1
|
Tu Y, Zhu Y, Yang X, Eldridge DJ. Predicted changes in distribution and grazing value of Stipa-based plant communities across the Eurasian steppe. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120757. [PMID: 38537472 DOI: 10.1016/j.jenvman.2024.120757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
The Eurasian steppe is one of the world's largest continuous areas of grassland and has an important role in supporting livestock grazing, the most ubiquitous land use on Earth. However, the Eurasian steppe is under threat, from irrational grazing utilization, climate change, and resource exploitation. We used an ensemble modeling approach to predict the current and future distribution of Stipa-dominated plant communities in three important steppe subregions; the Tibetan Alpine, Central Asian, and Black Sea-Kazakhstan subregions. We combined this with an assessment of the grazing value of 22 Stipa species, the dominant grassland species in the area, to predict how grazing value might change under future climate change predictions. We found that the effects of changing climates on grazing values differed across the three subregions. Grazing values increased in the Tibetan alpine steppe and to a lesser extent in Central Asia, but there were few changes in the Black Sea-Kazakhstan subregion. The response of different species to changing climates varied with environmental variables. Finally, our trait-based assessment of Stipa species revealed variations in grazing value, and this had major effects on the overall grazing value of the region. Our results reinforce the importance of trait-based characteristics of steppe plant species, how these traits affect grazing value, and how grazing values will change across different areas of the Eurasian steppe. Our work provides valuable insights into how different species will respond to changing climates and grazing, with important implications for sustainable management of different areas of the vast Eurasian steppe ecosystem.
Collapse
Affiliation(s)
- Ya Tu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yuanjun Zhu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China.
| | - Xiaohui Yang
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
2
|
Ma X, Wang X, Li J, Gen X, Liu X, Guo W, Liu H, Bao Y. Spatial variations of fungal community assembly and soil enzyme activity in rhizosphere of zonal Stipa species in inner Mongolia grassland. ENVIRONMENTAL RESEARCH 2024; 244:117865. [PMID: 38103776 DOI: 10.1016/j.envres.2023.117865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Rhizosphere soil fungal and enzyme activities affect the nutrient cycling of terrestrial ecosystems, and rhizosphere fungi are also important participants in the ecological process of vegetation succession, responding to changes in plant communities. Stipa is an excellent forage grass with important ecological and economic value, and has the spatial distribution pattern of floristic geographical substitution. In order to systematically investigate the synergistic response strategies of fungal communities and enzyme activities in the rhizosphere under the vegetation succession. Here we explored the turnover and assembly mechanisms of Stipa rhizosphere fungal communities and the spatial variation of metabolic activity under the succession of seven Stipa communities in northern China grassland under large scale gradients. The results indicated that the composition, abundance and diversity of fungal communities and microbial enzyme activities in rhizosphere soil differed among different Stipa species and were strikingly varied along the Stipa community changes over the geographic gradient. As the geographical distribution of Stipa community changed from east to west in grassland transect, Mortierellomycetes tended to be gradually replaced by Dothideomycetes. The null models showed that the rhizosphere fungal communities were governed primarily by the dispersal limitation of stochastic assembly processes, which showed decreased relative importance from S. grandis to S. gobica. Moreover, the MAT and MAP were the most important factors influencing the changes in the fungal community (richness, β-diversity and composition) and fungal community assembly, while SC and NP also mediated fungal community assembly processes. These findings deepen our understanding of the responses of the microbial functions and fungal community assembly processes in the rhizosphere to vegetation succession.
