1
|
Zhang Q. Antimicrobial peptides: from discovery to developmental applications. Appl Environ Microbiol 2025; 91:e0211524. [PMID: 40178173 PMCID: PMC12016500 DOI: 10.1128/aem.02115-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a significant crisis in global health. Due to their advantageous properties, antimicrobial peptides (AMPs) have garnered considerable attention as a potential alternative therapy to address the AMR crisis. These peptides might disrupt cell membranes or cell walls to exhibit antimicrobial activity, or modulate the immune response to promote recovery from diseases. In recent years, significant progress has been made in the research of AMPs, alongside the emergence of new challenges. This review first systematically summarizes and critically discusses recent advancements in understanding the characteristics and current landscapes of AMPs, as well as their regulatory mechanisms of action and practical applications, particularly those reported or approved within the last 5 years. Additionally, the principles, paths for their identification, and future research trends in AMPs are also analyzed following a discussion of the advantages and disadvantages of AMPs in comparison to conventional antibiotics. Unlike significant prior literature in this field, this report has summarized the latest major discovery methods for AMPs and, more importantly, emphasized their practical applications by supporting various viewpoints using selected examples of AMPs' applications in real-life scenarios. Besides, some emerging hot topics of AMPs, including those derived from gut microbiota and their potential synergistic effects in combating AMR, were profiled. All of these indicate the originality of the report and provide valuable references for future AMP discoveries and applications.
Collapse
Affiliation(s)
- Qi Zhang
- Centre for Eye and Vision Research, Hong Kong, Hong Kong
| |
Collapse
|
2
|
Huang T, Li Z, Qu X, Yao G, Kwok LY, He Q, Zhang H. Preliminary Purification and Partial Characterization of a Functional Bacteriocin of Lacticaseibacillus paracasei Zhang and Mining for its Gene Cluster. Probiotics Antimicrob Proteins 2025; 17:487-499. [PMID: 38748307 PMCID: PMC11926035 DOI: 10.1007/s12602-024-10249-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 03/21/2025]
Abstract
Bacteriocins produced by lactic acid bacteria (LAB) have good potential for use as food biopreservatives. Lacticaseibacillus paracasei Zhang (L. paracasei Zhang) is both a food use and a probiotic bacterium. This study aimed to purify and preliminary characterize the active antibacterial metabolite of L. paracasei Zhang. The cell-free supernatant of L. paracasei Zhang was collected and purified by ultrafiltration and gel filtration chromatography. The 1-3 kDa active fraction could inhibit the growth of Staphylococcus aureus but not Escherichia coli. Further antibacterial activity assays revealed its capacity to suppress various foodborne and human opportunistic pathogens (including Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Listeria monocytogenes, and Bacillus cereus), but not fungi. The antibacterial activity showed good tolerance to heat (40 to 100 °C), acid-base (pH 2-3 and pH 6-10), and digestions by a number of industrial and animal/human enzymes (such as trypsin, pepsin, α-amylase, and protease K, except papain); these desired properties make it a suitable biopreservative to be used in harsh and complex industrial production processes. The high papain sensitivity suggested a proteinaceous/peptide nature of the bioactivity. Moreover, our genomic data mining for bacteriocin through BAGEL4 revealed an area of interest encoding a complete set of putative genes required for bacteriocin production. In conclusion, our study showed that L. paracasei Zhang can produce extracellular functional antibacterial metabolite, likely a class II bacteriocin. Our preliminary extraction and characterization of the active metabolite demonstrated that it has good potential to be used as a biopreservative or an agent for suppressing gastrointestinal infections.
Collapse
Affiliation(s)
- Tian Huang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zhaojie Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
- Qingdao Special Food Research Institute, QingdaoShandong, 266109, China
| | - Xinan Qu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
- Qingdao Special Food Research Institute, QingdaoShandong, 266109, China
| | - Guoqiang Yao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qiuwen He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
3
|
Li Y, Su X, Xi W, Zheng Y, Liu Y, Zheng W, Wei S, Leng Y, Tian Y. Genomic characterization and antifungal properties of Paenibacillus polymyxa YF, a promising biocontrol agent against Fusarium oxysporum pathogen of codonopsis root rot. Front Microbiol 2025; 16:1549944. [PMID: 40078555 PMCID: PMC11897986 DOI: 10.3389/fmicb.2025.1549944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Root rot, a destructive soil-borne disease, poses a significant threat to a wide range of economically important crops. Codonopsis, a high-value medicine plant, is particularly susceptible to substantial production losses caused by Fusarium oxysporum-induced root rot. In this study, we identified a promising biocontrol agent for codonopsis root rot, Paenibacillus polymyxa YF. In vitro assay demonstrated that the strain YF exhibited a 70.69% inhibition rate against F. oxysporum and broad-spectrum antifungal activities against the selected six postharvest pathogens. Additionally, the strain YF demonstrated significant plant growth-promoting properties. Subsequent in vivo inoculation assays revealed that the strain YF effectively mitigated disease symptoms of F. oxysporum-induced root rot in codonopsis, even achieving a complete disease prevention efficacy rate of 100%. Our findings further elucidated that the robust biocontrol capacity of the strain YF against F. oxysporum is mediated through multiple mechanisms, including inhibition of fusaric acid secretion, downregulation of virulence-associated genes in F. oxysporum, and the production of multiple hydrolytic enzymes. Genomic analysis showed that the strain YF has a 5.62-Mb single circular chromosome with 5,138 protein-coding genes. Comprehensive genome mining of the strain YF also identified numerous genes and gene clusters involved in bio-fertilization, resistance inducers synthesis, plant colonization, biofilm formation, and antimicrobial activity. These findings provide insights into the biocontrol mechanisms of the strain YF and offer substantial potential for its further exploration and application in crop production.
Collapse
Affiliation(s)
- Ying Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Xu Su
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, China
| | - Wenjie Xi
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yanli Zheng
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yang Liu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Wangshan Zheng
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Shiyu Wei
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yan Leng
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yongqiang Tian
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
4
|
Scadden J, Ansorge R, Romano S, Telatin A, Baker DJ, Evans R, Gherghisan-Filip C, Zhang ZJ, Mayer MJ, Narbad A. The nisin O cluster: species dissemination, candidate leader peptide proteases and the role of regulatory systems. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001531. [PMID: 39928552 PMCID: PMC11811420 DOI: 10.1099/mic.0.001531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/22/2025] [Indexed: 02/12/2025]
Abstract
Nisin O is an antimicrobial peptide encoded by the human gut bacterium Blautia obeum A2-162 which has antimicrobial activity against clinically relevant organisms. The nisin O biosynthetic gene cluster (BGC) varies from other nisin BGCs as it lacks a leader-peptide cleaving protease and contains two bacterial two-component response regulator-histidine kinase (RK) systems. The dissemination of the nisin O cluster, the final proteolytic biosynthesis step and the regulation of nisin O are currently unknown and are the foci of this study. We identified six nisin O-like BGCs across Blautia, Dorea and Ruminococcus species using comparative genomics. These BGCs show evidence of genetic transfer between genera, with genes involved in transposition discovered up- and downstream of the BGCs. All nisin O-like BGCs contained two RK systems but no protease. Mining the B. obeum A2-162 genome identified candidate proteases that were cloned and used in pre-nisin O leader peptide cleavage assays. None of the candidate proteases removed the leader; however, cleavage was achieved using trypsin. To maximize the expression of the nsoA1-4 peptides, the interactions of the two RK systems with predicted promoters in the nisin O cluster were assessed using a PepI reporter assay. We observed that the PnsoR2K2 promoter was constitutively expressed, with NsoR1K1 increasing its activity, and that there was increased nsoA1-4 expression when the nisin A RK system and nisin A were present. Long-read cDNA sequencing confirmed nso gene transcription in the heterologous expression system and identified a novel, highly expressed gene. This study provides evidence that the nisin O BGC has been transferred between different gut-associated genera, with all clusters lacking a protease and containing two RK systems. We hypothesize that this BGC has lost its protease due to negative selection as a result of high trypsin concentrations in the gut. Further work is required to maximize nisin O expression for it to be used as a potential antimicrobial therapy.
Collapse
Affiliation(s)
- Jacob Scadden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Rebecca Ansorge
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Stefano Romano
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Dave J. Baker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Rhiannon Evans
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Zhenrun J. Zhang
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Melinda J. Mayer
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
5
|
Laishram B, Devi OR, Dutta R, Senthilkumar T, Goyal G, Paliwal DK, Panotra N, Rasool A. Plant-microbe interactions: PGPM as microbial inoculants/biofertilizers for sustaining crop productivity and soil fertility. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100333. [PMID: 39835267 PMCID: PMC11743900 DOI: 10.1016/j.crmicr.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Plant-microbe interactions play pivotal roles in sustaining crop productivity and soil fertility, offering promising avenues for sustainable agricultural practices. This review paper explores the multifaceted interactions between plants and various microorganisms, highlighting their significance in enhancing crop productivity, combating pathogens, and promoting soil health. Understanding these interactions is crucial for harnessing their potential in agricultural systems to address challenges such as food security and environmental sustainability. Therefore, the introduction of beneficial microbes into agricultural ecosystems by bio-augmentation reduces the negative effects of intensive, non-sustainable agriculture on the environment, society, and economy, into the mechanisms underlying the application of plant growth promoting microbes as microbial inoculants/biofertilizers; their interactions, the factors influencing their dynamics, and the implications for agricultural practices, emerging technologies and strategies that leverage plant-microbe interactions for improving crop yields, soil fertility, and overall agricultural sustainability.
Collapse
Affiliation(s)
- Bibek Laishram
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Okram Ricky Devi
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Rinjumoni Dutta
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | | | - Girish Goyal
- Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya, India
| | | | - Narinder Panotra
- Institute of Biotechnology, SKUAST Jammu, Jammu and Kashmir 180009, India
| | - Akhtar Rasool
- Research Center for Chemistry - National Research and Innovation Agency (BRIN), KST BJ Habibie, Building 452, Setu, Tangerang Selatan 15314, Indonesia
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| |
Collapse
|
6
|
Viana GC, Médici LO, Vidal MS, Baldani JI. Bacillus endophytic strains control Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici in tomato cv. Perinha. Braz J Microbiol 2024; 55:4019-4034. [PMID: 39433726 PMCID: PMC11711728 DOI: 10.1007/s42770-024-01539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Fusarium wilt is one of main phytopathology attacking tomato (Solanum lycopersicum L.) plantations in Brazil. Plant rhizosphere and endophytic beneficial microorganism are well known as plant growth promoters and biocontrol agents. The present study aims to evaluate the potential of different Bacillus strains as biocontrol agent to Fusarium oxysporum f. sp. lycopersici Race 3 strains; and also as plant growth promoting bacteria on Solanum lycopersicum cv Perinha. Different in vitro and greenhouse experiments were carried out to evaluate the direct and indirect bacterial-fungus antagonism, and they inoculation effects on plant traits. In vitro direct, metabolites, and volatile antagonism analysis demonstrated that B. toyonensis BR 10491(FORT 02) presented a broad antagonism to all tested race 3 FOL strains while B. megaterium BR 10466 (FORT 12), B. aryabhattai BR 10494 (FORT 25), B. stratosphericus BR 10438 (FORT 29) and B. cereus BR 10493 (FORT 113.1) strains showed significant antagonistic activity for at least two applied methods. Greenhouse pot experiments demonstrated a significant BCA effect of FORT 113.1 and FORT 02 against FOL Race 3 Fus 1302 strain during different tomato development stages (seedling, vegetative, and reproductive). Bacillus cereus (FORT 113.1) showed significantly higher shoot and height fresh weight, Chlorophyll a and Chlorophyll b content, stomata conductance, water use efficiency, and also a lower xylem infection percentage during vegetative and reproductive stages. Antioxidant enzymatic components analysis demonstrated a synergic effect of Fusarium and Bacillus inoculation, leading to a higher superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activity. In conclusion, the results suggest that strain FORT113.1 could be considered as a good candidate for production of new biofungicide with high potential to augment the existing biocontrol strategies.
