1
|
Keng M, Merz KM. In Silico Characterization of Glycan Ions from IM-MS Collision Cross Section. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:504-513. [PMID: 39928852 PMCID: PMC11887428 DOI: 10.1021/jasms.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 02/12/2025]
Abstract
Ion mobility mass spectrometry (IM-MS) can assist in the identification of isobaric chemical analytes by exploiting the difference in their gas phase collision cross-section (CCS) property. In glycomics, reliable glycan characterization remains challenging, even with IM-MS, because of closely related isomeric species and the available binding arrangements of substituted monosaccharides, allowing for the formation of complex structures. Here, we present a computational procedure to obtain gas-phase structural information from the experimental IM-MS CCS data of carbohydrates. The workflow proceeds with high throughput charge modeling of glycan seed structures to determine the precise protonation or deprotonation site. The charge models were then screened by using density functional theory (DFT) to produce candidate charge states for conformation generation. An extensive conformational scoring of the glycan ions was performed quantum mechanically at the DFT D3-B3LYP/6-31G+(d,p) level for the negative mode, [M - H]-, and at the D3-B3LYP/6-31G(d,p) level for the positive mode, [M + H]+. For most of our test set, the computed CCS values from the final geometry optimized structures showed good agreement with experiment. We also demonstrated the capability of characterizing configurational and constitutional isomeric species. Altogether, we believe that the method we used in this work can be used to build a reliable theoretical reference database for glycans that can be used for experimental quality control and for assigning molecular structure to experimental IM-MS CCS information.
Collapse
Affiliation(s)
- Mithony Keng
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry
and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | | |
Collapse
|
2
|
Lambert T, Gramlich M, Stutzke L, Smith L, Deng D, Kaiser PD, Rothbauer U, Benesch JLP, Wagner C, Koenig M, Pompach P, Novak P, Zeck A, Rand KD. Development of a PNGase Rc Column for Online Deglycosylation of Complex Glycoproteins during HDX-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2556-2566. [PMID: 37756257 PMCID: PMC10623573 DOI: 10.1021/jasms.3c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Protein glycosylation is one of the most common PTMs and many cell surface receptors, extracellular proteins, and biopharmaceuticals are glycosylated. However, HDX-MS analysis of such important glycoproteins has so far been limited by difficulties in determining the HDX of the protein segments that contain glycans. We have developed a column containing immobilized PNGase Rc (from Rudaea cellulosilytica) that can readily be implemented into a conventional HDX-MS setup to allow improved analysis of glycoproteins. We show that HDX-MS with the PNGase Rc column enables efficient online removal of N-linked glycans and the determination of the HDX of glycosylated regions in several complex glycoproteins. Additionally, we use the PNGase Rc column to perform a comprehensive HDX-MS mapping of the binding epitope of a mAb to c-Met, a complex glycoprotein drug target. Importantly, the column retains high activity in the presence of common quench-buffer additives like TCEP and urea and performed consistent across 114 days of extensive use. Overall, our work shows that HDX-MS with the integrated PNGase Rc column can enable fast and efficient online deglycosylation at harsh quench conditions to provide comprehensive analysis of complex glycoproteins.
Collapse
Affiliation(s)
- Thomas Lambert
- Department
of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Marius Gramlich
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Luisa Stutzke
- Department
of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Luke Smith
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, England
| | - Dingyu Deng
- Department
of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Philipp D. Kaiser
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Ulrich Rothbauer
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- Pharmaceutical
Biotechnology, Eberhard Karls University, 72074 Tübingen, Germany
| | - Justin L. P. Benesch
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, England
| | - Cornelia Wagner
- Roche
Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Maximiliane Koenig
- Roche
Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Petr Pompach
- BioCev,
Institute of Biotechnology of the CAS, 252 50 Prumyslova, Czech Republic
| | - Petr Novak
- BioCeV,
Institute of Microbiology of the CAS, 142 20 Prumyslova, Czech Republic
| | - Anne Zeck
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Kasper D. Rand
- Department
of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
3
|
McDowell CT, Lu X, Mehta AS, Angel PM, Drake RR. Applications and continued evolution of glycan imaging mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:674-705. [PMID: 34392557 PMCID: PMC8946722 DOI: 10.1002/mas.21725] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is an important posttranslational modifier of proteins and lipid conjugates critical for the stability and function of these macromolecules. Particularly important are N-linked glycans attached to asparagine residues in proteins. N-glycans have well-defined roles in protein folding, cellular trafficking and signal transduction, and alterations to them are implicated in a variety of diseases. However, the non-template driven biosynthesis of these N-glycans leads to significant structural diversity, making it challenging to identify the most biologically and clinically relevant species using conventional analyses. Advances in mass spectrometry instrumentation and data acquisition, as well as in enzymatic and chemical sample preparation strategies, have positioned mass spectrometry approaches as powerful analytical tools for the characterization of glycosylation in health and disease. Imaging mass spectrometry expands upon these strategies by capturing the spatial component of a glycan's distribution in-situ, lending additional insight into the organization and function of these molecules. Herein we review the ongoing evolution of glycan imaging mass spectrometry beginning with widely adopted tissue imaging approaches and expanding to other matrices and sample types with potential research and clinical implications. Adaptations of these techniques, along with their applications to various states of disease, are discussed. Collectively, glycan imaging mass spectrometry analyses broaden our understanding of the biological and clinical relevance of N-glycosylation to human disease.