Collapse
Affiliation(s)
- Xiaodan Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Xingzhe Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Jingpeng Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Xiao Gen
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Xinyan Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Wei Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Haijing Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China.
| |
Collapse
|
3
|
Pérez-Anta I, Rubio E, López-Serrano FR, Garcés D, Andrés-Abellán M, Picazo M, Chebbi W, Arquero R, García-Morote FA. Transpiration Dynamics of Esparto Grass ( Macrochloa tenacissima (L.) Kunth) in a Semi-Arid Mediterranean Climate: Unraveling the Impacts of Pine Competition. PLANTS (BASEL, SWITZERLAND) 2024; 13:661. [PMID: 38475507 DOI: 10.3390/plants13050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
Macrochloa tenacissima (M. tenacissima), or esparto, is a perennial tussock grass that coexists with Pinus halepensis (P. halepensis) in semi-arid Mediterranean woodlands. This research was carried out to explore diurnal transpiration at leaf level in esparto grass under different levels of pine-esparto competition and in contrasting environmental soil water conditions. The measurement period spanned from the summer of 2020 to the spring of 2021. The relationship between transpiration and competition was conducted in open and closed P. halepensis stands, and the type of leaf (green, senescent) and the maturity of the esparto grass were taken into account. We observed a higher control of transpiration in green leaves, and the correlations between the transpiration and pine competition were noted exclusively in this type of leaf. Our results demonstrated a significant impact of pine competitors (closed stands) on the transpiration of esparto grass, particularly during seasons characterized by scenarios of high water demand: the summer drought period and the commencement of the growing and flowering period (spring). Furthermore, our findings revealed a greater response to transpiration in mature bushes compared to young ones under severe water stress, indicating a higher adaptation to drought by esparto as it ages. Although our results confirmed that PAR increased transpiration in all seasons and in both stands, which is attributable to the heliophilia of esparto grass, the site effects on transpiration could also be attributable to competition for water, especially during periods of drought. These results may have important implications for the dynamics and management of these semi-arid mixed woodlands, as well as the planning of reforestation programs aimed at restoring esparto grass formations.
Collapse
Affiliation(s)
- Iván Pérez-Anta
- Environment and Forest Resources Group, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Eva Rubio
- Applied Physics Department, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Francisco Ramón López-Serrano
- Environment and Forest Resources Group, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
- Higher Technical School of Agricultural and Forest Engineering, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Diego Garcés
- Environment and Forest Resources Group, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Manuela Andrés-Abellán
- Environment and Forest Resources Group, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
- Higher Technical School of Agricultural and Forest Engineering, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Marta Picazo
- Environment and Forest Resources Group, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Wafa Chebbi
- Environment and Forest Resources Group, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Rocío Arquero
- Environment and Forest Resources Group, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Francisco Antonio García-Morote
- Environment and Forest Resources Group, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
- Higher Technical School of Agricultural and Forest Engineering, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| |
Collapse
|
4
|
Guo A, Zuo X, Zhang S, Hu Y, Yue P, Lv P, Li X, Zhao S, Yu Q. Contrasting effects of plant inter- and intraspecific variation on community trait responses to nitrogen addition and drought in typical and meadow steppes. BMC PLANT BIOLOGY 2022; 22:90. [PMID: 35232383 PMCID: PMC8886796 DOI: 10.1186/s12870-022-03486-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Inter- and intraspecific variation in plant traits play an important role in grassland community assembly under global change scenarios. However, explorations of how these variations contribute to the responses of community traits to nitrogen (N) addition and drought in different grassland types are lacking. We measured the plant height, leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf N content (LNC) and the ratio of leaf carbon (C) to leaf N (C:N) in a typical and a meadow steppe after three years of N addition, drought and their interaction. We determined the community-weighted means (CWMs) of the six traits to quantify the relative contribution of inter- and intraspecific variation to the responses of community traits to N addition and drought in the two steppes. RESULTS The communities in the two steppes responded to N addition and the interaction by increasing the CWM of LNC and decreasing C:N. The community in the meadow steppe responded to drought through increased CWM of LNC and reduced C:N. Significant differences were observed in SLA, LDMC, LNC and C:N between the two steppes under different treatments. The SLA and LNC of the community in the meadow steppe were greater than those of the typical steppe, and the LDMC and C:N exhibited the opposite results. Moreover, variation in community traits in the typical steppe in response to N addition and drought was caused by intraspecific variation. In contrast, the shifts in community traits in the meadow steppe in response to N addition and drought were influenced by both inter- and intraspecific variation. CONCLUSIONS The results demonstrate that intraspecific variation contributed more to community functional shifts in the typical steppe than in the meadow steppe. Intraspecific variation should be considered to understand better and predict the response of typical steppe communities to global changes. The minor effects of interspecific variation on meadow steppe communities in response to environmental changes also should not be neglected.
