1
|
Cuervo-Gómez M, Melgarejo LM, Salgado-Negret B. Thermal acclimation of tree species in a tropical Andean city: Exploring the role of species origin and thermal niche. AMERICAN JOURNAL OF BOTANY 2025; 112:e16462. [PMID: 39871519 DOI: 10.1002/ajb2.16462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 01/29/2025]
Abstract
PREMISE The warmer and drier atmospheric conditions of urban environments challenge plant performance to different extents based on a species' ability to acclimate to the conditions. We evaluated the influence of species origin and thermal niche on the acclimation of leaf traits and shifts in the occupation of the functional trait space of 10 tree species growing in two environmentally contrasting sites in Bogotá, Colombia. METHODS We measured six leaf traits per species in both sites and used generalized linear models to evaluate the influence of origin and thermal niche on acclimation of leaf traits and t-tests to analyze shifts in the occupation of the functional trait space. RESULTS Species origin predicted thermal tolerance and morphological trait acclimation to warmer conditions. Although exotic species decreased thermal tolerance at the warmer site, species from both origins acclimated traits consistently. Shifts in the occupation of the functional trait space varied between origins; warmer conditions reduced the size of the functional trait space of exotics and increased the phenotypic similarity of natives. Thermal tolerance acclimation and changes in functional trait space varied across species. Finally, thermal niche metrics were uncoupled from species origin and failed to explain the acclimation capacity of the studied species. CONCLUSIONS Although species origin influenced acclimation to warmer conditions, the effect of origin was not related to species' thermal niches. Our results provide crucial information for decision-makers involved in designing urban and peri-urban green spaces that can withstand climate change.
Collapse
Affiliation(s)
- María Cuervo-Gómez
- Departamento de Biología, Universidad Nacional de Colombia, sede Bogotá, Colombia
| | - Luz Marina Melgarejo
- Departamento de Biología, Universidad Nacional de Colombia, sede Bogotá, Colombia
| | | |
Collapse
|
2
|
Song X, Liu Y, Yu D, Li S, Gao W, Zeng H, Cao D, Zhou S, Cui X. Environmental determinants of intraspecific variation in five functional traits of Pinus yunnanensis Franch. FRONTIERS IN PLANT SCIENCE 2024; 15:1501584. [PMID: 39722874 PMCID: PMC11668590 DOI: 10.3389/fpls.2024.1501584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024]
Abstract
Pinus yunnanensis Franch. is a native species in southwestern China, characterized by high polymorphism. However, the environmental drivers of intraspecific variation in its functional traits remain poorly understood. In this study, we examined the relationships between five functional traits (bark thickness, tree height, leaf dry matter content, leaf length, and specific leaf area) and habitat conditions across 20 populations, representing three varieties: var. yunnanensis (the original variety), var. pygmaea, and var. tenuifolia. Our experiments aimed to determine whether the functional traits varied among the three varieties under different environmental conditions. As specific leaf area and leaf dry matter content showed no significant correlations with any environmental factors, we focused our analysis on the remaining three traits. Using random forest models, we assessed the significance of each environmental factor and found the following: Temperature seasonality was a key determinant of tree height; soil particle size (clay and sand) had the strongest influence on bark thickness; and for leaf length, precipitation during the driest quarter was the most important factor. These findings offer insights into the variation in functional traits of P. yunnanensis and enhance our understanding of its adaptation to diverse environments.