Collapse
Affiliation(s)
- Colin T. McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaowei Lu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
4
|
Mackay S, Hitefield NL, Oduor IO, Roberts AB, Burch TC, Lance RS, Cunningham TD, Troyer DA, Semmes OJ, Nyalwidhe JO. Site-Specific Intact N-Linked Glycopeptide Characterization of Prostate-Specific Membrane Antigen from Metastatic Prostate Cancer Cells. ACS OMEGA 2022; 7:29714-29727. [PMID: 36061737 PMCID: PMC9435049 DOI: 10.1021/acsomega.2c02265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The composition of N-linked glycans that are conjugated to the prostate-specific membrane antigen (PSMA) and their functional significance in prostate cancer progression have not been fully characterized. PSMA was isolated from two metastatic prostate cancer cell lines, LNCaP and MDAPCa2b, which have different tissue tropism and localization. Isolated PSMA was trypsin-digested, and intact glycopeptides were subjected to LC-HCD-EThcD-MS/MS analysis on a Tribrid Orbitrap Fusion Lumos mass spectrometer. Differential qualitative and quantitative analysis of site-specific N-glycopeptides was performed using Byonic and Byologic software. Comparative quantitative analysis demonstrates that multiple glycopeptides at asparagine residues 51, 76, 121, 195, 336, 459, 476, and 638 were in significantly different abundance in the two cell lines (p < 0.05). Biochemical analysis using endoglycosidase treatment and lectin capture confirm the MS and site occupancy data. The data demonstrate the effectiveness of the strategy for comprehensive analysis of PSMA glycopeptides. This approach will form the basis of ongoing experiments to identify site-specific glycan changes in PSMA isolated from disease-stratified clinical samples to uncover targets that may be associated with disease progression and metastatic phenotypes.
Collapse
Affiliation(s)
- Stephen Mackay
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
- University
of North Carolina, Chapel Hill, North Carolina 27516, United States
| | - Naomi L. Hitefield
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
- University
of Georgia, Athens, Georgia 30602, United
States
| | - Ian O. Oduor
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Autumn B. Roberts
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Tanya C. Burch
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Raymond S. Lance
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Spokane
Urology, Spokane, Washington 99202, United States
| | - Tina D. Cunningham
- School of
Health Professions, Eastern Virginia Medical
School, Norfolk, Virginia 23507, United States
| | - Dean A. Troyer
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Oliver J. Semmes
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Julius O. Nyalwidhe
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| |
Collapse
|
5
|
Bakshi T, Pham D, Kaur R, Sun B. Hidden Relationships between N-Glycosylation and Disulfide Bonds in Individual Proteins. Int J Mol Sci 2022; 23:ijms23073742. [PMID: 35409101 PMCID: PMC8998389 DOI: 10.3390/ijms23073742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
N-Glycosylation (NG) and disulfide bonds (DBs) are two prevalent co/post-translational modifications (PTMs) that are often conserved and coexist in membrane and secreted proteins involved in a large number of diseases. Both in the past and in recent times, the enzymes and chaperones regulating these PTMs have been constantly discovered to directly interact with each other or colocalize in the ER. However, beyond a few model proteins, how such cooperation affects N-glycan modification and disulfide bonding at selective sites in individual proteins is largely unknown. Here, we reviewed the literature to discover the current status in understanding the relationships between NG and DBs in individual proteins. Our results showed that more than 2700 human proteins carry both PTMs, and fewer than 2% of them have been investigated in the associations between NG and DBs. We summarized both these proteins with the reported relationships in the two PTMs and the tools used to discover the relationships. We hope that, by exposing this largely understudied field, more investigations can be encouraged to unveil the hidden relationships of NG and DBs in the majority of membranes and secreted proteins for pathophysiological understanding and biotherapeutic development.