Collapse
Affiliation(s)
- Guilherme Caldieraro Viana
- Universidade Federal Do Rio de Janeiro, UFRJ - Ilha Do Fundão - Avenida Carlos Chagas Filho, 373 - Cidade Universitária da Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21.941-902, Brazil
- Empresa Brasileira de Pesquisa Agropecuária - Centro Nacional de Pesquisa de Agrobiologia, BR 465, Km 7, S/N, Seropédica, RJ, 23.891-000, Brazil
| | - Leonardo Oliveira Médici
- Laboratório de Fisiologia Vegetal, Instituto de Biologia, Departamento de Fisiologia Vegetal, Universidade Federal Rural Do Rio de Janeiro, Seropédica, 23891-000, Brazil
| | - Marcia Soares Vidal
- Empresa Brasileira de Pesquisa Agropecuária - Centro Nacional de Pesquisa de Agrobiologia, BR 465, Km 7, S/N, Seropédica, RJ, 23.891-000, Brazil
| | - José Ivo Baldani
- Empresa Brasileira de Pesquisa Agropecuária - Centro Nacional de Pesquisa de Agrobiologia, BR 465, Km 7, S/N, Seropédica, RJ, 23.891-000, Brazil.
| |
Collapse
|
7
|
Chakchouk-Mtibaa A, Mechri S, Cheffi Azabou M, Triki MA, Smaoui S, Mellouli L. The novel bacteriocin BacYB1 produced by Leuconostoc mesenteroides YB1: From recent analytical characterization to biocontrol Verticillium dahliae and Agrobacterium tumefaciens. Microb Pathog 2024; 192:106680. [PMID: 38729380 DOI: 10.1016/j.micpath.2024.106680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Biocontrol of phytopathogens involving the use of bioactive compounds produced by lactic acid bacteria (LAB), is a promising approach to manage many diseases in agriculture. In this study, a lactic acid bacterium designated YB1 was isolated from fermented olives and selected for its antagonistic activity against Verticillium dahliae (V. dahliae) and Agrobacterium tumefaciens (A. tumefaciens). Based on the 16S rRNA gene nucleotide sequence analysis (1565 pb, accession number: OR714267), the new isolate YB1 bacterium was assigned as Leuconostoc mesenteroides YB1 (OR714267) strain. This bacterium produces an active peptide "bacteriocin" called BacYB1, which was purified in four steps. Matrix-assisted lasers desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) based approach was performed to identify and characterize BacYB1. The exact mass was 5470.75 Da, and the analysis of the N-terminal sequence (VTRASGASTPPGTASPFKTL) of BacYB1 revealed no significant similarity to currently available antimicrobial peptides. The BacYB1 displayed a bactericidal mode of action against A. tumefaciens. The potentiel role of BacYB1 to supress the growth of A. tumefaciens was confirmed by live-dead cells viability assay. In pot experiments, the biocontrol efficacy of BacYB1 against V. dahliae wilt on young olive trees was studied. The percentage of dead plants (PDP) and the final mean symptomes severity (FMS) of plants articifialy infected by V. dahliae and treated with the pre-purified peptide BacYB1 (preventive and curative treatments) were significantly inferior to untreated plants. Biochemical analysis of leaves of the plants has shown that polyophenols contents were highly detected in plants infected by V. dahliae and the highest contents of chlorophyl a, b and total chlorophyll were recorded in plants treated with the combination of BacYB1 with the biofertilisant Humivital. BacYB1 presents a promising alternative for the control of Verticillium wilt and crown gall diseases.
Collapse
Affiliation(s)
- Ahlem Chakchouk-Mtibaa
- Laboratory of Microbial and Enzymes Biotechnology and Biomolecules (LMEBB), Centre of Biotechnology of Sfax (CBS), University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia.
| | - Sondes Mechri
- Laboratory of Microbial and Enzymes Biotechnology and Biomolecules (LMEBB), Centre of Biotechnology of Sfax (CBS), University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia.
| | - Manel Cheffi Azabou
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax, 3038, Tunisia.
| | - Mohamed Ali Triki
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax, 3038, Tunisia.
| | - Slim Smaoui
- Laboratory of Microbial and Enzymes Biotechnology and Biomolecules (LMEBB), Centre of Biotechnology of Sfax (CBS), University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia.
| | - Lotfi Mellouli
- Laboratory of Microbial and Enzymes Biotechnology and Biomolecules (LMEBB), Centre of Biotechnology of Sfax (CBS), University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
8
|
Cunha-Ferreira IC, Vizzotto CS, Freitas MAM, Peixoto J, Carvalho LS, Tótola MR, Thompson FL, Krüger RH. Genomic and physiological characterization of Kitasatospora sp. nov., an actinobacterium with potential for biotechnological application isolated from Cerrado soil. Braz J Microbiol 2024; 55:1099-1115. [PMID: 38605254 PMCID: PMC11153394 DOI: 10.1007/s42770-024-01324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
An Actinobacteria - Kitasatospora sp. K002 - was isolated from the soil of Cerrado, a savanna-like Brazilian biome. Herein, we conducted a phylogenetic, phenotypic and physiological characterization, revealing its potential for biotechnological applications. Kitasatospora sp. K002 is an aerobic, non-motile, Gram-positive bacteria that forms grayish-white mycelium on solid cultures and submerged spores with vegetative mycelia on liquid cultures. The strain showed antibacterial activity against Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. Genomic analysis indicated that Kitasatospora xanthocidica JCM 4862 is the closest strain to K002, with a dDDH of 32.8-37.8% and an ANI of 86.86% and the pangenome investigations identified a high number of rare genes. A total of 60 gene clusters of 22 different types were detected by AntiSMASH, and 22 gene clusters showed low similarity (< 10%) with known compounds, which suggests the potential production of novel bioactive compounds. In addition, phylogenetic analysis and morphophysiological characterization clearly distinguished Kitasatospora sp. K002 from other related species. Therefore, we propose that Kitasatospora sp. K002 should be recognized as a new species of the genus Kitasatospora - Kitasatospora brasiliensis sp. nov. (type strains = K002).
Collapse
Affiliation(s)
- I C Cunha-Ferreira
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, Brazil
| | - C S Vizzotto
- Laboratory of Environmental Sanitation, Department of Civil and Environmental Engineering, University of Brasília (UNB), Brasília, Brazil
| | - M A M Freitas
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - J Peixoto
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, Brazil
| | - L S Carvalho
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, Brazil
| | - M R Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | - F L Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - R H Krüger
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, Brazil.
| |
Collapse
|
9
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
10
|
Arbulu S, Kjos M. Revisiting the Multifaceted Roles of Bacteriocins : The Multifaceted Roles of Bacteriocins. MICROBIAL ECOLOGY 2024; 87:41. [PMID: 38351266 PMCID: PMC10864542 DOI: 10.1007/s00248-024-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Bacteriocins are gene-encoded antimicrobial peptides produced by bacteria. These peptides are heterogeneous in terms of structure, antimicrobial activities, biosynthetic clusters, and regulatory mechanisms. Bacteriocins are widespread in nature and may contribute to microbial diversity due to their capacity to target specific bacteria. Primarily studied as food preservatives and therapeutic agents, their function in natural settings is however less known. This review emphasizes the ecological significance of bacteriocins as multifunctional peptides by exploring bacteriocin distribution, mobility, and their impact on bacterial population dynamics and biofilms.
Collapse
Affiliation(s)
- Sara Arbulu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
11
|
Hollensteiner J, Schneider D, Poehlein A, Brinkhoff T, Daniel R. Pan-genome analysis of six Paracoccus type strain genomes reveal lifestyle traits. PLoS One 2023; 18:e0287947. [PMID: 38117845 PMCID: PMC10732464 DOI: 10.1371/journal.pone.0287947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/15/2023] [Indexed: 12/22/2023] Open
Abstract
The genus Paracoccus capable of inhabiting a variety of different ecological niches both, marine and terrestrial, is globally distributed. In addition, Paracoccus is taxonomically, metabolically and regarding lifestyle highly diverse. Until now, little is known on how Paracoccus can adapt to such a range of different ecological niches and lifestyles. In the present study, the genus Paracoccus was phylogenomically analyzed (n = 160) and revisited, allowing species level classification of 16 so far unclassified Paracoccus sp. strains and detection of five misclassifications. Moreover, we performed pan-genome analysis of Paracoccus-type strains, isolated from a variety of ecological niches, including different soils, tidal flat sediment, host association such as the bluespotted cornetfish, Bugula plumosa, and the reef-building coral Stylophora pistillata to elucidate either i) the importance of lifestyle and adaptation potential, and ii) the role of the genomic equipment and niche adaptation potential. Six complete genomes were de novo hybrid assembled using a combination of short and long-read technologies. These Paracoccus genomes increase the number of completely closed high-quality genomes of type strains from 15 to 21. Pan-genome analysis revealed an open pan-genome composed of 13,819 genes with a minimal chromosomal core (8.84%) highlighting the genomic adaptation potential and the huge impact of extra-chromosomal elements. All genomes are shaped by the acquisition of various mobile genetic elements including genomic islands, prophages, transposases, and insertion sequences emphasizing their genomic plasticity. In terms of lifestyle, each mobile genetic elements should be evaluated separately with respect to the ecological context. Free-living genomes, in contrast to host-associated, tend to comprise (1) larger genomes, or the highest number of extra-chromosomal elements, (2) higher number of genomic islands and insertion sequence elements, and (3) a lower number of intact prophage regions. Regarding lifestyle adaptations, free-living genomes share genes linked to genetic exchange via T4SS, especially relevant for Paracoccus, known for their numerous extrachromosomal elements, enabling adaptation to dynamic environments. Conversely, host-associated genomes feature diverse genes involved in molecule transport, cell wall modification, attachment, stress protection, DNA repair, carbon, and nitrogen metabolism. Due to the vast number of adaptive genes, Paracoccus can quickly adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Jacqueline Hollensteiner
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Al-Turki A, Murali M, Omar AF, Rehan M, Sayyed R. Recent advances in PGPR-mediated resilience toward interactive effects of drought and salt stress in plants. Front Microbiol 2023; 14:1214845. [PMID: 37829451 PMCID: PMC10565232 DOI: 10.3389/fmicb.2023.1214845] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
The present crisis at hand revolves around the need to enhance plant resilience to various environmental stresses, including abiotic and biotic stresses, to ensure sustainable agriculture and mitigate the impact of climate change on crop production. One such promising approach is the utilization of plant growth-promoting rhizobacteria (PGPR) to mediate plant resilience to these stresses. Plants are constantly exposed to various stress factors, such as drought, salinity, pathogens, and nutrient deficiencies, which can significantly reduce crop yield and quality. The PGPR are beneficial microbes that reside in the rhizosphere of plants and have been shown to positively influence plant growth and stress tolerance through various mechanisms, including nutrient solubilization, phytohormone production, and induction of systemic resistance. The review comprehensively examines the various mechanisms through which PGPR promotes plant resilience, including nutrient acquisition, hormonal regulation, and defense induction, focusing on recent research findings. The advancements made in the field of PGPR-mediated resilience through multi-omics approaches (viz., genomics, transcriptomics, proteomics, and metabolomics) to unravel the intricate interactions between PGPR and plants have been discussed including their molecular pathways involved in stress tolerance. Besides, the review also emphasizes the importance of continued research and implementation of PGPR-based strategies to address the pressing challenges facing global food security including commercialization of PGPR-based bio-formulations for sustainable agricultural.