Collapse
Affiliation(s)
- Aixia Guo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, 730000, China
| | - Xiaoan Zuo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, 730000, China.
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Senxi Zhang
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ya Hu
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, 730000, China
| | - Ping Yue
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, 730000, China
| | - Peng Lv
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, 730000, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiangyun Li
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, 730000, China
| | - Shenglong Zhao
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, 730000, China
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 10008, China
| |
Collapse
|
5
|
Ma X, Chao L, Li J, Ding Z, Wang S, Li F, Bao Y. The Distribution and Turnover of Bacterial Communities in the Root Zone of Seven Stipa Species Across an Arid and Semi-arid Steppe. Front Microbiol 2022; 12:782621. [PMID: 35003012 PMCID: PMC8741278 DOI: 10.3389/fmicb.2021.782621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
Abstract
The bacterial communities of the root-zone soil are capable of regulating vital biogeochemical cycles and the succession of plant growth. Stipa as grassland constructive species is restricted by the difference features of east–west humidity and north–south heat, which shows the population substituting distribution. The distribution, turnover, and potential driving factors and ecological significance of the root-zone bacterial community along broad spatial gradients of Stipa taxa transition remain unclear. This paper investigated seven Stipa species root-zone soils based on high-throughput sequencing combined with the measurements of multiple environmental parameters in arid and semi-arid steppe. The communities of soil bacteria in root zone had considerable turnover, and some regular variations in structure along the Stipa taxa transition are largely determined by climatic factors, vegetation coverage, and pH at a regional scale. Bacterial communities had a clear Stipa population specificity, but they were more strongly affected by the main annual precipitation, which resulted in a biogeographical distribution pattern along precipitation gradient, among which Actinobacteria, Acidobacteria, Proteobacteria, and Chloroflexi were the phyla that were most abundant. During the transformation of Stipa taxa from east to west, the trend of diversity shown by bacterial community in the root zone decreased first, and then increased sharply at S. breviflora, which was followed by continuous decreasing toward northwest afterwards. However, the richness and evenness showed an opposite trend, and α diversity had close association with altitude and pH. There would be specific and different bacterial taxa interactions in different Stipa species, in which S. krylovii had the simplest and most stable interaction network with the strongest resistance to the environment and S. breviflora had most complex and erratic. Moreover, the bacterial community was mainly affected by dispersal limitation at a certain period. These results are conducive to the prediction of sustainable ecosystem services and protection of microbial resources in a semi-arid grassland ecosystem.
Collapse
Affiliation(s)
- Xiaodan Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.,State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Lumeng Chao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.,State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Jingpeng Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.,State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Zhiying Ding
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.,State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Siyu Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.,State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Fansheng Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.,State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.,State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| |
Collapse
|
6
|
Zhang Y, He N, Yu G. Opposing shifts in distributions of chlorophyll concentration and composition in grassland under warming. Sci Rep 2021; 11:15736. [PMID: 34344961 PMCID: PMC8333091 DOI: 10.1038/s41598-021-95281-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022] Open
Abstract
Global warming has significantly altered the distribution and productivity of vegetation owing to shifts in plant functional traits. However, chlorophyll adaptations-good representative of plant production-in grasslands have not been investigated on a large scale, hindering ecological predictions of climate change. Three grassland transects with a natural temperature gradient were designed in the Tibetan, Mongolian, and Loess Plateau to describe the changes in chlorophyll under different warming scenarios for 475 species. In the three plateaus, variations and distributions of species chlorophyll concentration and composition were compared. The results showed that the means of chlorophyll concentration and composition (chlorophyll a/b) increased with the mean annual temperature. Still, their distributions shifted in opposite manners: chlorophyll concentration was distributed in a broader but more differential manner, while chlorophyll composition was distributed in a narrower but more uniform manner. Compared to chlorophyll concentration, chlorophyll composition was more conservative, with a slight shift in distribution. At the regional level, the chlorophyll concentration and composition depend on the limitations of the local climate or resources. The results implied that warming might drive shifts in grassland chlorophyll distribution mainly by alternations in species composition. Large-scale chlorophyll investigations will be useful for developing prediction techniques.