Collapse
Affiliation(s)
- Tania Bakshi
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - David Pham
- Department of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Raminderjeet Kaur
- Faculty of Health Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Bingyun Sun
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence:
| |
Collapse
|
6
|
van Huizen NA, Ijzermans JNM, Burgers PC, Luider TM. Collagen analysis with mass spectrometry. MASS SPECTROMETRY REVIEWS 2020; 39:309-335. [PMID: 31498911 DOI: 10.1002/mas.21600] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Mass spectrometry-based techniques can be applied to investigate collagen with respect to identification, quantification, supramolecular organization, and various post-translational modifications. The continuous interest in collagen research has led to a shift from techniques to analyze the physical characteristics of collagen to methods to study collagen abundance and modifications. In this review, we illustrate the potential of mass spectrometry for in-depth analyses of collagen.
Collapse
Affiliation(s)
- Nick A van Huizen
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Surgery, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Jan N M Ijzermans
- Department of Surgery, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Peter C Burgers
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Ramirez-Rodriguez EA, Heazlewood JL. Enrichment of N-Linked Glycopeptides and Their Identification by Complementary Fragmentation Techniques. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2020; 2139:225-240. [PMID: 32462590 DOI: 10.1007/978-1-0716-0528-8_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
N-linked glycans are a ubiquitous posttranslational modification and are essential for correct protein folding in the endoplasmic reticulum of plants. However, this likely represents a narrow functional role for the diverse array of glycan structures currently associated with N-glycoproteins in plants. The identification of N-linked glycosylation sites and their structural characterization by mass spectrometry remains challenging due to their size, relative abundance, structural heterogeneity, and polarity. Current proteomic workflows are not optimized for the enrichment, identification and characterization of N-glycopeptides. Here we describe a detailed analytical procedure employing hydrophilic interaction chromatography enrichment, high-resolution tandem mass spectrometry employing complementary fragmentation techniques (higher-energy collisional dissociation and electron-transfer dissociation) and a data analytics workflow to produce an unbiased high confidence N-glycopeptide profile from plant samples.
Collapse
Affiliation(s)
| | - Joshua L Heazlewood
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
8
|
FTIR spectroscopy as an analytical tool to compare glycosylation in therapeutic monoclonal antibodies. Anal Chim Acta 2020; 1112:62-71. [PMID: 32334683 DOI: 10.1016/j.aca.2020.03.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/23/2022]
Abstract
Glycosylation is the most common protein post-translational modification (PTM), especially in biopharmaceuticals. It is a critical quality attribute as it impacts product solubility, stability, half-life, pharmacokinetics and pharmacodynamics (PK/PD), bioactivity and safety (e.g. immunogenicity). Yet, current glycan analysis methods involve multiple and lengthy sample preparation steps which can affect the robustness of the analyses. The development of orthogonal, direct and simple method is therefore desirable. In this study, we suggest use of FTIR spectroscopy to address this challenge. Use of this technique, combined with statistical tools, to compare samples or batches in terms of glycosylation or monosaccharide profile, has three potential applications: to compare glycosylation of a biosimilar and the original (innovator) molecule, for monitoring of batch-to-batch consistency, and for in-process control. Fourteen therapeutic monoclonal antibodies (mAbs), one Fc-fusion protein and several other common glycoproteins have been used to demonstrate that FTIR spectra of glycoproteins display spectral variations according to their glycan and monosaccharide compositions. We show that FTIR spectra of glycoproteins provide a global but accurate fingerprint of the glycosylation profile. This fingerprint is not only sensitive to large differences such as the presence or absence of several monosaccharides but also to smaller modifications of the glycan and monosaccharide content.
Collapse
|
9
|
Zhang W, Wu H, Zhang R, Fang X, Xu W. Structure and effective charge characterization of proteins by a mobility capillary electrophoresis based method. Chem Sci 2019; 10:7779-7787. [PMID: 31588326 PMCID: PMC6761862 DOI: 10.1039/c9sc02039j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Measuring the conformations and effective charges of proteins in solution is critical for investigating protein bioactivity, but their rapid analysis remains a challenging problem. Here we report a mobility capillary electrophoresis (MCE) based method for the rapid analysis of protein stereo-structures and effective charges in different solution environments. With the capability of mixture separation, MCE measures the hydrodynamic radius of a protein through Taylor dispersion analysis and its effective charge through ion mobility analysis. The experimental results acquired from MCE are then utilized to restrain molecular dynamics simulations, so that the most probable conformation of that protein can be obtained. As proof-of-concept demonstrations, the charge states and structures of five proteins were analyzed under close to native environments. The conformation transitions and charge state variations of bovine serum albumin and lysozyme under different pH conditions were also investigated. This method is promising for high-throughput protein analysis, which could potentially be coupled with mass spectrometry for investigating protein stereo-structures and functions in top-down proteomics.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhongguancun Street, Haidian Dist , Beijing , China .
| | - Haimei Wu
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhongguancun Street, Haidian Dist , Beijing , China .
| | - Rongkai Zhang
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhongguancun Street, Haidian Dist , Beijing , China .