Collapse
Affiliation(s)
- Ahmad Al-Turki
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - M. Murali
- Department of Studies in Botany, University of Mysore, Mysore, India
| | - Ayman F. Omar
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Plant Pathology, Plant Pathology, and Biotechnology Lab. and EPCRS Excellence Center, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Genetics, College of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - R.Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, India
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
13
|
Ramos ETDA, Olivares FL, da Rocha LO, da Silva RF, do Carmo MGF, Lopes MTG, Meneses CHSG, Vidal MS, Baldani JI. The Effects of Gluconacin on Bacterial Tomato Pathogens and Protection against Xanthomonas perforans, the Causal Agent of Bacterial Spot Disease. PLANTS (BASEL, SWITZERLAND) 2023; 12:3208. [PMID: 37765372 PMCID: PMC10535834 DOI: 10.3390/plants12183208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
As agricultural practices become more sustainable, adopting more sustainable practices will become even more relevant. Searching for alternatives to chemical compounds has been the focus of numerous studies, and bacteriocins are tools with intrinsic biotechnological potential for controlling plant diseases. We continued to explore the biotechnological activity of the bacteriocin Gluconacin from Gluconacetobacter diazotrophicus, PAL5 strain, by investigating this protein's antagonism against important tomato phytopathogens and demonstrating its effectiveness in reducing bacterial spots caused by Xanthomonas perforans. In addition to this pathogen, the bacteriocin Gluconacin demonstrated bactericidal activity in vitro against Ralstonia solanacearum and Pseudomonas syringae pv. tomato, agents that cause bacterial wilt and bacterial spots, respectively. Bacterial spot control tests showed that Gluconacin reduced disease severity by more than 66%, highlighting the biotechnological value of this peptide in ecologically correct formulations.
Collapse
Affiliation(s)
- Elizabeth Teixeira de Almeida Ramos
- Programa de Pós-Graduação em Fitotecnia (PPGF), Departamento de Fitotecnia, Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, km 07, Seropédica 23890-000, RJ, Brazil; (E.T.d.A.R.); (M.G.F.d.C.)
| | - Fábio Lopes Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura, Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil; (F.L.O.); (L.O.d.R.)
| | - Letícia Oliveira da Rocha
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura, Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil; (F.L.O.); (L.O.d.R.)
| | - Rogério Freire da Silva
- Programa de Pós-Graduação em Ciências Agrárias, Centro de Ciências Biológicas e da Saúde, Departamento de Biologia, Universidade Estadual da Paraíba, Universitário, Campina Grande 58429-500, PB, Brazil; (R.F.d.S.); (C.H.S.G.M.)
| | - Margarida Goréte Ferreira do Carmo
- Programa de Pós-Graduação em Fitotecnia (PPGF), Departamento de Fitotecnia, Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, km 07, Seropédica 23890-000, RJ, Brazil; (E.T.d.A.R.); (M.G.F.d.C.)
| | - Maria Teresa Gomes Lopes
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Avenida Rodrigo Otávio Ramos, 3.000, Bairro Coroado, Manaus 69077-000, AM, Brazil;
| | - Carlos Henrique Salvino Gadelha Meneses
- Programa de Pós-Graduação em Ciências Agrárias, Centro de Ciências Biológicas e da Saúde, Departamento de Biologia, Universidade Estadual da Paraíba, Universitário, Campina Grande 58429-500, PB, Brazil; (R.F.d.S.); (C.H.S.G.M.)
| | - Marcia Soares Vidal
- Embrapa Agrobiologia, Rodovia BR 465, km 07, Seropédica 23891-000, RJ, Brazil;
| | - José Ivo Baldani
- Embrapa Agrobiologia, Rodovia BR 465, km 07, Seropédica 23891-000, RJ, Brazil;
| |
Collapse
|
14
|
Koniuchovaitė A, Petkevičiūtė A, Bernotaitė E, Gricajeva A, Gegeckas A, Kalėdienė L, Kaunietis A. Novel leaderless bacteriocin geobacillin 6 from thermophilic bacterium Parageobacillus thermoglucosidasius. Front Microbiol 2023; 14:1207367. [PMID: 37396380 PMCID: PMC10311245 DOI: 10.3389/fmicb.2023.1207367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Bacterial resistance to conventional antibiotics has urged us to develop alternative strategies against bacterial pathogens. Moreover, a demand for food products containing no chemical preservatives has led us to search for new alternative technologies for food preservation. Bacteriocins - ribosomally synthesized antimicrobial peptides - have been proposed as a new alternative to conventional antibiotics or chemicals for food preservation. This study describes biosynthesis and characterization of a novel leaderless bacteriocin, geobacillin 6, which was identified in the thermophilic bacterium Parageobacillus thermoglucosidasius. Its amino acid sequence shows low similarity to other bacteriocins and it is the first leaderless-type bacteriocin identified in thermophilic bacteria. Based on structure assessment, the bacteriocin forms a multi-helix bundle. Geobacillin 6 exhibits a relatively narrow antimicrobial spectrum, it is active in the μM range and against Gram-positive bacteria, mostly thermophilic species closely related to the producer strain. Bacteriocin demonstrates stability over pH 3-11 and is highly thermostable, retaining 100% of its activity after incubation at 95°C for 6 h. Geobacillin 6 has potential in the food industry and biotechnological processes where contamination with thermophilic bacteria is undesirable.
Collapse
|
15
|
Lyu D, Backer R, Berrué F, Martinez-Farina C, Hui JPM, Smith DL. Plant Growth-Promoting Rhizobacteria (PGPR) with Microbial Growth Broth Improve Biomass and Secondary Metabolite Accumulation of Cannabis sativa L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7268-7277. [PMID: 37130078 DOI: 10.1021/acs.jafc.2c06961] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are a sustainable crop production input; some show positive effects under laboratory conditions but poorly colonize host field-grown plants. Inoculating with PGPR in microbial growth medium (e.g., King's B) could overcome this. We evaluated cannabis plant (cv. CBD Kush) growth promotion by inoculating three PGPR (Bacillus sp., Mucilaginibacter sp., and Pseudomonas sp.) in King's B at vegetative and flower stages. At the vegetative stage, Mucilaginibacter sp. inoculation increased flower dry weight (24%), total CBD (11.1%), and THC (11.6%); Pseudomonas sp. increased stem (28%) dry matter, total CBD (7.2%), and THC (5.9%); and Bacillus sp. increased total THC by 4.8%. Inoculation with Mucilaginibacter sp. and Pseudomonas sp. at the flowering stage led to 23 and 18% increases in total terpene accumulation, respectively. Overall, vegetative inoculation with PGPR enhanced cannabis yield attributes and chemical profiles. Further research into PGPR inoculation onto cannabis and the subsequent level of colonization could provide key insights regarding PGPR-host interactions.
Collapse
Affiliation(s)
- Dongmei Lyu
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue H9X3V9, Quebec, Canada
| | - Rachel Backer
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue H9X3V9, Quebec, Canada
| | - Fabrice Berrué
- National Research Council Canada, Halifax B3H 3Z1, Nova Scotia, Canada
| | | | - Joseph P M Hui
- National Research Council Canada, Halifax B3H 3Z1, Nova Scotia, Canada
| | - Donald Lawrence Smith
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue H9X3V9, Quebec, Canada
| |
Collapse
|
16
|
Lastochkina OV, Allagulova CR. The Mechanisms of the Growth Promotion and Protective Effects of Endophytic PGP Bacteria in Wheat Plants Under the Impact of Drought (Review). APPL BIOCHEM MICRO+ 2023; 59:14-32. [DOI: 10.1134/s0003683823010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 06/23/2023]
|
17
|
Secretome Analysis of the Plant Biostimulant Bacteria Strains Bacillus subtilis (EB2004S) and Lactobacillus helveticus (EL2006H) in Response to pH Changes. Int J Mol Sci 2022; 23:ijms232315144. [PMID: 36499471 PMCID: PMC9739546 DOI: 10.3390/ijms232315144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
It is well-known that there is a high frequency of plant-growth-promoting strains in Bacillus subtilis and that these can be effective under both stressful and stress-free conditions. There are very few studies of this activity in the case of Lactobacillus helveticus. In this study, the effects of pH on the secretome (proteins) in the cell-free supernatants of two bacterial strains were evaluated. The bacteria were cultured at pH 5, 7 and 8, and their secretome profiles were analyzed, with pH 7 (optimal growth pH) considered as the "control". The results showed that acidity (lower pH 5) diminishes the detectable production of most of the secretome proteins, whereas alkalinity (higher pH 8) increases the detectable protein production. At pH 5, five (5) new proteins were produced by L. helveticus, including class A sortase, fucose-binding lectin II, MucBP-domain-containing protein, SLAP-domain-containing protein and hypothetical protein LHEJCM1006_11110, whereas for B. subtilis, four (4) types of proteins were uniquely produced (p ≤ 0.05), including helicase-exonuclease AddAB subunit AddB, 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase, a cluster of ABC-F family ATP-binding-cassette-domain-containing proteins and a cluster of excinuclease ABC (subunit B). At pH 8, Bacillus subtilis produced 56 unique proteins. Many of the detected proteins were involved in metabolic processes, whereas the others had unknown functions. The unique and new proteins with known and unknown functions suggest potential the acclimatization of the microbes to pH stress.
Collapse
|
18
|
Anand U, Vaishnav A, Sharma SK, Sahu J, Ahmad S, Sunita K, Suresh S, Dey A, Bontempi E, Singh AK, Proćków J, Shukla AK. Current advances and research prospects for agricultural and industrial uses of microbial strains available in world collections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156641. [PMID: 35700781 DOI: 10.1016/j.scitotenv.2022.156641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms are an important component of the ecosystem and have an enormous impact on human lives. Moreover, microorganisms are considered to have desirable effects on other co-existing species in a variety of habitats, such as agriculture and industries. In this way, they also have enormous environmental applications. Hence, collections of microorganisms with specific traits are a crucial step in developing new technologies to harness the microbial potential. Microbial culture collections (MCCs) are a repository for the preservation of a large variety of microbial species distributed throughout the world. In this context, culture collections (CCs) and microbial biological resource centres (mBRCs) are vital for the safeguarding and circulation of biological resources, as well as for the progress of the life sciences. Ex situ conservation of microorganisms tagged with specific traits in the collections is the crucial step in developing new technologies to harness their potential. Type strains are mainly used in taxonomic study, whereas reference strains are used for agricultural, biotechnological, pharmaceutical research and commercial work. Despite the tremendous potential in microbiological research, little effort has been made in the true sense to harness the potential of conserved microorganisms. This review highlights (1) the importance of available global microbial collections for man and (2) the use of these resources in different research and applications in agriculture, biotechnology, and industry. In addition, an extensive literature survey was carried out on preserved microorganisms from different collection centres using the Web of Science (WoS) and SCOPUS. This review also emphasizes knowledge gaps and future perspectives. Finally, this study provides a critical analysis of the current and future roles of microorganisms available in culture collections for different sustainable agricultural and industrial applications. This work highlights target-specific potential microbial strains that have multiple important metabolic and genetic traits for future research and use.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anukool Vaishnav
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh 281406, India; Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland; Plant-Soil Interaction Group, Agroscope (Reckenholz), Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Sushil K Sharma
- National Agriculturally Important Microbial Culture Collection (NAIMCC), ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Mau 275 103, Uttar Pradesh, India.