Collapse
Affiliation(s)
- Xinrui Song
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Ying Liu
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Dongli Yu
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shuting Li
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Wuchao Gao
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Hong Zeng
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Dongyu Cao
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Shixing Zhou
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Xinglei Cui
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
3
|
Umaña MN, Salgado-Negret B, Norden N, Salinas V, Garzón F, Medina SP, Rodríguez-M GM, López-Camacho R, Castaño-Naranjo A, Cuadros H, Franke-Ante R, Avella A, Idárraga-Piedrahita Á, Jurado R, Nieto J, Pizano C, Torres AM, García H, González-M R. Upscaling the effect of traits in response to drought: The relative importance of safety-efficiency and acquisitive-conservation functional axes. Ecol Lett 2023; 26:2098-2109. [PMID: 37847674 DOI: 10.1111/ele.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/19/2023]
Abstract
We tested the idea that functional trade-offs that underlie species tolerance to drought-driven shifts in community composition via their effects on demographic processes and subsequently on shifts in species' abundance. Using data from 298 tree species from tropical dry forests during the extreme ENSO-2015, we scaled-up the effects of trait trade-offs from individuals to communities. Conservative wood and leaf traits favoured slow tree growth, increased tree survival and positively impacted species abundance and dominance at the community-level. Safe hydraulic traits, on the other hand, were related to demography but did not affect species abundance and communities. The persistent effects of the conservative-acquisitive trade-off across organizational levels is promising for generalization and predictability of tree communities. However, the safety-efficient trade-off showed more intricate effects on performance. Our results demonstrated the complex pathways in which traits scale up to communities, highlighting the importance of considering a wide range of traits and performance processes.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Natalia Norden
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Viviana Salinas
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Fabián Garzón
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Sandra P Medina
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Gina M Rodríguez-M
- Fundación Ecosistemas Secos de Colombia, Puerto Colombia, Atlántico, Colombia
| | - René López-Camacho
- Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
| | | | - Hermes Cuadros
- Programa de Biología, Universidad del Atlántico, Barranquilla, Colombia
| | - Rebeca Franke-Ante
- Dirección Territorial Caribe, Parques Nacionales Naturales de Colombia, Santa Marta, Colombia
| | - Andrés Avella
- Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
| | | | | | - Jhon Nieto
- Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá, Colombia
| | - Camila Pizano
- Department of Biology, Lake Forest College, Lake Forest, Illinois, USA
| | - Alba M Torres
- Dirección Territorial Caribe, Parques Nacionales Naturales de Colombia, Santa Marta, Colombia
| | - Hernando García
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Roy González-M
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| |
Collapse
|
4
|
Toro-Tobón G, Alvarez-Flórez F, Mariño-Blanco HD, Melgarejo LM. Foliar Functional Traits of Resource Island-Forming Nurse Tree Species from a Semi-Arid Ecosystem of La Guajira, Colombia. PLANTS 2022; 11:plants11131723. [PMID: 35807675 PMCID: PMC9269082 DOI: 10.3390/plants11131723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/05/2023]
Abstract
Semi-arid environments characterized by low rainfall are subject to soil desertification processes. These environments have heterogeneous landscapes with patches of vegetation known as resource islands that are generated by nurse species that delay the desertification process because they increase the availability of water and nutrients in the soil. The study aimed to characterize some foliar physiological, biochemical, and anatomical traits of three nurse tree species that form resource islands in the semi-arid environment of La Guajira, Colombia, i.e., Haematoxylum brasiletto, Pithecellobium dulce, and Pereskia guamacho. The results showed that H. brasiletto and P. dulce have sclerophyllous strategies, are thin (0.2 and 0.23 mm, respectively), and have a high leaf dry matter content (364.8 and 437.47 mg/g). Moreover, both species have a high photochemical performance, reaching Fv/Fm values of 0.84 and 0.82 and PIABS values of 5.84 and 4.42, respectively. These results agree with the OJIP curves and JIP parameters. Both species had a compact leaf with a similar dorsiventral mesophyll. On the other hand, P. guamacho has a typical succulent, equifacial leaf with a 97.78% relative water content and 0.81 mm thickness. This species had the lowest Fv/Fm (0.73) and PIABS (1.16) values and OJIP curve but had the highest energy dissipation value (DIo/RC).
Collapse
|
5
|
Chin ARO, Guzmán‐Delgado P, Sillett SC, Orozco J, Kramer RD, Kerhoulas LP, Moore ZJ, Reed M, Zwieniecki MA. Shoot dimorphism enables Sequoia sempervirens to separate requirements for foliar water uptake and photosynthesis. AMERICAN JOURNAL OF BOTANY 2022; 109:564-579. [PMID: 35274309 PMCID: PMC9322557 DOI: 10.1002/ajb2.1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 05/11/2023]
Abstract
PREMISE Trees in wet forests often have features that prevent water films from covering stomata and inhibiting gas exchange, while many trees in drier environments use foliar water uptake to reduce water stress. In forests with both wet and dry seasons, evergreen trees would benefit from producing leaves capable of balancing rainy-season photosynthesis with summertime water absorption. METHODS Using samples collected from across the vertical gradient in tall redwood (Sequoia sempervirens) crowns, we estimated tree-level foliar water uptake and employed physics-based causative modeling to identify key functional traits that determine uptake potential by setting hydraulic resistance. RESULTS We showed that Sequoia has two functionally distinct shoot morphotypes. While most shoots specialize in photosynthesis, the axial shoot type is capable of much greater foliar water uptake, and its within-crown distribution varies with latitude. A suite of leaf surface traits cause hydraulic resistance, leading to variation in uptake capacity among samples. CONCLUSIONS Shoot dimorphism gives tall Sequoia trees the capacity to absorb up to 48 kg H2 O h-1 during the first hour of leaf wetting, ameliorating water stress while presumably maintaining high photosynthetic capacity year round. Geographic variation in shoot dimorphism suggests that plasticity in shoot-type distribution and leaf surface traits helps Sequoia maintain a dominate presence in both wet and dry forests.