| | - Xiang Fang
- National Institute of Metrology , No. 18, Bei San Huan Dong Lu, Chaoyang Dist , Beijing , China
| | - Wei Xu
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhongguancun Street, Haidian Dist , Beijing , China .
| |
Collapse
|
10
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
11
|
Yang H, Yang C, Sun T. Characterization of glycopeptides using a stepped higher-energy C-trap dissociation approach on a hybrid quadrupole orbitrap. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1353-1362. [PMID: 29873418 DOI: 10.1002/rcm.8191] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/23/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Accurate characterization of glycopeptides without a prior glycan cleavage could provide valuable information on site-specific glycosylation, which is critical to reveal the biological functions of protein glycosylation. However, due to the distinct nature of oligosaccharides and ploypeptides, it is usually difficult to effectively fragment glycopeptides in mass spectrometry analysis. METHODS Here we applied a stepped normalized collisional energy (NCE) approach, which is able to combine fragment ions from three different collision energies, in a hybrid quadrupole orbitrap (Q Exactive Plus) to characterize glycopeptides. A systematic evaluation was firstly performed to find optimal NCE values for the fragmentation of glycan chains and peptide backbones from glycopeptides. Guided by the results of the systematic evaluation, the stepped NCE method was optimized and employed to analyze glycopeptides enriched from human serum. RESULTS The stepped NCE approach was found to effectively fragment both the glycan chains and peptide backbones from glycopeptides and record these fragments in a single MS/MS spectrum. In comparison with the regular HCD methods, the stepped NCE method identified more glycopeptides with higher scores from human serum samples. CONCLUSIONS Our studies demonstrate the capability of stepped NCE for the effective characterization of glycopeptides on a large scale.
Collapse
Affiliation(s)
- Hong Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Chenxi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
12
|
Ruiz-May E, Sørensen I, Fei Z, Zhang S, Domozych DS, Rose JKC. The Secretome and N-Glycosylation Profiles of the Charophycean Green Alga, Penium margaritaceum, Resemble Those of Embryophytes. Proteomes 2018; 6:E14. [PMID: 29561781 PMCID: PMC6027541 DOI: 10.3390/proteomes6020014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022] Open
Abstract
The secretome can be defined as the population of proteins that are secreted into the extracellular environment. Many proteins that are secreted by eukaryotes are N-glycosylated. However, there are striking differences in the diversity and conservation of N-glycosylation patterns between taxa. For example, the secretome and N-glycosylation structures differ between land plants and chlorophyte green algae, but it is not clear when this divergence took place during plant evolution. A potentially valuable system to study this issue is provided by the charophycean green algae (CGA), which is the immediate ancestors of land plants. In this study, we used lectin affinity chromatography (LAC) coupled with mass spectrometry to characterize the secretome including secreted N-glycoproteins of Penium margaritaceum, which is a member of the CGA. The identified secreted proteins and N-glycans were compared to those known from the chlorophyte green alga Chlamydomonas reinhardtii and the model land plant, Arabidopsis thaliana, to establish their evolutionary context. Our approach allowed the identification of cell wall proteins and proteins modified with N-glycans that are identical to those of embryophytes, which suggests that the P. margaritaceum secretome is more closely related to those of land plants than to those of chlorophytes. The results of this study support the hypothesis that many of the proteins associated with plant cell wall modification as well as other extracellular processes evolved prior to the colonization of terrestrial habitats.
Collapse
Affiliation(s)
- Eliel Ruiz-May
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, CP 91070 Xalapa, Veracruz, Mexico.
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY 14853, USA.
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA.
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA.
| | - David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA.
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
13
|
Qu Y, Sun L, Zhang Z, Dovichi NJ. Site-Specific Glycan Heterogeneity Characterization by Hydrophilic Interaction Liquid Chromatography Solid-Phase Extraction, Reversed-Phase Liquid Chromatography Fractionation, and Capillary Zone Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry. Anal Chem 2018; 90:1223-1233. [PMID: 29231704 PMCID: PMC5771954 DOI: 10.1021/acs.analchem.7b03912] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reversed-phase chromatographic separation of glycopeptides tends to be dominated by the peptide composition. In contrast, capillary zone electrophoresis separation of glycopeptides is particularly sensitive to the sialic acid composition of the glycan. In this paper, we combine the two techniques to achieve superior N-glycopeptide analysis. Glycopeptides were first isolated from a tryptic digest using hydrophilic interaction liquid chromatography (HILIC) solid-phase extraction. The glycopeptides were separated using reversed-phase ultra high-performance liquid chromatography (UHPLC) to generate four fractions corresponding to different peptide backbones. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) was used to analyze the fractions. We applied this method for the analysis of alpha-1-acid glycoprotein (AGP). A total of 268 site-specific N-glycopeptides were detected, representing eight different glycosylation sites from two isomers of AGP. Glycans included tetra-sialic acids with multi N-acetyllactosamine (LacNAc) repeats and unusual pentasialylated terminal sialic acids. Reversed-phase UHPLC coupled with CZE generated ∼35% more N-glycopeptides than direct reversed-phase UHPLC-ESI-MS/MS analysis and ∼70% more N-glycopeptides than direct CZE-ESI-MS/MS analysis. This approach is a promising tool for global, site-specific glycosylation analysis of highly heterogeneous glycoproteins with mass-limited samples.