| | - Jagajjit Sahu
- GyanArras Academy, Gothapatna, Malipada, Bhubaneswar, Odisha 751029, India
| | - Sarfaraz Ahmad
- Department of Botany, Jai Prakash University, Saran, Chhapra 841301, Bihar, India
| | - Kumari Sunita
- Department of Botany, Faculty of Science, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal 462 003, Madhya Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy
| | - Amit Kishore Singh
- Department of Botany, Bhagalpur National College, (A Constituent unit of Tilka Manjhi Bhagalpur University), Bhagalpur 812007, Bihar, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya (affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya) 224123, Uttar Pradesh, India.
| |
Collapse
|
19
|
El-Saadony MT, Saad AM, Soliman SM, Salem HM, Ahmed AI, Mahmood M, El-Tahan AM, Ebrahim AAM, Abd El-Mageed TA, Negm SH, Selim S, Babalghith AO, Elrys AS, El-Tarabily KA, AbuQamar SF. Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:923880. [PMID: 36275556 PMCID: PMC9583655 DOI: 10.3389/fpls.2022.923880] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/24/2022] [Indexed: 05/14/2023]
Abstract
Plant diseases and pests are risk factors that threaten global food security. Excessive chemical pesticide applications are commonly used to reduce the effects of plant diseases caused by bacterial and fungal pathogens. A major concern, as we strive toward more sustainable agriculture, is to increase crop yields for the increasing population. Microbial biological control agents (MBCAs) have proved their efficacy to be a green strategy to manage plant diseases, stimulate plant growth and performance, and increase yield. Besides their role in growth enhancement, plant growth-promoting rhizobacteria/fungi (PGPR/PGPF) could suppress plant diseases by producing inhibitory chemicals and inducing immune responses in plants against phytopathogens. As biofertilizers and biopesticides, PGPR and PGPF are considered as feasible, attractive economic approach for sustainable agriculture; thus, resulting in a "win-win" situation. Several PGPR and PGPF strains have been identified as effective BCAs under environmentally controlled conditions. In general, any MBCA must overcome certain challenges before it can be registered or widely utilized to control diseases/pests. Successful MBCAs offer a practical solution to improve greenhouse crop performance with reduced fertilizer inputs and chemical pesticide applications. This current review aims to fill the gap in the current knowledge of plant growth-promoting microorganisms (PGPM), provide attention about the scientific basis for policy development, and recommend further research related to the applications of PGPM used for commercial purposes.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Soliman M. Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Alshaymaa I. Ahmed
- Department of Agricultural Microbiology, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Alia A. M. Ebrahim
- Jiangsu Key Laboratory for Microbes and Genomics, School, of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Shaimaa H. Negm
- Department of Home Economic, Specific Education Faculty, Port Said University, Port Said, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed S. Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
20
|
Bano A, Waqar A, Khan A, Tariq H. Phytostimulants in sustainable agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.801788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The consistent use of synthetic fertilizers and chemicals in traditional agriculture has not only compromised the fragile agroecosystems but has also adversely affected human, aquatic, and terrestrial life. The use of phytostimulants is an alternative eco-friendly approach that eliminates ecosystem disruption while maintaining agricultural productivity. Phytostimulants include living entities and materials, such as microorganisms and nanomaterials, which when applied to plants or to the rhizosphere, stimulate plant growth and induce tolerance to plants against biotic and abiotic stresses. In this review, we focus on plant growth-promoting rhizobacteria (PGPR), beneficial fungi, such as arbuscular mycorrhizal fungi (AMF) and plant growth-promoting fungi (PGPF), actinomycetes, cyanobacteria, azolla, and lichens, and their potential benefits in the crop improvement, and mitigation of abiotic and biotic stresses either alone or in combination. PGPR, AMF, and PGPF are plant beneficial microbes that can release phytohormones, such as indole acetic acid (IAA), gibberellic acid (GA), and cytokinins, promoting plant growth and improving soil health, and in addition, they also produce many secondary metabolites, antibiotics, and antioxidant compounds and help to combat biotic and abiotic stresses. Their ability to act as phytostimulator and a supplement of inorganic fertilizers is considered promising in practicing sustainable agriculture and organic farming. Glomalin is a proteinaceous product, produced by AMF, involved in soil aggregation and elevation of soil water holding capacity under stressed and unstressed conditions. The negative effects of continuous cropping can be mitigated by AMF biofertilization. The synergistic effects of PGPR and PGPF may be more effective. The mechanisms of control exercised by PGPF either direct or indirect to suppress plant diseases viz. by competing for space and nutrients, mycoparasitism, antibiosis, mycovirus-mediated cross-protection, and induced systemic resistance (ISR) have been discussed. The emerging role of cyanobacterial metabolites and the implication of nanofertilizers have been highlighted in sustainable agriculture.
Collapse
|
21
|
Shah A, Subramanian S, Smith DL. Seed Priming with Devosia sp. Cell-Free Supernatant (CFS) and Citrus Bioflavonoids Enhance Canola and Soybean Seed Germination. Molecules 2022; 27:3410. [PMID: 35684348 PMCID: PMC9182190 DOI: 10.3390/molecules27113410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Climate change, environmental pollution and associated abiotic stresses are beginning to meaningfully affect agricultural production worldwide. Salt stress is, however, one of the most important threats that significantly impairs plant growth and development. Plants in their early growth stages such as seed germination, seed emergence and early seedling growth are very sensitive to salt stress. Among the range of sustainable techniques adopted to improve seed germination and early plant growth is seed priming; however, with the use of ecofriendly substances, this is one of the most effective and economically viable techniques to improve seed tolerance against such environmental stresses. For instance, priming with appropriate non-synthetic compounds including microbial biostimulants are prominent ways to sustainably address these challenges. Therefore, in this research, by using the "priming technique", two biostimulants were tested for their potential as sustainable approaches to improve canola and soybean seed germination under salt stress and optimal growth conditions. Canola and soybean seeds were primed with flavonoids extracted from citrus fruits (flavopriming) and cell-free supernatant (CFS; produced by a novel strain of Devosia sp.-SL43), alone and in combination, and exposed to low-higher levels of salt stress and ideal growth conditions. Both biostimulants showed promising effects by significantly improving seed germination of soybean and canola under both ideal and stressful conditions. However, increases in seed germination were greater under salinity stress as flavonoids and CFS with stress amelioration effects showed substantial and statistically significant improvements in seed germination under varying levels of salt stress. In addition, combinations (mixtures) of both biostimulants were tested to determine if their effects might be more additive or multiplicative than the individual applications. However, results suggested incompatibility of both biostimulants as none of the combinations showed better results than that of the individual applications of either flavonoids or CFS. Conceivably, the use of flavonoids and this novel Devosia sp. CFS could be significant plant growth enhancers, perhaps much better than the few other biostimulants and bacterial-based compounds currently in use.
Collapse
Affiliation(s)
| | | | - Donald L. Smith
- Department of Plant Sciences, McGill University, Montreal, QC H9X 3V9, Canada; (A.S.); (S.S.)
| |
Collapse
|
22
|
Abstract
Coffee is one of the most important commodities in the global market. Of the 130 species of Coffea, only Coffea arabica and Coffea canephora are actually cultivated on a large scale. Despite the economic and social importance of coffee, little research has been done on the coffee tree microbiome. To assess the structure and function of the rhizosphere microbiome, we performed a deep shotgun metagenomic sequencing of the rhizospheres of five different species, C. arabica, C. canephora, Coffea stenophylla, Coffea racemosa, and Coffea liberica. Our findings indicated that C. arabica and C. stenophylla have different microbiomes, while no differences were detected between the other Coffea species. The core rhizosphere microbiome comprises genera such as Streptomyces, Mycobacterium, Bradyrhizobium, Burkholderia, Sphingomonas, Penicillium, Trichoderma, and Rhizophagus, several of which are potential plant-beneficial microbes. Streptomyces and mycorrhizal fungi dominate the microbial communities. The concentration of sucrose in the rhizosphere seems to influence fungal communities, and the concentration of caffeine/theobromine has little effect on the microbiome. We also detected a possible relationship between drought tolerance in Coffea and known growth-promoting microorganisms. The results provide important information to guide future studies of the coffee tree microbiome to improve plant production and health. IMPORTANCE The microbiome has been identified as a fundamental factor for the maintenance of plant health, helping plants to fight diseases and the deleterious effects of abiotic stresses. Despite this, in-depth studies of the microbiome have been limited to a few species, generally with a short life cycle, and perennial species have mostly been neglected. The coffee tree microbiome, on the other hand, has gained interest in recent years as Coffea trees are perennial tropical species of enormous importance, especially for developing countries. A better understanding of the microorganisms associated with coffee trees can help to mitigate the deleterious effects of climate change on the crop, improving plant health and making the system more sustainable.
Collapse
|
23
|
Naamala J, Smith DL. Microbial Derived Compounds Are a Promising Approach to Mitigating Salinity Stress in Agricultural Crops. Front Microbiol 2021; 12:765320. [PMID: 34867895 PMCID: PMC8640360 DOI: 10.3389/fmicb.2021.765320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
The use of microbial derived compounds is a technological approach currently gaining popularity among researchers, with hopes of complementing, supplementing and addressing key issues associated with use of microbial cells for enhancing plant growth. The new technology is a promising approach to mitigating effects of salinity stress in agricultural crops, given that these compounds could be less prone to effects of salt stress, are required in small quantities and are easier to store and handle than microbial cells. Microorganism derived compounds such as thuricin17, lipochitooligosaccharides, phytohormones and volatile organic compounds have been reported to mitigate the effects of salt stress in agricultural crops such as soybean and wheat. This mini-review compiles current knowledge regarding the use of microbe derived compounds in mitigating salinity stress in crops, the mechanisms they employ as well as future prospects.
Collapse
Affiliation(s)
- Judith Naamala
- Smith Laboratory, Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Donald L Smith
- Smith Laboratory, Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
24
|
Fan D, Smith DL. Characterization of Selected Plant Growth-Promoting Rhizobacteria and Their Non-Host Growth Promotion Effects. Microbiol Spectr 2021; 9:e0027921. [PMID: 34190589 PMCID: PMC8552778 DOI: 10.1128/spectrum.00279-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are a functionally diverse group of microbes having immense potential as biostimulants and biopesticides. We isolated four PGPR (designated n, L, K, and Y) that confer growth-promoting effects on Arabidopsis thaliana. The present study describes the detailed polyphasic characterization of these PGPR. Classical methods of bacterial identification and biochemical test kits (API20E, API20NE, API ZYM, and API 50CH) revealed their metabolic versatility. All rhizobacterial isolates were positive for 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCD) and indole acetic acid production and phosphorous solubilization. PCR analysis confirmed the presence of the nifH gene in strains n, L, and Y, showing their N2-fixation potential. In vitro dual culture methods and bacterial infestation in planta demonstrated that strains n and L exerted antagonistic effects on Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea 191 and provided protection to Arabidopsis plants against both phytopathogens. Short- or long-term bacterial treatment revealed significant changes in transcript levels of genes annotated to stress response and hormone metabolism in A. thaliana. In particular, the expression of stress-responsive genes in A. thaliana showed an upregulation under salinity stress. MAP kinase 6 (MPK6) was involved in the growth promotion induced by the four bacterial strains. Furthermore, these strains caused a significant increase in root dry weight of maize seedlings under gnotobiotic conditions. We conclude that the four rhizobacteria are good candidates as biofertilizers for enhancing growth of maize, among which strains n and L showed marked plant growth-promoting attributes and the potential to be exploited as functional biostimulants and biopesticides for sustainable agriculture. IMPORTANCE There are pressing needs to reduce the use of agrochemicals, and PGPR are receiving increasing interest in plant growth promotion and disease protection. This study follows up our previous report that the four newly isolated rhizobacteria promote the growth of Arabidopsis thaliana. We test the hypothesis that they have multiple PGP traits and that they can be used as biofertilizers and biopesticides. In vitro assays indicated that these four strains have various PGP properties related to nutrient availability, stress resistance, and/or pest organism antagonism. They significantly influenced the transcript levels of genes involved in stress response and hormone metabolism in A. thaliana. MPK6 is indispensable to the growth stimulation effects. Strains n and L protected A. thaliana seedlings against phytopathogens. Three strains significantly increased maize growth in vitro. In summary, introducing these four strains onto plant roots provides a benefit to the plants. This is the first study regarding the potential mechanism(s) applied by Mucilaginibacter sp. as biostimulants.