Collapse
Affiliation(s)
- Alana R. O. Chin
- Plant Sciences DepartmentUniversity of California DavisDavisCA95616USA
- Present address:
Alana R. O. Chin, D‐USYS, ETHZürich8092Switzerland
| | | | - Stephen C. Sillett
- Department of Forestry and Wildland ResourcesHumboldt State UniversityArcataCA95521USA
| | - Jessica Orozco
- Plant Sciences DepartmentUniversity of California DavisDavisCA95616USA
| | | | - Lucy P. Kerhoulas
- Department of Forestry and Wildland ResourcesHumboldt State UniversityArcataCA95521USA
| | - Zane J. Moore
- Plant Sciences DepartmentUniversity of California DavisDavisCA95616USA
| | - Marty Reed
- Department of Biological SciencesHumboldt State UniversityArcataCA95521USA
| | | |
Collapse
|
6
|
Palm functional trait responses to local environmental factors in the Colombian Amazon. JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s0266467421000493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractFunctional traits play a key role in driving plant community effects on ecosystem function. We examined nine functional traits in various palm (Arecaceae) species and their relationships with moisture, tree-fall gaps, slope, and forest type at 29 transects (500×5 m) in the northeastern region of the Colombian Amazon. Redundancy analysis of mean trait values of species within a plot weighted by their abundance and Pearson correlations were used to evaluate the relationships between traits and environmental factors. The community trait composition was correlated with local environmental factors, which explained 23% of the trait variance. We detected functional dominance of the tallest palms in soils with high moisture and in floodplain forests (p ≤0.05). Palms with relatively long leaves were dominant in the flooded forests. Acaulescent and small palms were dominant on high slopes, and in terra firme forests, long-petioled palms were dominant in forest gaps. The number of seeds per fruit was not correlated with any environmental variable. Thus, hydrology is one of the main drivers of the functional composition of neotropical palm communities at the local scale, segregating tall palms with competitive and evasive strategies from small understory palms, which are mainly stress tolerant.
Collapse
|
7
|
Response of plant traits of Stipa breviflora to grazing intensity and fluctuation in annual precipitation in a desert steppe, northern China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Variation in Stem Xylem Traits is Related to Differentiation of Upper Limits of Tree Species along an Elevational Gradient. FORESTS 2020. [DOI: 10.3390/f11030349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The distribution limits of many plants are dictated by environmental conditions and species’ functional traits. While many studies have evaluated how plant distribution is driven by environmental conditions, there are not many studies investigating xylem vessel properties with altitude, and whether these traits correlate with altitudinal distribution of tree. Here, we investigated the upper limits of distribution for ten deciduous broadleaf tree species from three temperate montane forest communities along a large elevational gradient on the north-facing slope of Changbai Mountain in Northeast China. We measured stem xylem traits associated with a species’ ability to transport water and resist freezing-induced cavitation that theoretically represent important adaptations to changes in climatic conditions along the elevational gradient. Hydraulically weighted vessel diameter (Dh) was negatively correlated with with the upper limit across the ten studied tree species; however, the correlation seems to be driven by the large differences between ring- and diffuse-porous tree species groups. The ring-porous tree species (e.g., Fraxinus mandshurica Rupr., Maackia amurensis Rupr. et Maxim., and Phellodendron amurense Rupr.) had considerably wider vessels than the diffuse-porous species and were all limited to low-elevation communities. The coefficient of variation (CV) for Dh was 0.53 among the 10 studied species, while the intraspecific analysis showed that the highest CV was only 0.22 among the 10 species. We found no evidence of a relationship between Dh and the upper limits across the seven diffuse-porous species. In contrast to elevation, hydraulic-related xylem traits had no clear patterns of change with precipitation, indicating that hydraulic functionality was largely decoupled from the influences of precipitation in the study area. This finding suggests that xylem traits are associated with altitudinal limits of species distribution, which is mostly evidenced by the contrasts between ring- and diffuse-porous species in xylem anatomy and their altitudinal distributions.