Collapse
Affiliation(s)
- Yanyan Qu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Zhenbin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Norman J. Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
14
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
15
|
Park H, Kim J, Lee YK, Kim W, You SK, Do J, Jang Y, Oh DB, Il Kim J, Kim HH. Four unreported types of glycans containing mannose-6-phosphate are heterogeneously attached at three sites (including newly found Asn 233) to recombinant human acid alpha-glucosidase that is the only approved treatment for Pompe disease. Biochem Biophys Res Commun 2017; 495:2418-2424. [PMID: 29274340 DOI: 10.1016/j.bbrc.2017.12.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 11/25/2022]
Abstract
Myozyme is a recombinant human acid alpha-glucosidase (rhGAA) that is currently the only drug approved for treating Pompe disease, and its low efficacy means that a high dose is required. Mannose-6-phosphate (M6P) glycosylation on rhGAA is a key factor influencing lysosomal enzyme targeting and the efficacy of enzyme replacement therapy (ERT); however, its complex structure and relatively small quantity still remain to be characterized. This study investigated M6P glycosylation on rhGAA using liquid chromatography (LC)-electrospray ionization (ESI)-high-energy collisional dissociation (HCD) tandem mass spectrometry (MS/MS). The glycans released from rhGAA were labeled with procainamide to improve mass ionization efficiency and the sensitivity of MS/MS. The relative quantities (%) of 78 glycans were obtained, and 1.0% of them were glycans containing M6P (M6P glycans). These were categorized according to their structure into 4 types: 3 newly found ones, comprising high-mannose-type M6P glycans capped with N-acetylglucosamine (GlcNAc) (2 variants, 17.5%), hybrid-type M6P glycans (2 variants, 11.2%), and hybrid-type M6P glycans capped with GlcNAc (3 variants, 6.9%), as well as high-mannose-type M6P glycans (3 variants, 64.4%). HCD-MS/MS spectra identified six distinctive M6P-derived oxonium ions. The glycopeptides obtained from protease-digested rhGAA were analyzed using nano-LC-ESI-HCD-MS/MS, and the extracted-ion chromatograms of M6P-derived oxonium ions confirmed three M6P glycosylation sites comprising Asn 140, Asn 233 (newly found), and Asn 470 attached heterogeneously to nine M6P glycans (two types), eight M6P glycans (four types), and seven M6P glycans (two types), respectively. This is the first study of rhGAA to differentiate M6P glycans and identify their attachment sites, despite rhGAA already being an approved drug for Pompe disease.
Collapse
Affiliation(s)
- Heajin Park
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06944, South Korea
| | - Jihye Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06944, South Korea
| | - Young Kwang Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06944, South Korea
| | - Wooseok Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06944, South Korea
| | - Seung Kwan You
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06944, South Korea
| | - Jonghye Do
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06944, South Korea
| | - Yeonjoo Jang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06944, South Korea
| | - Doo-Byung Oh
- Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jae Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06944, South Korea.
| |
Collapse
|
16
|
Zeng W, Ford KL, Bacic A, Heazlewood JL. N-linked Glycan Micro-heterogeneity in Glycoproteins of Arabidopsis. Mol Cell Proteomics 2017; 17:413-421. [PMID: 29237727 DOI: 10.1074/mcp.ra117.000165] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/21/2017] [Indexed: 01/01/2023] Open
Abstract
N-glycosylation is one of the most common protein post-translational modifications in eukaryotes and has a relatively conserved core structure between fungi, animals and plants. In plants, the biosynthesis of N-glycans has been extensively studied with all the major biosynthetic enzymes characterized. However, few studies have applied advanced mass spectrometry to profile intact plant N-glycopeptides. In this study, we use hydrophilic enrichment, high-resolution tandem mass spectrometry with complementary and triggered fragmentation to profile Arabidopsis N-glycopeptides from microsomal membranes of aerial tissues. A total of 492 N-glycosites were identified from 324 Arabidopsis proteins with extensive N-glycan structural heterogeneity revealed through 1110 N-glycopeptides. To demonstrate the precision of the approach, we also profiled N-glycopeptides from the mutant (xylt) of β-1,2-xylosyltransferase, an enzyme in the N-glycan biosynthetic pathway. This analysis represents the most comprehensive and unbiased collection of Arabidopsis N-glycopeptides revealing an unsurpassed level of detail on the micro-heterogeneity present in N-glycoproteins of Arabidopsis. Data are available via ProteomeXchange with identifier PXD006270.