Collapse
Affiliation(s)
- Di Fan
- Department of Biological and Environmental Engineering, School of Biology, Food and Environment, Hefei University, Hefei, China
- Department of Plant Science, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Donald L. Smith
- Department of Plant Science, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
25
|
Shah A, Nazari M, Antar M, Msimbira LA, Naamala J, Lyu D, Rabileh M, Zajonc J, Smith DL. PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.667546] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growing environmental concerns are potentially narrowing global yield capacity of agricultural systems. Climate change is the most significant problem the world is currently facing. To meet global food demand, food production must be doubled by 2050; over exploitation of arable lands using unsustainable techniques might resolve food demand issues, but they have negative environmental effects. Current crop production systems are a major reason for changing global climate through diminishing biodiversity, physical and chemical soil degradation, and water pollution. The over application of fertilizers and pesticides contribute to climate change through greenhouse gas emissions (GHG) and toxic soil depositions. At this crucial time, there is a pressing need to transition to more sustainable crop production practices, ones that concentrate more on promoting sustainable mechanisms, which enable crops to grow well in resource limited and environmentally challenging environments, and also develop crops with greater resource use efficiency that have optimum sustainable yields across a wider array of environmental conditions. The phytomicrobiome is considered as one of the best strategies; a better alternative for sustainable agriculture, and a viable solution to meet the twin challenges of global food security and environmental stability. Use of the phytomicrobiome, due to its sustainable and environmentally friendly mechanisms of plant growth promotion, is becoming more widespread in the agricultural industry. Therefore, in this review, we emphasize the contribution of beneficial phytomicrobiome members, particularly plant growth promoting rhizobacteria (PGPR), as a strategy to sustainable improvement of plant growth and production in the face of climate change. Also, the roles of soil dwelling microbes in stress amelioration, nutrient supply (nitrogen fixation, phosphorus solubilization), and phytohormone production along with the factors that could potentially affect their efficiency have been discussed extensively. Lastly, limitations to expansion and use of biobased techniques, for instance, the perspective of crop producers, indigenous microbial competition and regulatory approval are discussed. This review largely focusses on the importance and need of sustainable and environmentally friendly approaches such as biobased/PGPR-based techniques in our agricultural systems, especially in the context of current climate change conditions, which are almost certain to worsen in near future.
Collapse
|
26
|
CESA-LUNA CATHERINE, ALATORRE-CRUZ JULIAMARÍA, CARREÑO-LÓPEZ RICARDO, QUINTERO-HERNÁNDEZ VERÓNICA, BAEZ ANTONINO. Emerging Applications of Bacteriocins as Antimicrobials, Anticancer Drugs, and Modulators of The Gastrointestinal Microbiota. Pol J Microbiol 2021; 70:143-159. [PMID: 34349808 PMCID: PMC8326989 DOI: 10.33073/pjm-2021-020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/06/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
The use of bacteriocins holds great promise in different areas such as health, food, nutrition, veterinary, nanotechnology, among others. Many research groups worldwide continue to advance the knowledge to unravel a novel range of therapeutic agents and food preservatives. This review addresses the advances of bacteriocins and their producer organisms as biocontrol agents for applications in the medical industry and agriculture. Furthermore, the bacteriocin mechanism of action and structural characteristics will be reviewed. Finally, the potential role of bacteriocins to modulate the signaling in host-associated microbial communities will be discussed.
Collapse
Affiliation(s)
- CATHERINE CESA-LUNA
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | | | - RICARDO CARREÑO-LÓPEZ
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | | | - ANTONINO BAEZ
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| |
Collapse
|
27
|
Priya P, Aneesh B, Harikrishnan K. Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health. J Microbiol Methods 2021; 185:106215. [PMID: 33839214 DOI: 10.1016/j.mimet.2021.106215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Intense agricultural practices to meet rising food demands have caused ecosystem perturbations. For sustainable crop production, biological agents are gaining attention, but exploring their functional potential on a multi-layered complex ecosystem like the rhizosphere is challenging. This review explains the significance of genomics as a culture-independent molecular tool to understand the diversity and functional significance of the rhizosphere microbiome for sustainable agriculture. It discusses the recent significant studies in the rhizosphere environment carried out using evolving techniques like metagenomics, metatranscriptomics, and metaproteomics, their challenges, constraints infield application, and prospective solutions. The recent advances in techniques such as nanotechnology for the development of bioformulations and visualization techniques contemplating environmental safety were also discussed. The need for development of metagenomic data sets of regionally important crops, their plant microbial interactions and agricultural practices for narrowing down significant data from huge databases have been suggested. The role of taxonomical and functional diversity of soil microbiota in understanding soil suppression and part played by the microbial metabolites in the process have been analyzed and discussed in the context of 'omics' approach. 'Omics' studies have revealed important information about microbial diversity, their responses to various biotic and abiotic stimuli, and the physiology of disease suppression. This can be translated to crop sustainability and combinational approaches with advancing visualization and analysis methodologies fix the existing knowledge gap to a huge extend. With improved data processing and standardization of the methods, details of plant-microbe interactions can be successfully decoded to develop sustainable agricultural practices.
Collapse
Affiliation(s)
- P Priya
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - B Aneesh
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences Cochin University of Science and Technology, Cochin, Kerala, India.
| | - K Harikrishnan
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
28
|
Haskett TL, Tkacz A, Poole PS. Engineering rhizobacteria for sustainable agriculture. THE ISME JOURNAL 2021; 15:949-964. [PMID: 33230265 PMCID: PMC8114929 DOI: 10.1038/s41396-020-00835-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
Exploitation of plant growth promoting (PGP) rhizobacteria (PGPR) as crop inoculants could propel sustainable intensification of agriculture to feed our rapidly growing population. However, field performance of PGPR is typically inconsistent due to suboptimal rhizosphere colonisation and persistence in foreign soils, promiscuous host-specificity, and in some cases, the existence of undesirable genetic regulation that has evolved to repress PGP traits. While the genetics underlying these problems remain largely unresolved, molecular mechanisms of PGP have been elucidated in rigorous detail. Engineering and subsequent transfer of PGP traits into selected efficacious rhizobacterial isolates or entire bacterial rhizosphere communities now offers a powerful strategy to generate improved PGPR that are tailored for agricultural use. Through harnessing of synthetic plant-to-bacteria signalling, attempts are currently underway to establish exclusive coupling of plant-bacteria interactions in the field, which will be crucial to optimise efficacy and establish biocontainment of engineered PGPR. This review explores the many ecological and biotechnical facets of this research.
Collapse
Affiliation(s)
- Timothy L. Haskett
- grid.4991.50000 0004 1936 8948Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB UK
| | - Andrzej Tkacz
- grid.4991.50000 0004 1936 8948Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB UK
| | - Philip S. Poole
- grid.4991.50000 0004 1936 8948Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB UK
| |
Collapse
|
29
|
Mann S, Park MS, Johnston TV, Ji GE, Hwang KT, Ku S. Oral probiotic activities and biosafety of Lactobacillus gasseri HHuMIN D. Microb Cell Fact 2021; 20:75. [PMID: 33757506 PMCID: PMC7986493 DOI: 10.1186/s12934-021-01563-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022] Open
Abstract
Background Lactobacillus spp. have been researched worldwide and are used in probiotics, but due to difficulties with laboratory cultivation of and experimentation on oral microorganisms, there are few reports of Lactobacillus spp. being isolated from the oral cavity and tested against oral pathogens. This research sought to isolate and determine the safety and inhibitory capabilities of a Lactobacillus culture taken from the human body. Results One organism was isolated, named “L. gasseri HHuMIN D”, and evaluated for safety. A 5% dilution of L. gasseri HHuMIN D culture supernatant exhibited 88.8% inhibition against halitosis-producing anaerobic microorganisms and the organism itself exhibited powerful inhibitory effects on the growth of 11 oral bacteria. Hydrogen peroxide production reached 802 μmol/L after 12 h and gradually diminished until 24 h, it efficiently aggregated with P. catoniae and S. sanguinis, and it completely suppressed S. mutans-manufactured artificial dental plaque. L. gasseri HHuMIN D’s KB cell adhesion capacity was 4.41 cells per cell, and the cell adhesion of F. nucleatum and S. mutans diminished strongly in protection and displacement assays. Conclusion These results suggest that L. gasseri HHuMIN D is a safe, bioactive, lactobacterial food ingredient, starter culture, and/or probiotic microorganism for human oral health.
Collapse
Affiliation(s)
- Soyon Mann
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826, Korea
| | | | - Tony V Johnston
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Geun Eog Ji
- Research Center, BIFIDO Co., Ltd, Hongcheon, 25117, Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826, Korea.
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
30
|
Jiao X, Takishita Y, Zhou G, Smith DL. Plant Associated Rhizobacteria for Biocontrol and Plant Growth Enhancement. FRONTIERS IN PLANT SCIENCE 2021; 12:634796. [PMID: 33815442 PMCID: PMC8009966 DOI: 10.3389/fpls.2021.634796] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/23/2021] [Indexed: 05/20/2023]
Abstract
Crop disease remains a major problem to global food production. Excess use of pesticides through chemical disease control measures is a serious problem for sustainable agriculture as we struggle for higher crop productivity. The use of plant growth promoting rhizobacteria (PGPR) is a proven environment friendly way of controlling plant disease and increasing crop yield. PGPR suppress diseases by directly synthesizing pathogen-antagonizing compounds, as well as by triggering plant immune responses. It is possible to identify and develop PGPR that both suppress plant disease and more directly stimulate plant growth, bringing dual benefit. A number of PGPR have been registered for commercial use under greenhouse and field conditions and a large number of strains have been identified and proved as effective biocontrol agents (BCAs) under environmentally controlled conditions. However, there are still a number of challenges before registration, large-scale application, and adoption of PGPR for the pest and disease management. Successful BCAs provide strong theoretical and practical support for application of PGPR in greenhouse production, which ensures the feasibility and efficacy of PGPR for commercial horticulture production. This could be pave the way for widespread use of BCAs in agriculture, including under field conditions, to assist with both disease management and climate change conditions.