Collapse
|
9
|
Carvalho B, Bastias CC, Escudero A, Valladares F, Benavides R. Intraspecific perspective of phenotypic coordination of functional traits in Scots pine. PLoS One 2020; 15:e0228539. [PMID: 32053614 PMCID: PMC7018023 DOI: 10.1371/journal.pone.0228539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/17/2020] [Indexed: 11/18/2022] Open
Abstract
Functional traits have emerged as a key to understand species responses to environmental conditions. The concerted expression of multiple traits gives rise to the phenotype of each individual, which is the one interacting with the environment and evolving. However, patterns of trait covariation and how they vary in response to environmental conditions remain poorly understood, particularly at the intraspecific scale. Here, we have measured traits at different scales and in different organs, and analysed their covariation in a large number of conspecifics distributed in two contrasting environments. We expected significant correlations among traits, not only within clusters of traits as found in global, multispecies studies, but also among clusters, with more relationships within clusters, due to genetic constraints, and among clusters due to more coordinated phenotypes than community level, multispecies studies. We surveyed 100 Pinus sylvestris trees in a Mediterranean mountainous area distributed in two contrasting elevations. We measured 13 functional traits, in three clusters (leaf, stem and whole-plant traits), and analysed their variation and coordination. We found significant coordination among traits belonging to different clusters that reveals coordinated phenotypes. However, we found fewer correlations within trait clusters than initially expected. Trait correlation structures (number, intensity and type of correlations among traits) differed among individuals at different elevations. We observed more correlations within trait clusters at low elevation compared to those at high elevation. Moreover, the higher number of correlations among different trait clusters and the lower trait variation at the higher elevation suggests that variability decreases under more stressful conditions. Altogether, our results reveal that traits at intraspecific scale are coordinated in a broad network and not only within clusters of traits but also that this trait covariation is significantly affected by environmental conditions.
Collapse
Affiliation(s)
- Bárbara Carvalho
- Departamento Biogeografía y Cambio Global, LINCGlobal, Museo Nacional de Ciencias Naturales, (MNCN-CSIC), Madrid, Spain
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Cristina C. Bastias
- Departamento Biogeografía y Cambio Global, LINCGlobal, Museo Nacional de Ciencias Naturales, (MNCN-CSIC), Madrid, Spain
| | - Adrián Escudero
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Fernando Valladares
- Departamento Biogeografía y Cambio Global, LINCGlobal, Museo Nacional de Ciencias Naturales, (MNCN-CSIC), Madrid, Spain
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Raquel Benavides
- Departamento Biogeografía y Cambio Global, LINCGlobal, Museo Nacional de Ciencias Naturales, (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
10
|
Lv X, He Q, Zhou G. Contrasting responses of steppe Stipa ssp. to warming and precipitation variability. Ecol Evol 2019; 9:9061-9075. [PMID: 31463004 PMCID: PMC6706196 DOI: 10.1002/ece3.5452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/11/2022] Open
Abstract
Climate change, characterized by warming and precipitation variability, restricted the growth of plants in arid and semiarid areas, and various functional traits are impacted differently. Comparing responses of functional traits to warming and precipitation variability and determining critical water threshold of dominate steppe grasses from Inner Mongolia facilitates the identification and monitoring of water stress effects. A combination of warming (ambient temperature, +1.5°C and +2.0°C) and varying precipitation (-30%, -15%, ambient, +15%, and +30%) manipulation experiments were performed on four Stipa species (S. baicalensis, S. bungeana, S. grandis, and S. breviflora) from Inner Mongolia steppe. The results showed that the functional traits of the four grasses differed in their responses to precipitation, but they shared common sensitive traits (root/shoot ratio, R/S, and specific leaf area; SLA) under ambient temperature condition. Warming increased the response of the four grasses to changing precipitation, and these differences in functional traits resulted in changes to their total biomass, with leaf area, SLA, and R/S making the largest contributions. Critical water thresholds of the four grasses were identified, and warming led to their higher optimum precipitation requirements. The four steppe grasses were able to adapt better to mild drought (summer precipitation decreased by 12%-28%) when warming 1.5°C rather than 2.0°C. These results indicated that if the Paris Agreement to limit global warming to 1.5°C will be accomplished, this will increase the probability for sustained viability of the Stipa steppes in the next 50-100 years.