Collapse
Affiliation(s)
- Wei Zeng
- From the ‡ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia.,§Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, China
| | - Kristina L Ford
- From the ‡ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Antony Bacic
- From the ‡ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Joshua L Heazlewood
- From the ‡ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia; .,¶Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94702
| |
Collapse
|
17
|
Snyder CM, Zhou X, Karty JA, Fonslow BR, Novotny MV, Jacobson SC. Capillary electrophoresis-mass spectrometry for direct structural identification of serum N-glycans. J Chromatogr A 2017; 1523:127-139. [PMID: 28989033 DOI: 10.1016/j.chroma.2017.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
Abstract
Through direct coupling of capillary electrophoresis (CE) to mass spectrometry (MS) with a sheathless interface, we have identified 77 potential N-glycan structures derived from human serum. We confirmed the presence of N-glycans previously identified by indirect methods, e.g., electrophoretic mobility standards, obtained 31 new N-glycan structures not identified in our prior work, differentiated co-migrating structures, and determined specific linkages on isomers featuring sialic acids. Serum N-glycans were cleaved from proteins, neutralized via methylamidation, and labeled with the fluorescent tag 8-aminopyrene-1,3,6-trisulfonic acid, which renders the glycan fluorescent and provides a -3 charge for electrophoresis and negative-mode MS detection. The neutralization reaction also stabilizes the labile sialic acids. In addition to methylamidation, native charges from sialic acids were neutralized through reaction with 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium to amidate α2,6-linked sialic acids in the presence of ammonium chloride and form lactones with α2,3-linked sialic acids. This neutralization effectively labels each type of sialic acid with a unique mass to determine specific linkages on sialylated N-glycans. For both neutralization schemes, we compared the results from microchip electrophoresis and CE.
Collapse
Affiliation(s)
- Christa M Snyder
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, United States
| | - Xiaomei Zhou
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, United States
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, United States
| | | | - Milos V Novotny
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, United States
| | - Stephen C Jacobson
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, United States.
| |
Collapse
|
18
|
Zadražnik T, Moen A, Egge-Jacobsen W, Meglič V, Šuštar-Vozlič J. Towards a better understanding of protein changes in common bean under drought: A case study of N-glycoproteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:400-412. [PMID: 28711789 DOI: 10.1016/j.plaphy.2017.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Drought is one of the major abiotic stress conditions limiting crop growth and productivity. Glycosylation of proteins is very important post-translational modification that is involved in many physiological functions and biological pathways. To understand the involvement of N-glycoproteins in the mechanism of drought response in leaves of common bean, a proteomic approach using lectin affinity chromatography, SDS-PAGE and LC-MS/MS was applied. Quantification of N-glycoproteins was performed using MaxQuant with a label free quantification approach. Thirty five glycoproteins were changed in abundance in leaves of common bean under drought. The majority of these proteins were classified into functional groups that include cell wall processes, defence/stress related proteins and proteins related to proteolysis. Beta-glucosidase showed the highest increase in abundance among proteins involved in cell wall metabolism, suggesting its role in cell wall modification under drought stress. These results fit with the general concept of the stress response in plants and suggest that drought stress might affect biochemical metabolism in the cell wall. The structures of N-glycans were determined manually from spectra, where structures of high mannose, complex and hybrid types of N-glycans were found. The present study provided an insight into the glycoproteins related to drought stress in common bean at the proteome level, which is important for further understanding of molecular mechanisms of drought response in this important legume.
Collapse
Affiliation(s)
- Tanja Zadražnik
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia.
| | - Anders Moen
- University of Oslo, Department of Molecular Biosciences, 0316 Oslo, Norway
| | | | - Vladimir Meglič
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
19
|
Mulagapati S, Koppolu V, Raju TS. Decoding of O-Linked Glycosylation by Mass Spectrometry. Biochemistry 2017; 56:1218-1226. [PMID: 28196325 DOI: 10.1021/acs.biochem.6b01244] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein glycosylation (N- and O-linked) plays an important role in many biological processes, including protein structure and function. However, the structural elucidation of glycans, specifically O-linked glycans, remains a major challenge and is often overlooked during protein analysis. Recently, mass spectrometry (MS) has matured as a powerful technology for high-quality analytical characterization of O-linked glycans. This review summarizes the recent developments and insights of MS-based glycomics technologies, with a focus on mucin-type O-glycan analysis. Three main MS-based approaches are outlined: O-glycan profiling (structural analysis of released O-glycan), a "bottom-up" approach (analysis of an O-glycan covalently attached to a glycopeptide), and a "top-down" approach (analysis of a glycan attached to an intact glycoprotein). In addition, the most widely used MS ionization techniques, i.e., matrix-assisted laser desorption ionization and electrospray ionization, as well as ion activation techniques like collision-induced dissociation, electron capture dissociation, and electron transfer dissociation during O-glycan analysis are discussed. The MS technical approaches mentioned above are already major improvements for studying O-linked glycosylation and appear to be valuable for in-depth analysis of the type of O-glycan attached, branching patterns, and the occupancy of O-glycosylation sites.