Collapse
Affiliation(s)
- Xiurong Jiao
- Institute of Agricultural Science and Technology Development of Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Yoko Takishita
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Guisheng Zhou
- Institute of Agricultural Science and Technology Development of Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Donald L. Smith
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
31
|
Subramanian S, Souleimanov A, Smith DL. Thuricin17 Production and Proteome Differences in Bacillus thuringiensis NEB17 Cell-Free Supernatant Under NaCl Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.630628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacillus thuringiensis strain NEB17, produces a bacteriocin, thuricin17 (Th17) and is known to promote the growth more effectively under salt stress conditions. In this study, bacterial salt stress tolerance screening and the possible changes in its secretome under two levels of NaCl stress was evaluated. The salt tolerance screening suggested that the bacterium is able to grow and survive in up to 900 mM NaCl. Thuricin17 production at salt levels from 100 to 500 mM NaCl was quantified using High Performance Liquid Chromatography (HPLC). Salt stress adversely affected the production of Th17 at levels as low as 100 mM NaCl; and the production stopped at 500 mM NaCl, despite the bacterium thriving at these salt levels. Hence, a comparative proteomic study was conducted on the supernatant of the bacterium after 42 h of growth, when Th17 production peaked in the control culture, as determined by Liquid Chromatography - Tandem Mass Spectrometry (LC-MS/MS). Optimal (salt free) bacterial culture served as a control and 200 and 500 mM NaCl as stress conditions. As salt levels increased, the major enzyme classes, transferases, hydrolases, lyases, and ligases showed increased abundance as compared to the control, mostly related to molecular function mechanisms. Some of the notable up-regulated proteins in 500 mM NaCl stress conditions included an S-layer protein, chitin binding domain 3 protein, enterotoxins, phosphopentomutase, glucose 6-phosphate isomerase and bacterial translation initiation factor; while notable down-regulated proteins included hemolytic enterotoxin, phospholipase, sphingomyelinase C, cold shock DNA-binding protein family and alcohol dehydrogenase. These results indicate that, as the salt stress levels increase, the bacterium probably shuts down the production of Th17 and regulates its molecular functional mechanisms to overcome stress. This study indicates that end users have the option of using Th17 as a biostimulant or the live bacterial inoculum depending on the soil salt characteristics, for crop production. The mass spectrometry proteomics data have been deposited to Mass Spectrometry Interactive Virtual Environment (MassIVE) with the dataset identifier PXD024069, and doi: 10.25345/C5RB8T.
Collapse
|
32
|
Nan J, Zhang S, Jiang L. Antibacterial Potential of Bacillus amyloliquefaciens GJ1 against Citrus Huanglongbing. PLANTS 2021; 10:plants10020261. [PMID: 33572917 PMCID: PMC7910844 DOI: 10.3390/plants10020261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/13/2023]
Abstract
Citrus huanglongbing (HLB) is a destructive disease caused by Candidatus Liberibacter species and is a serious global concern for the citrus industry. To date, there is no established strategy for control of this disease. Previously, Bacillus amyloliquefaciens GJ1 was screened as the biocontrol agent against HLB. In this study, two-year-old citrus infected by Ca. L. asiaticus were treated with B. amyloliquefaciens GJ1 solution via root irrigation. In these plants, after seven irrigation treatments, the results indicated that the photosynthetic parameters, chlorophyll content, resistance-associated enzyme content and the expression of defense-related genes were significantly higher than for the plants treated with the same volume water. The content of starch and soluble sugar were significantly lower, compared to the control treatment. The parallel reaction monitoring (PRM) results revealed that treatment with B. amyloliquefaciens GJ1 solution, the expression levels of 3 proteins with photosynthetic function were upregulated in citrus leaves. The accumulation of reactive oxygen species (ROS) in citrus leaves treated with B. amyloliquefaciens GJ1 flag22 was significantly higher than untreated plants and induced the defense-related gene expression in citrus. Finally, surfactin was identified from the fermentation broth of B. amyloliquefaciens GJ1 by high-performance liquid chromatography. These results indicate that B. amyloliquefaciens GJ1 may improve the immunity of citrus by increasing the photosynthesis and enhancing the expression of the resistance-related genes.
Collapse
Affiliation(s)
- Jing Nan
- College of Horticulture and Forestry, Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Shaoran Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ling Jiang
- College of Horticulture and Forestry, Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China;
- Correspondence:
| |
Collapse
|
33
|
Cell-Free Supernatants of Plant Growth-Promoting Bacteria: A Review of Their Use as Biostimulant and Microbial Biocontrol Agents in Sustainable Agriculture. SUSTAINABILITY 2020. [DOI: 10.3390/su12239917] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plant growth-promoting bacteria (PGPB) afford plants several advantages (i.e., improvement of nutrient acquisition, growth, and development; induction of abiotic and biotic stress tolerance). Numerous PGPB strains have been isolated and studied over the years. However, only a few of them are available on the market, mainly due to the failed bacterial survival within the formulations and after application inside agroecosystems. PGPB strains with these challenging limitations can be used for the formulation of cell-free supernatants (CFSs), broth cultures processed through several mechanical and physical processes for cell removal. In the scientific literature there are diverse reviews and updates on PGPB in agriculture. However, no review deals with CFSs and the CFS metabolites obtainable by PGPB. The main objective of this review is to provide useful information for future research on CFSs as biostimulant and biocontrol agents in sustainable agriculture. Studies on CFS agricultural applications, both for biostimulant and biocontrol applications, have been reviewed, presenting limitations and advantages. Among the 109 articles selected and examined, the Bacillus genus seems to be the most promising due to the numerous articles that support its biostimulant and biocontrol potentialities. The present review underlines that research about this topic needs to be encouraged; evidence so far obtained has demonstrated that PGPB could be a valid source of secondary metabolites useful in sustainable agriculture.
Collapse
|
34
|
Draft Genome Sequences of Pantoea agglomerans, Paenibacillus polymyxa, and Pseudomonas sp. Strains, Seed Biogel-Associated Endophytes of Cucumis sativus L. (Cucumber) and Cucumis melo L. (Cantaloupe). Microbiol Resour Announc 2020; 9:9/32/e00667-20. [PMID: 32763934 PMCID: PMC7409851 DOI: 10.1128/mra.00667-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the draft genome sequences of strains of Pantoea agglomerans (EKM10T, EKM20T, EKM21T, and EKM22T), Paenibacillus polymyxa (EKM10P and EKM11P), and Pseudomonas sp. strain EKM23D. These microbes were cultured from fresh seed biogels of Cucumis sativus L. (cucumber) and Cucumis melo L. (cantaloupe). The strains suppress the growth of soilborne fungal/oomycete phytopathogens in vitro. We report here the draft genome sequences of strains of Pantoea agglomerans (EKM10T, EKM20T, EKM21T, and EKM22T), Paenibacillus polymyxa (EKM10P and EKM11P), and Pseudomonas sp. strain EKM23D. These microbes were cultured from fresh seed biogels of Cucumis sativus L. (cucumber) and Cucumis melo L. (cantaloupe). The strains suppress the growth of soilborne fungal/oomycete phytopathogens in vitro.
Collapse
|
35
|
Fan D, Subramanian S, Smith DL. Plant endophytes promote growth and alleviate salt stress in Arabidopsis thaliana. Sci Rep 2020. [PMID: 32728116 DOI: 10.1038/s41598-020-69713-] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) are a functionally diverse group of microbes having immense potential as biostimulants and stress alleviators. Their exploitation in agro-ecosystems as an eco-friendly and cost-effective alternative to traditional chemical inputs may positively affect agricultural productivity and environmental sustainability. The present study describes selected rhizobacteria, from a range of origins, having plant growth promoting potential under controlled conditions. A total of 98 isolates (ectophytic or endophytic) from various crop and uncultivated plants were screened, out of which four endophytes (n, L, K and Y) from Phalaris arundinacea, Solanum dulcamara, Scorzoneroides autumnalis, and Glycine max, respectively, were selected in vitro for their vegetative growth stimulating effects on Arabidopsis thaliana Col-0 seedlings with regard to leaf surface area and shoot fresh weight. A 16S rRNA gene sequencing analysis of the strains indicated that these isolates belong to the genera Pseudomonas, Bacillus, Mucilaginibacter and Rhizobium. Strains were then further tested for their effects on abiotic stress alleviation under both Petri-plate and pot conditions. Results from Petri-dish assay indicated strains L, K and Y alleviated salt stress in Arabidopsis seedlings, while strains K and Y conferred increases in fresh weight and leaf area under osmotic stress. Results from subsequent in vivo trials indicated all the isolates, especially strains L, K and Y, distinctly increased A. thaliana growth under both normal and high salinity conditions, as compared to control plants. The activity of antioxidant enzymes (ascorbate peroxidase, catalase and peroxidase), proline content and total antioxidative capacity also differed in the inoculated A. thaliana plants. Furthermore, a study on spatial distribution of the four strains, using either conventional Petri-plate counts or GFP-tagged bacteria, indicated that all four strains were able to colonize the endosphere of A. thaliana root tissue. Thus, the study revealed that the four selected rhizobacteria are good candidates to be explored as plant growth stimulators, which also possess salt stress mitigating property, partially by regulating osmolytes and antioxidant enzymes. Moreover, the study is the first report of Scorzoneroides autumnalis (fall dandelion) and Solanum dulcamara (bittersweet) associated endophytes with PGP effects.
Collapse
Affiliation(s)
- Di Fan
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Sowmyalakshmi Subramanian
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Donald L Smith
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada.
| |
Collapse
|
36
|
Yang A, Akhtar SS, Fu Q, Naveed M, Iqbal S, Roitsch T, Jacobsen SE. Burkholderia Phytofirmans PsJN Stimulate Growth and Yield of Quinoa under Salinity Stress. PLANTS 2020; 9:plants9060672. [PMID: 32466435 PMCID: PMC7355930 DOI: 10.3390/plants9060672] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
One of the major challenges in agriculture is to ensure sufficient and healthy food availability for the increasing world population in near future. This requires maintaining sustainable cultivation of crop plants under varying environmental stresses. Among these stresses, salinity is the second most abundant threat worldwide after drought. One of the promising strategies to mitigate salinity stress is to cultivate halotolerant crops such as quinoa. Under high salinity, performance can be improved by plant growth promoting bacteria (PGPB). Among PGPB, endophytic bacteria are considered better in stimulating plant growth compared to rhizosphere bacteria because of their ability to colonize both in plant rhizosphere and plant interior. Therefore, in the current study, a pot experiment was conducted in a controlled greenhouse to investigate the effects of endophytic bacteria i.e., Burkholderia phytofirmans PsJN on improving growth, physiology and yield of quinoa under salinity stress. At six leaves stage, plants were irrigated with saline water having either 0 (control) or 400 mM NaCl. The results indicated that plants inoculated with PsJN mitigated the negative effects of salinity on quinoa resulting in increased shoot biomass, grain weight and grain yield by 12%, 18% and 41% respectively, over un-inoculated control. Moreover, inoculation with PsJN improved osmotic adjustment and ion homeostasis ability. In addition, leaves were also characterized for five key reactive oxygen species (ROS) scavenging enzyme in response to PsJN treatment. This showed higher activity of catalase (CAT) and dehydroascobate reductase (DHAR) in PsJN-treated plants. These findings suggest that inoculation of quinoa seeds with Burkholderia phytofirmans PsJN could be used for stimulating growth and yield of quinoa in highly salt-affected soils.
Collapse
Affiliation(s)
- Aizheng Yang
- School of Water Conservancy and Civil Engineering, Northeast Agriculture University, Harbin 150030, China;
| | - Saqib Saleem Akhtar
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; (S.S.A.); (T.R.)
- Dansk Agro Aps, Snubbekorsvej 20 C, DK-2630 Tåstrup, Denmark
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agriculture University, Harbin 150030, China;
- Correspondence: (Q.F.); (S.-E.J.)
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Shahid Iqbal
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan;
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; (S.S.A.); (T.R.)
- Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, 603 00 Brno, Czech Republic
| | - Sven-Erik Jacobsen
- Quinoa Quality ApS, DK-4420 Regstrup, Denmark
- Correspondence: (Q.F.); (S.-E.J.)
| |
Collapse
|
37
|
GOSWAMI M, DEKA S. Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. PEDOSPHERE 2020; 30:40-61. [PMID: 0 DOI: 10.1016/s1002-0160(19)60839-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
38
|
Nazari M, Smith DL. A PGPR-Produced Bacteriocin for Sustainable Agriculture: A Review of Thuricin 17 Characteristics and Applications. FRONTIERS IN PLANT SCIENCE 2020; 11:916. [PMID: 32733506 PMCID: PMC7358586 DOI: 10.3389/fpls.2020.00916] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/04/2020] [Indexed: 05/08/2023]
Abstract
A wide range of prokaryotes produce and excrete bacteriocins (proteins with antimicrobial activity) to reduce competition from closely related strains. Application of bacteriocins is of great importance in food industries, while little research has been focused on the agricultural potential of bacteriocins. A number of bacteriocin producing bacteria are members of the phytomicrobiome, and some strains are plant growth promoting rhizobacteria (PGPR). Thuricin 17 is a single small peptide with a molecular weight of 3.162 kDa, a subclass IId bacteriocin produced by Bacillus thuringiensis NEB17, isolated from soybean nodules. It is either cidal or static to a wide range of prokaryotes. In this way, it removes key competition from the niche space of the producer organism. B. thuringiensis NEB17 was isolated from soybean root nodules, and thus is a member of the phytomicrobiome. Interestingly, thuricin 17 is not active against a wide range of rhizobial strains involved in symbiotic nitrogen fixation with legumes or against other PGPR. In addition, it stimulates plant growth, particularly in the presence of abiotic stresses. The stresses it assists with include key ones associated with climate change (drought, high temperature, and soil salinity). Hence, in the presence of stress, it increases the size of the overall niche space, within plant roots, for B. thuringiensis NEB17. Through its anti-microbial activity, it could also enhance plant growth via control of specific plant pathogens. None of the isolated bacteriocins have been examined as broadly as thuricin 17 on plant growth promotion. Thus, this review focuses on the effect of thuricin 17 as a microbe to plant signal that assists crop plants in managing stress and making agricultural systems more climate change resilient.
Collapse
|
39
|
Cesa-Luna C, Baez A, Quintero-Hernández V, De la Cruz-Enríquez J, Castañeda-Antonio MD, Muñoz-Rojas J. The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n1.76867] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacteria produce antimicrobial compounds to compete for nutrients and space in a particular habitat. Antagonistic interactions can be evaluated by several methodologies including the double-layer agar and simultaneous inhibition assays. Among the well-known inhibitory substances produced by bacteria are the broad-spectrum antibiotics, organic acids, siderophores, antifungal, and bacteriocins. The most studied bacterial genera able to produce these inhibitory substances are Enterococcus, Lactococcus, Streptomyces, Bacillus, Pseudomonas, Klebsiella, Escherichia, and Burkholderia. Some beneficial bacteria can promote plant growth and degrade toxic compounds in the environment representing an attractive solution to diverse issues in agriculture and soil pollution, particularly in fields with damaged soils where pesticides and fertilizers have been indiscriminately used. Beneficial bacteria may increase plant health by inhibiting pathogenic microorganisms; some examples include Gluconacetobacter diazotrophicus, Azospirullum brasilense, Pseudomonas fluorescens, Pseudomonas protegens, and Burkholderia tropica. However, most studies showing the antagonistic potential of these bacteria have been performed in vitro, and just a few of them have been evaluated in association with plants. Several inhibitory substances involved in pathogen antagonism have not been elucidated yet; in fact, we know only 1 % of the bacterial diversity in a natural environment leading us to assume that many other inhibitory substances remain unexplored. In this review, we will describe the characteristics of some antimicrobial compounds produced by beneficial bacteria, the principal methodologies performed to evaluate their production, modes of action, and their importance for biotechnological purposes.
Collapse
|
40
|
Lyu D, Backer R, Subramanian S, Smith DL. Phytomicrobiome Coordination Signals Hold Potential for Climate Change-Resilient Agriculture. FRONTIERS IN PLANT SCIENCE 2020; 11:634. [PMID: 32523595 PMCID: PMC7261841 DOI: 10.3389/fpls.2020.00634] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/24/2020] [Indexed: 05/20/2023]
Abstract
A plant growing under natural conditions is always associated with a substantial, diverse, and well-orchestrated community of microbes-the phytomicrobiome. The phytomicrobiome genome is larger and more fluid than that of the plant. The microbes of the phytomicrobiome assist the plant in nutrient uptake, pathogen control, stress management, and overall growth and development. At least some of this is facilitated by the production of signal compounds, both plant-to-microbe and microbe back to the plant. This is best characterized in the legume nitrogen fixing and mycorrhizal symbioses. More recently lipo-chitooligosaccharide (LCO) and thuricin 17, two microbe-to-plant signals, have been shown to regulate stress responses in a wide range of plant species. While thuricin 17 production is constitutive, LCO signals are only produced in response to a signal from the plant. We discuss how some signal compounds will only be discovered when root-associated microbes are exposed to appropriate plant-to-microbe signals (positive regulation), and this might only happen under specific conditions, such as abiotic stress, while others may only be produced in the absence of a particular plant-to-microbe signal molecule (negative regulation). Some phytomicrobiome members only elicit effects in a specific crop species (specialists), while other phytomicrobiome members elicit effects in a wide range of crop species (generalists). We propose that some specialists could exhibit generalist activity when exposed to signals from the correct plant species. The use of microbe-to-plant signals can enhance crop stress tolerance and could result in more climate change resilient agricultural systems.
Collapse
|
41
|
Su X, Li L, Pan J, Fan X, Ma S, Guo Y, Idris AL, Zhang L, Pan X, Gelbič I, Huang T, Guan X. Identification and partial purification of thuricin 4AJ1 produced by Bacillus thuringiensis. Arch Microbiol 2019; 202:755-763. [PMID: 31807807 DOI: 10.1007/s00203-019-01782-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 12/21/2022]
Abstract
Thuricin 4AJ1, produced by Bacillus thuringiensis strain 4AJ1, showed inhibition activity against Bacillus cereus 0938 and ATCC 10987. It began to appear in the stationary phase and reached its maximum activity level of 209.958 U at 18 h against B. cereus 0938 and 285.689 U at 24 h against B. cereus ATCC 10987. Tricine-SDS-PAGE results showed that the partly purified thuricin 4AJ1 was about 6.5 kDa. The molecular weights of the known B. thuringiensis bacteriocins and the ones obtained by the two mainstream websites for predicting bacteriocins were inconsistent with the size of the thuricin 4AJ1, indicating that the bacteriocin obtained in this study may have a novel structure. Based on the biochemical properties, the thuricin 4AJ1 activities increased after treatment with proteinase K and lipase II, and were not affected by a-amylase, catalase, α-chymotrypsin VII and α-chymotrypsin II. It was heat tolerant, being active up to 90º C. In the pH 3-10 range, it maintained most of its activity. Finally, the sensitivity of the strain 4AJ1 to commonly used antibiotics was tested. In view of its stability and antibacterial activity, thuricin 4AJ1 may be applied as a food biopreservative.
Collapse
Affiliation(s)
- Xiaoyu Su
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Lifen Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jieru Pan
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350004, Fujian, China
| | - Xiao Fan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Shenglong Ma
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yachong Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Aisha Lawan Idris
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xiaohong Pan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ivan Gelbič
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| |
Collapse
|
42
|
Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2018; 9:1473. [PMID: 30405652 PMCID: PMC6206271 DOI: 10.3389/fpls.2018.01473] [Citation(s) in RCA: 657] [Impact Index Per Article: 93.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/20/2018] [Indexed: 05/02/2023]
Abstract
Microbes of the phytomicrobiome are associated with every plant tissue and, in combination with the plant form the holobiont. Plants regulate the composition and activity of their associated bacterial community carefully. These microbes provide a wide range of services and benefits to the plant; in return, the plant provides the microbial community with reduced carbon and other metabolites. Soils are generally a moist environment, rich in reduced carbon which supports extensive soil microbial communities. The rhizomicrobiome is of great importance to agriculture owing to the rich diversity of root exudates and plant cell debris that attract diverse and unique patterns of microbial colonization. Microbes of the rhizomicrobiome play key roles in nutrient acquisition and assimilation, improved soil texture, secreting, and modulating extracellular molecules such as hormones, secondary metabolites, antibiotics, and various signal compounds, all leading to enhancement of plant growth. The microbes and compounds they secrete constitute valuable biostimulants and play pivotal roles in modulating plant stress responses. Research has demonstrated that inoculating plants with plant-growth promoting rhizobacteria (PGPR) or treating plants with microbe-to-plant signal compounds can be an effective strategy to stimulate crop growth. Furthermore, these strategies can improve crop tolerance for the abiotic stresses (e.g., drought, heat, and salinity) likely to become more frequent as climate change conditions continue to develop. This discovery has resulted in multifunctional PGPR-based formulations for commercial agriculture, to minimize the use of synthetic fertilizers and agrochemicals. This review is an update about the role of PGPR in agriculture, from their collection to commercialization as low-cost commercial agricultural inputs. First, we introduce the concept and role of the phytomicrobiome and the agricultural context underlying food security in the 21st century. Next, mechanisms of plant growth promotion by PGPR are discussed, including signal exchange between plant roots and PGPR and how these relationships modulate plant abiotic stress responses via induced systemic resistance. On the application side, strategies are discussed to improve rhizosphere colonization by PGPR inoculants. The final sections of the paper describe the applications of PGPR in 21st century agriculture and the roadmap to commercialization of a PGPR-based technology.
Collapse
Affiliation(s)
- Rachel Backer
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - J. Stefan Rokem
- School of Medicine, Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - John Lamont
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Dana Praslickova
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Emily Ricci
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | | | - Donald L. Smith
- Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
43
|
Takishita Y, Charron JB, Smith DL. Biocontrol Rhizobacterium Pseudomonas sp. 23S Induces Systemic Resistance in Tomato ( Solanum lycopersicum L.) Against Bacterial Canker Clavibacter michiganensis subsp. michiganensis. Front Microbiol 2018; 9:2119. [PMID: 30254615 PMCID: PMC6141633 DOI: 10.3389/fmicb.2018.02119] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/20/2018] [Indexed: 01/27/2023] Open
Abstract
Tomato bacterial canker disease, caused by Clavibacter michiganensis subsp. michiganensis (Cmm) is a destructive disease and has been a serious concern for tomato industries worldwide. Previously, a rhizosphere isolated strain of Pseudomonas sp. 23S showed antagonistic activity toward Cmm in vitro. This Pseudomonas sp. 23S was characterized to explore the potential of this bacterium for its use in agriculture. Pseudomonas sp. 23S possesses ability to solubilize inorganic phosphorus, and to produce siderophores, indole acetic acid, and hydrogen cyanide. The strain also showed antagonistic activity against Pseudomonas syringae pv. tomato DC 3000. A plant assay indicated that Pseudomonas sp. 23S could promote growth of tomato seedlings. The potential of treating tomato plants with Pseudomonas sp. 23S to reduce the severity of tomato bacterial canker by inducing systemic resistance (ISR) was investigated using well characterized marker genes such as PR1a [salicylic acid (SA)], PI2 [jasmonic acid (JA)], and ACO [ethylene (ET)]. Two-week-old tomato plants were treated with Pseudomonas sp. 23S by soil drench, and Cmm was inoculated into the stem by needle injection on 3, 5, or 7 days post drench. The results indicated that plants treated with Pseudomonas sp. 23S, 5 days prior to Cmm inoculation significantly delayed the progression of the disease. These plants, after 3 weeks from the date of Cmm inoculation, had significantly higher dry shoot and root weight, higher levels of carbon, nitrogen, phosphorus, and potassium in the leaf tissue, and the number of Cmm population in the stem was significantly lower for the plants treated with Pseudomonas sp. 23S. From the real-time quantitative PCR (qRT-PCR) analysis, the treatment with Pseudomonas sp. 23S alone was found to trigger a significant increase in the level of PR1a transcripts in tomato plants. When the plants were treated with Pseudomonas sp. 23S and inoculated with Cmm, the level of PR1a and ACO transcripts were increased, and this response was faster and greater as compared to plants inoculated with Cmm but not treated with Pseudomonas sp. 23S. Overall, the results suggested the involvement of SA signaling pathways for ISR induced by Pseudomonas sp. 23S.
