.8516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND The measurement of carbon isotopic discrimination in grape sugars at harvest (δ13 C) is an integrated assessment of water status during ripening. It is an efficient alternative to assess variability in the field and discriminate between management zones in precision viticulture, but further work is needed to completely understand the signal. RESULTS This work, spanning over 3 years, performed in a hillslope toposequence in Burgundy, delineates the relationships between main soil properties (gravel amount, slope, texture) and the grapevine water status assessed by δ13 C. The highest δ13 C, indicating most severe water deficit, was recorded in gravelly soils on steep slopes. The amount of sugars and malic and tartaric acids was also related to δ13 C. The relationship between δ13 C and predawn leaf water potentials (Ψpd ) was also investigated, because the absolute values of measured δ13 C were lower than the values currently found in the literature. CONCLUSIONS A mini-meta-analysis was performed, which showed that the slope of the relationships between minimum Ψpd and δ13 C was stable across studies (a change of 1‰ in δ13 C corresponded to a change of -0.2 MPa in the minimum Ψpd ), while the intercept of the comparison δ13 C/Ψpd changed, probably because of genetic variations between varieties, or environmental differences. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luca Brillante
- UMR CNRS/uB 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, Dijon, France
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Olivier Mathieu
- UMR CNRS/uB 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, Dijon, France
| | - Jean Lévêque
- UMR CNRS/uB 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, Dijon, France
| | - Cornelis van Leeuwen
- EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, 33882, Villenave d'Ornon, France
| | - Benjamin Bois
- UMR CNRS/uB 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, Dijon, France
- Institut Universitaire de la Vigne et du Vin 'Jules Guyot', Université de Bourgogne-Franche-Comté, Dijon, France
| |
Collapse
|
5
|
Brillante L, Mathieu O, Lévêque J, Bois B. Ecophysiological Modeling of Grapevine Water Stress in Burgundy Terroirs by a Machine-Learning Approach. FRONTIERS IN PLANT SCIENCE 2016; 7:796. [PMID: 27375651 PMCID: PMC4894889 DOI: 10.3389/fpls.2016.00796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/22/2016] [Indexed: 05/21/2023]
Abstract
In a climate change scenario, successful modeling of the relationships between plant-soil-meteorology is crucial for a sustainable agricultural production, especially for perennial crops. Grapevines (Vitis vinifera L. cv Chardonnay) located in eight experimental plots (Burgundy, France) along a hillslope were monitored weekly for 3 years for leaf water potentials, both at predawn (Ψpd) and at midday (Ψstem). The water stress experienced by grapevine was modeled as a function of meteorological data (minimum and maximum temperature, rainfall) and soil characteristics (soil texture, gravel content, slope) by a gradient boosting machine. Model performance was assessed by comparison with carbon isotope discrimination (δ(13)C) of grape sugars at harvest and by the use of a test-set. The developed models reached outstanding prediction performance (RMSE < 0.08 MPa for Ψstem and < 0.06 MPa for Ψpd), comparable to measurement accuracy. Model predictions at a daily time step improved correlation with δ(13)C data, respect to the observed trend at a weekly time scale. The role of each predictor in these models was described in order to understand how temperature, rainfall, soil texture, gravel content and slope affect the grapevine water status in the studied context. This work proposes a straight-forward strategy to simulate plant water stress in field condition, at a local scale; to investigate ecological relationships in the vineyard and adapt cultural practices to future conditions.
Collapse
Affiliation(s)
- Luca Brillante
- Viticulture Research Center, Council for Agricultural Research and EconomicsConegliano, Italy
- UMR CNRS/uB 6282 Biogéosciences, Université de BourgogneDijon, France
| | - Olivier Mathieu
- UMR CNRS/uB 6282 Biogéosciences, Université de BourgogneDijon, France
| | - Jean Lévêque
- UMR CNRS/uB 6282 Biogéosciences, Université de BourgogneDijon, France
| | - Benjamin Bois
- UMR CNRS/uB 6282 Biogéosciences, Université de BourgogneDijon, France
- Institut Universitaire de la Vigne et du Vin “Jules Guyot,” Université de BourgogneDijon, France
| |
Collapse
|
6
|
Hofmann M, Schultz HR. Modeling the water balance of sloped vineyards under various climate change scenarios. BIO WEB OF CONFERENCES 2015. [DOI: 10.1051/bioconf/20150501026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|