Collapse
Affiliation(s)
- SriHariRaju Mulagapati
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Veerendra Koppolu
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| | - T Shantha Raju
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| |
Collapse
|
20
|
Venkitachalam S, Guda K. Altered glycosyltransferases in colorectal cancer. Expert Rev Gastroenterol Hepatol 2017; 11:5-7. [PMID: 27781489 PMCID: PMC5520968 DOI: 10.1080/17474124.2017.1253474] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/24/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Srividya Venkitachalam
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH-44106 U.S.A
| | - Kishore Guda
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH-44106 U.S.A
| |
Collapse
|
21
|
Wither MJ, Hansen KC, Reisz JA. Mass Spectrometry-Based Bottom-Up Proteomics: Sample Preparation, LC-MS/MS Analysis, and Database Query Strategies. ACTA ACUST UNITED AC 2016; 86:16.4.1-16.4.20. [PMID: 27801520 DOI: 10.1002/cpps.18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent technological advances in mass spectrometry (MS) have made possible the investigation and quantification of complex mixtures of biomolecules. The exceptional sensitivity and resolving power of today's mass spectrometers allow for the detection of proteins and peptides at low femtomole quantities; however, these attributes demand high sample purity to minimize artifacts and achieve the highest degree of biomolecule identification. Tissue preparation for proteomic studies is particularly challenging due to their heterogeneity in cell type, presence of insoluble biomaterials, and wide diversity of biomolecules. The workflow described herein details sample preparation from tissues through protein extraction, proteolysis, and purification to generate peptides for MS analysis. Increased peptide resolution and a corresponding increase in protein identification is accomplished using polarity-based fractionation (C18 resin) at the peptide level. Additionally, approaches to instrument set up, including the use of nanoscale liquid chromatography and quadrupole Orbitrap MS, along with database searching, are described. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Matthew J Wither
- Biological Mass Spectrometry Core, Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Kirk C Hansen
- Biological Mass Spectrometry Core, Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Julie A Reisz
- Biological Mass Spectrometry Core, Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
22
|
Lee LY, Moh ESX, Parker BL, Bern M, Packer NH, Thaysen-Andersen M. Toward Automated N-Glycopeptide Identification in Glycoproteomics. J Proteome Res 2016; 15:3904-3915. [DOI: 10.1021/acs.jproteome.6b00438] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ling Y. Lee
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Edward S. X. Moh
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Benjamin L. Parker
- Charles
Perkins Centre, School of Molecular Bioscience, The University of Sydney, Sydney, Australia
| | - Marshall Bern
- Protein Metrics
Inc., San Carlos, California 94070, United States
| | - Nicolle H. Packer
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Morten Thaysen-Andersen
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
23
|
Thaysen-Andersen M, Packer NH, Schulz BL. Maturing Glycoproteomics Technologies Provide Unique Structural Insights into the N-glycoproteome and Its Regulation in Health and Disease. Mol Cell Proteomics 2016; 15:1773-90. [PMID: 26929216 PMCID: PMC5083109 DOI: 10.1074/mcp.o115.057638] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
The glycoproteome remains severely understudied because of significant analytical challenges associated with glycoproteomics, the system-wide analysis of intact glycopeptides. This review introduces important structural aspects of protein N-glycosylation and summarizes the latest technological developments and applications in LC-MS/MS-based qualitative and quantitative N-glycoproteomics. These maturing technologies provide unique structural insights into the N-glycoproteome and its synthesis and regulation by complementing existing methods in glycoscience. Modern glycoproteomics is now sufficiently mature to initiate efforts to capture the molecular complexity displayed by the N-glycoproteome, opening exciting opportunities to increase our understanding of the functional roles of protein N-glycosylation in human health and disease.