Collapse
Affiliation(s)
| | | | - Donald L. Smith
- Department of Plant Science, McGill University, Montréal, QC, Canada
| |
Collapse
|
44
|
Pseudomonas chlororaphis Produces Multiple R-Tailocin Particles That Broaden the Killing Spectrum and Contribute to Persistence in Rhizosphere Communities. Appl Environ Microbiol 2018; 84:AEM.01230-18. [PMID: 30030224 DOI: 10.1128/aem.01230-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/10/2018] [Indexed: 12/18/2022] Open
Abstract
R-tailocins are high-molecular-weight bacteriocins resembling bacteriophage tails. Pseudomonas chlororaphis 30-84 is a plant growth-promoting rhizobacterial (PGPR) strain that produces two distinct R-tailocin particles with different killing spectra. The two R-tailocins have different evolutionary histories but are released by the same lysis cassette. A previous study showed that both tailocins are important for pairwise competition with susceptible rhizosphere-colonizing strains; however, the broader role of tailocins in competition with the native rhizosphere microbiome was not tested. Genomic analysis of the P. chlororaphis 30-84 R-tailocin gene cluster uncovered the presence of three tail fiber genes in the tailocin 2 genetic module that could potentially result in tailocin 2 particles having different tail fibers and thus a wider killing spectrum. In this study, the tail fibers were found to incorporate onto different tailocin 2 particles, each with a distinct killing spectrum. A loss of production of one or both tailocins resulted in decreased P. chlororaphis 30-84 persistence within the wheat rhizosphere when in competition with the native microflora but not bulk soil. The capacity to produce three different versions of a single tailocin, each having one of three different types of tail fibers, is a previously unreported mechanism that leads to a broader R-tailocin killing spectrum. This study also provides evidence for the function of R-tailocins in competition with rhizosphere microbiome communities but not in bulk soil.IMPORTANCE Although R-tailocin gene clusters typically encode one tail fiber protein, three tail fiber-resembling genes were identified in association with one of the two sets of R-tailocin genes within the tailocin cluster of P. chlororaphis 30-84 and other sequenced P. chlororaphis strain genomes. This study confirmed that P. chlororaphis 30-84 not only produces two distinct tailocins, but that one of them is produced with three different types of tail fibers. This is a previously unreported strategy to increase the breadth of strains targeted by an R-tailocin. Our finding that R-tailocins produced by a PGPR Pseudomonas strain enhanced its persistence within the wheat rhizosphere microbiome confirms that R-tailocin production contributes to the population dynamics of rhizobacterial communities.
Collapse
|
45
|
Drider D, Bendali F, Naghmouchi K, Chikindas ML. Bacteriocins: Not Only Antibacterial Agents. Probiotics Antimicrob Proteins 2018; 8:177-182. [PMID: 27481236 DOI: 10.1007/s12602-016-9223-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This commentary was aimed at shedding light on the multifunction of bacteriocins mainly those produced by lactic acid bacteria. These antibacterial agents were first used to improve food safety and quality. With the increasing antibiotic resistance concern worldwide, they have been considered as viable agents to replace or potentiate the fading abilities of conventional antibiotics to control human pathogens. Bacteriocins were also shown to have potential as antiviral agents, plant protection agents, and anticancer agents. Bacteriocins were reported to be involved in shaping bacterial communities through inter- and intra-specific interactions, conferring therefore to producing strains a probiotic added value. Furthermore, bacteriocins recently were shown as molecules with a fundamental impact on the resilience and virulence of some pathogens.
Collapse
Affiliation(s)
- Djamel Drider
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, 59000, Lille, France.
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaïa, Algeria
| | - Karim Naghmouchi
- Laboratoire des Microorganismes et Biomolécules Actives (LMBA), Faculté des Sciences de Tunis, Université El-Manar II 2092 El-Manar-II, Tunis, Tunisia
| | - Michael L Chikindas
- School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, 08901, USA.,Center for Digestive Health, New Jersey Institute for Food, Nutrition and Health, New Brunswick, NJ, 08901, USA
| |
Collapse
|
46
|
Maksimov IV, Maksimova TI, Sarvarova ER, Blagova DK, Popov VO. Endophytic Bacteria as Effective Agents of New-Generation Biopesticides (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818020072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Abstract
Bacteria host an arsenal of antagonism-mediating molecules to combat for ecologic space. Bacteriocins represent a pivotal group of secreted antibacterial peptides and proteins assisting in this fight, mainly eliminating relatives. Colicin M, a model for peptidoglycan-interfering bacteriocins in Gram-negative bacteria, appears to be part of a set of polymorphic toxins equipped with such a catalytic domain (ColM) targeting lipid II. Diversifying recombination has enabled parasitism of different receptors and has also given rise to hybrid bacteriocins in which ColM is associated with another toxin module. Remarkably, ColM toxins have recruited a diverse array of immunity partners, comprising cytoplasmic membrane-associated proteins with different topologies. Together, these findings suggest that different immunity mechanisms have evolved for ColM, in contrast to bacteriocins with nuclease activities.
Collapse
|
48
|
Tumbarski Y, Deseva I, Mihaylova D, Stoyanova M, Krastev L, Nikolova R, Yanakieva V, Ivanov I. Isolation, Characterization and Amino Acid Composition of a Bacteriocin Produced by Bacillus methylotrophicus Strain BM47. Food Technol Biotechnol 2018; 56:546-552. [PMID: 30923451 PMCID: PMC6399719 DOI: 10.17113/ftb.56.04.18.5905] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Members of the bacterial genus Bacillus are known as producers of a broad spectrum of antibiotic compounds of proteinaceous nature that possess inhibitory activity against different saprophytic and pathogenic microorganisms. In the current research, a peptide synthesized by Bacillus methylotrophicus strain BM47, previously isolated from a natural thermal spring in Bulgaria, was identified and characterized as a bacteriocin. In vitro antimicrobial screening of the crude bacteriocin substance of B. methylotrophicus BM47 showed activity against the plant pathogenic fungi Fusarium moniliforme, Aspergillus awamori, Penicillium sp., Aspergillus niger and Gram-negative bacterium Pseudomonas aeruginosa. The antimicrobial activity of the crude bacteriocin substance was partially inhibited by the enzymes trypsin, Alcalase®, Savinase®, proteinase K, papain and Esperase®, while catalase was not effective. The crude bacteriocin substance was relatively pH resistant, but sensitive to the action of heat and most organic solvents and detergents tested. To obtain the active protein fractions, crude bacteriocin substance was purified by fast protein liquid chromatography (FPLC) using a strong anion exchange column. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that the purified bacteriocin had molecular mass of 19 578 Da. The amino acid analysis performed by high-performance liquid chromatography (HPLC) revealed that the isolated bacteriocin consisted of 17 types of amino acids, with the highest mol fraction expressed as percent of serine (29.3), valine (10.3), alanine (9.8) and tyrosine (7.1).
Collapse
Affiliation(s)
- Yulian Tumbarski
- Department of Microbiology, University of Food Technologies, 26, Maritsa Blvd., 4002 Plovdiv, Bulgaria
| | - Ivelina Deseva
- Department of Analytical Chemistry and Physicochemistry, University of Food Technologies, 26, Maritsa Blvd., 4002 Plovdiv, Bulgaria
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, 26, Maritsa Blvd., 4002 Plovdiv, Bulgaria
| | - Magdalena Stoyanova
- Department of Analytical Chemistry and Physicochemistry, University of Food Technologies, 26, Maritsa Blvd., 4002 Plovdiv, Bulgaria
| | - Lutsian Krastev
- Department of Analytical Chemistry and Physicochemistry, University of Food Technologies, 26, Maritsa Blvd., 4002 Plovdiv, Bulgaria
| | - Radosveta Nikolova
- Department of Microbiology, University of Food Technologies, 26, Maritsa Blvd., 4002 Plovdiv, Bulgaria
| | - Velichka Yanakieva
- Department of Microbiology, University of Food Technologies, 26, Maritsa Blvd., 4002 Plovdiv, Bulgaria
| | - Ivan Ivanov
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26, Maritsa Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
49
|
Tao L, Wang B, Zhong Y, Pow SH, Zeng X, Qin C, Zhang P, Chen S, He W, Tan Y, Liu H, Jiang Y, Chen W, Chen YZ. Database and Bioinformatics Studies of Probiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7599-7606. [PMID: 28727425 DOI: 10.1021/acs.jafc.7b01815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Probiotics have been widely explored for health benefits, animal cares, and agricultural applications. Recent advances in microbiome, microbiota, and microbial dark matter research have fueled greater interests in and paved ways for the study of the mechanisms of probiotics and the discovery of new probiotics from uncharacterized microbial sources. A probiotics database named PROBIO was developed to facilitate these efforts and the need for the information on the known probiotics, which provides the comprehensive information about the probiotic functions of 448 marketed, 167 clinical trial/field trial, and 382 research probiotics for use or being studied for use in humans, animals, and plants. The potential applications of the probiotics data are illustrated by several literature-reported investigations, which have used the relevant information for probing the function and mechanism of the probiotics and for discovering new probiotics. PROBIO can be accessed free of charge at http://bidd2.nus.edu.sg/probio/homepage.htm .
Collapse
Affiliation(s)
- Lin Tao
- School of Medicine, Hangzhou Normal University , Hangzhou, P. R. China 310012
| | - Bohua Wang
- College of Life and Environmental Sciences, Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan University of Arts and Science , Changde, Hunan, P. R. China 415000
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University , Nanchang, P. R. China 330045
| | - Yafen Zhong
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University , Nanchang, P. R. China 330045
| | - Siok Hoon Pow
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Xian Zeng
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Chu Qin
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Peng Zhang
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Shangying Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Weidong He
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Ying Tan
- The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University , Shenzhen, Guangdong, P. R. China 518055
| | - Hongxia Liu
- The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University , Shenzhen, Guangdong, P. R. China 518055
| | - Yuyang Jiang
- The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University , Shenzhen, Guangdong, P. R. China 518055
| | - Weiping Chen
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University , Nanchang, P. R. China 330045
| | - Yu Zong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| |
Collapse
|
50
|
Nagar R, Rao A. An iterative glycosyltransferase EntS catalyzes transfer and extension of O- and S-linked monosaccharide in enterocin 96. Glycobiology 2017; 27:766-776. [PMID: 28498962 DOI: 10.1093/glycob/cwx042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 01/18/2023] Open
Abstract
Glycosyltransferases are essential tools for in vitro glycoengineering. Bacteria harbor an unexplored variety of protein glycosyltransferases. Here, we describe a peptide glycosyltransferase (EntS) encoded by ORF0417 of Enterococcus faecalis TX0104. EntS di-glycosylates linear peptide of enterocin 96 - a known antibacterial, in vitro. It is capable of transferring as well as extending the glycan onto the peptide in an iterative sequential dissociative manner. It can catalyze multiple linkages: Glc/Gal(-O)Ser/Thr, Glc/Gal(-S)Cys and Glc/Gal(β)Glc/Gal(-O/S)Ser/Thr/Cys, in one pot. Using EntS generated glycovariants of enterocin 96 peptide, size and identity of the glycan are found to influence bioactivity of the peptide. The study identifies EntS as an enzyme worth pursuing, for in vitro peptide glycoengineering.
Collapse
Affiliation(s)
- Rupa Nagar
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| |
Collapse
|