Collapse
Affiliation(s)
- Xiaomin Lv
- State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
| | - Qijin He
- College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Guangsheng Zhou
- State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
- Collaborative Innovation Center on Forecast Meteorological Disaster Warning and AssessmentNanjing University of Information Science & TechnologyNanjingChina
| |
Collapse
|
11
|
Pérez F, Hinojosa LF, Peralta G, Montenegro P, Irarrázabal C, Cossio M. Genetic Patterns of Myrceugenia correifolia, a Rare Species of Fog-Dependent Forests of Mediterranean Chile: Is It a Climatic Relict? FRONTIERS IN PLANT SCIENCE 2017; 8:1097. [PMID: 28729869 PMCID: PMC5498513 DOI: 10.3389/fpls.2017.01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
Rare species frequently occur in areas with microclimatic conditions that are atypical for their regions, but that were more common in the past, and that probably have operated as climatic refugia for a long time. Myrceugenia correifolia is a rare arboreal species that grows in deep canyons and hilltops of the Coast Range of north-central Chile between 30° and 35°S. In the northern edge of its distribution M. correifolia grows in small patches of fog-dependent forest surrounding by xeric vegetation. These forest formations are thought to be remnants of an ancient and continuous rainforest that according to some authors became fragmented during aridization of the Neogene (Neogene relict) and to others during warm-dry cycles of the Pleistocene (glacial relicts). Here we asked whether the northernmost populations of M. correifolia are Neogene relicts, glacial relicts, or the result of a recent northward colonization. To answer this question we examined genetic diversity and population divergence of M. correifolia using microsatellite markers, tested various competing population history scenarios with an approximate Bayesian computation (ABC) method, and complemented these data with ecological niche modeling (ENM). We detected three genetic clusters with a distinctive latitudinal pattern (north, center, and south) and high levels of differentiation (FST = 0.36). Demographic inference supported an admixture event 31 kya between two populations that diverged from an ancient population 139 kya. The admixture time coincides with the beginning of a period of wet conditions in north-central Chile that extended from 33 to 19 kya and was preceded by dry and cold conditions. These results suggest that increased precipitation during glacial periods triggered northward expansion of the range of M. correifolia, with subsequent admixture between populations that remained separated during interglacial periods. Accordingly, ENM models showed that suitable habitats for M. correifolia in north-central Chile were larger and less fragmented during the Last Glacial Maximum than at present, suggesting that northernmost populations of this species are glacial relicts.
Collapse
Affiliation(s)
- Fernanda Pérez
- Departamento de Ecología, Pontificia Universidad Católica de ChileSantiago, Chile
- Institute of Ecology and BiodiversitySantiago, Chile
| | - Luis F. Hinojosa
- Institute of Ecology and BiodiversitySantiago, Chile
- Departamento de Ciencias Ecológicas, Universidad de ChileSantiago, Chile
| | - Gioconda Peralta
- Departamento de Ecología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Paz Montenegro
- Departamento de Ciencias Ecológicas, Universidad de ChileSantiago, Chile
| | - Carla Irarrázabal
- Departamento de Ecología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Michel Cossio
- Departamento de Ecología, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
12
|
Lv X, Zhou G, Wang Y, Song X. Sensitive Indicators of Zonal Stipa Species to Changing Temperature and Precipitation in Inner Mongolia Grassland, China. FRONTIERS IN PLANT SCIENCE 2016; 7:73. [PMID: 26904048 PMCID: PMC4744897 DOI: 10.3389/fpls.2016.00073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/16/2016] [Indexed: 06/02/2023]
Abstract
Climate change often induces shifts in plant functional traits. However, knowledge related to sensitivity of different functional traits and sensitive indicator representing plant growth under hydrothermal change remains unclear. Inner Mongolia grassland is predicted to be one of the terrestrial ecosystems which are most vulnerable to climate change. In this study, we analyzed the response of four zonal Stipa species (S. baicalensis, S. grandis, S. breviflora, and S. bungeana) from Inner Mongolia grassland to changing temperature (control, increased 1.5, 2, 4, and 6°C), precipitation (decreased 30 and 15%, control, increased 15 and 30%) and their combined effects via climate control chambers. The relative change of functional traits in the unit of temperature and precipitation change was regarded as sensitivity coefficient and sensitive indicators were examined by pathway analysis. We found that sensitivity of the four Stipa species to changing temperature and precipitation could be ranked as follows: S. bungeana > S. grandis > S. breviflora > S. baicalensis. In particular, changes in leaf area, specific leaf area and root/shoot ratio could account for 86% of the changes in plant biomass in the four Stipa species. Also these three measurements were more sensitive to hydrothermal changes than the other functional traits. These three functional indicators reflected the combination of plant production capacity (leaf area), adaptive strategy (root/shoot ratio), instantaneous environmental effects (specific leaf area), and cumulative environmental effects (leaf area and root/shoot ratio). Thus, leaf area, specific leaf area and root/shoot ratio were chosen as sensitive indicators in response to changing temperature and precipitation for Stipa species. These results could provide the basis for predicting the influence of climate change on Inner Mongolia grassland based on the magnitude of changes in sensitive indicators.
Collapse
Affiliation(s)
- Xiaomin Lv
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Department of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Chinese Academy of Meteorological SciencesBeijing, China
| | - Yuhui Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Xiliang Song
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Department of Life Science, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|