Collapse
Affiliation(s)
- Morten Thaysen-Andersen
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia;
| | - Nicolle H Packer
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin L Schulz
- §School of Chemistry & Molecular Biosciences, St Lucia, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Zeng W, Lampugnani ER, Picard KL, Song L, Wu AM, Farion IM, Zhao J, Ford K, Doblin MS, Bacic A. Asparagus IRX9, IRX10, and IRX14A Are Components of an Active Xylan Backbone Synthase Complex that Forms in the Golgi Apparatus. PLANT PHYSIOLOGY 2016; 171:93-109. [PMID: 26951434 PMCID: PMC4854693 DOI: 10.1104/pp.15.01919] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/01/2016] [Indexed: 05/17/2023]
Abstract
Heteroxylans are abundant components of plant cell walls and provide important raw materials for the food, pharmaceutical, and biofuel industries. A number of studies in Arabidopsis (Arabidopsis thaliana) have suggested that the IRREGULAR XYLEM9 (IRX9), IRX10, and IRX14 proteins, as well as their homologs, are involved in xylan synthesis via a Golgi-localized complex termed the xylan synthase complex (XSC). However, both the biochemical and cell biological research lags the genetic and molecular evidence. In this study, we characterized garden asparagus (Asparagus officinalis) stem xylan biosynthesis genes (AoIRX9, AoIRX9L, AoIRX10, AoIRX14A, and AoIRX14B) by heterologous expression in Nicotiana benthamiana We reconstituted and partially purified an active XSC and showed that three proteins, AoIRX9, AoIRX10, and AoIRX14A, are necessary for xylan xylosyltranferase activity in planta. To better understand the XSC structure and its composition, we carried out coimmunoprecipitation and bimolecular fluorescence complementation analysis to show the molecular interactions between these three IRX proteins. Using a site-directed mutagenesis approach, we showed that the DxD motifs of AoIRX10 and AoIRX14A are crucial for the catalytic activity. These data provide, to our knowledge, the first lines of biochemical and cell biological evidence that AoIRX9, AoIRX10, and AoIRX14A are core components of a Golgi-localized XSC, each with distinct roles for effective heteroxylan biosynthesis.
Collapse
Affiliation(s)
- Wei Zeng
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (W.Z., E.R.L., K.L.P., I.M.F., J.Z., K.F., M.S.D., A.B.);Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China (L.S.); andState Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China (A.-M.W.)
| | - Edwin R Lampugnani
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (W.Z., E.R.L., K.L.P., I.M.F., J.Z., K.F., M.S.D., A.B.);Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China (L.S.); andState Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China (A.-M.W.)
| | - Kelsey L Picard
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (W.Z., E.R.L., K.L.P., I.M.F., J.Z., K.F., M.S.D., A.B.);Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China (L.S.); andState Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China (A.-M.W.)
| | - Lili Song
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (W.Z., E.R.L., K.L.P., I.M.F., J.Z., K.F., M.S.D., A.B.);Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China (L.S.); andState Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China (A.-M.W.)
| | - Ai-Min Wu
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (W.Z., E.R.L., K.L.P., I.M.F., J.Z., K.F., M.S.D., A.B.);Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China (L.S.); andState Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China (A.-M.W.)
| | - Isabela M Farion
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (W.Z., E.R.L., K.L.P., I.M.F., J.Z., K.F., M.S.D., A.B.);Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China (L.S.); andState Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China (A.-M.W.)
| | - Jia Zhao
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (W.Z., E.R.L., K.L.P., I.M.F., J.Z., K.F., M.S.D., A.B.);Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China (L.S.); andState Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China (A.-M.W.)
| | - Kris Ford
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (W.Z., E.R.L., K.L.P., I.M.F., J.Z., K.F., M.S.D., A.B.);Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China (L.S.); andState Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China (A.-M.W.)
| | - Monika S Doblin
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (W.Z., E.R.L., K.L.P., I.M.F., J.Z., K.F., M.S.D., A.B.);Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China (L.S.); andState Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China (A.-M.W.)
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (W.Z., E.R.L., K.L.P., I.M.F., J.Z., K.F., M.S.D., A.B.);Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China (L.S.); andState Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China (A.-M.W.)
| |
Collapse
|
25
|
Plants as Factories for Human Pharmaceuticals: Applications and Challenges. Int J Mol Sci 2015; 16:28549-65. [PMID: 26633378 PMCID: PMC4691069 DOI: 10.3390/ijms161226122] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023] Open
Abstract
Plant molecular farming (PMF), defined as the practice of using plants to produce human therapeutic proteins, has received worldwide interest. PMF has grown and advanced considerably over the past two decades. A number of therapeutic proteins have been produced in plants, some of which have been through pre-clinical or clinical trials and are close to commercialization. Plants have the potential to mass-produce pharmaceutical products with less cost than traditional methods. Tobacco-derived antibodies have been tested and used to combat the Ebola outbreak in Africa. Genetically engineered immunoadhesin (DPP4-Fc) produced in green plants has been shown to be able to bind to MERS-CoV (Middle East Respiratory Syndrome), preventing the virus from infecting lung cells. Biosafety concerns (such as pollen contamination and immunogenicity of plant-specific glycans) and costly downstream extraction and purification requirements, however, have hampered PMF production from moving from the laboratory to industrial application. In this review, the challenges and opportunities of PMF are discussed. Topics addressed include; transformation and expression systems, plant bioreactors, safety concerns, and various opportunities to produce topical applications and health supplements.
Collapse
|