Collapse
Affiliation(s)
- Yao Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China.
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Liu Q, Bai X, Pham H, Hu J, Dinu CZ. Active Nanointerfaces Based on Enzyme Carbonic Anhydrase and Metal-Organic Framework for Carbon Dioxide Reduction. NANOMATERIALS 2021; 11:nano11041008. [PMID: 33920833 PMCID: PMC8071118 DOI: 10.3390/nano11041008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023]
Abstract
Carbonic anhydrases are enzymes capable of transforming carbon dioxide into bicarbonate to maintain functionality of biological systems. Synthetic isolation and implementation of carbonic anhydrases into membrane have recently raised hopes for emerging and efficient strategies that could reduce greenhouse emission and the footprint of anthropogenic activities. However, implementation of such enzymes is currently challenged by the resulting membrane’s wetting capability, overall membrane performance for gas sensing, adsorption and transformation, and by the low solubility of carbon dioxide in water, the required medium for enzyme functionality. We developed the next generation of enzyme-based interfaces capable to efficiently adsorb and reduce carbon dioxide at room temperature. For this, we integrated carbonic anhydrase with a hydrophilic, user-synthesized metal–organic framework; we showed how the framework’s porosity and controlled morphology contribute to viable enzyme binding to create functional surfaces for the adsorption and reduction of carbon dioxide. Our analysis based on electron and atomic microscopy, infrared spectroscopy, and colorimetric assays demonstrated the functionality of such interfaces, while Brunauer–Emmett–Teller analysis and gas chromatography analysis allowed additional evaluation of the efficiency of carbon dioxide adsorption and reduction. Our study is expected to impact the design and development of active interfaces based on enzymes to be used as green approaches for carbon dioxide transformation and mitigation of global anthropogenic activities.
Collapse
|
8
|
Liu Y, Xu M, Li G, Wang M, Li Z, De Boeck HJ. Changes of Aboveground and Belowground Biomass Allocation in Four Dominant Grassland Species Across a Precipitation Gradient. FRONTIERS IN PLANT SCIENCE 2021; 12:650802. [PMID: 33927740 PMCID: PMC8076907 DOI: 10.3389/fpls.2021.650802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Climate change is predicted to affect plant growth, but also the allocation of biomass to aboveground and belowground plant parts. To date, studies have mostly focused on aboveground biomass, while belowground biomass and allocation patterns have received less attention. We investigated changes in biomass allocation along a controlled gradient of precipitation in an experiment with four plant species (Leymus chinensis, Stipa grandis, Artemisia frigida, and Potentilla acaulis) dominant in Inner Mongolia steppe. Results showed that aboveground biomass, belowground biomass and total biomass all increased with increasing growing season precipitation, as expected in this water-limited ecosystem. Biomass allocation patterns also changed along the precipitation gradient, but significant variation between species was apparent. Specifically, the belowground biomass: aboveground biomass ratio (i.e., B:A ratio) of S. grandis was not impacted by precipitation amount, while B:A ratios of the other three species changed in different ways along the gradient. Some of these differences in allocation strategies may be related to morphological differences, specifically, the presence of rhizomes or stolons, though no consistent patterns emerged. Isometric partitioning, i.e., constant allocation of biomass aboveground and belowground, seemed to occur for one species (S. grandis), but not for the three rhizome or stolon-forming ones. Indeed, for these species, the slope of the allometric regression between log-transformed belowground biomass and log-transformed aboveground biomass significantly differed from 1.0 and B:A ratios changed along the precipitation gradient. As changes in biomass allocation can affect ecosystem functioning and services, our results can be used as a basis for further studies into allocation patterns, especially in a context of environmental change.
Collapse
Affiliation(s)
- Yongjie Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mingjie Xu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Guoe Li
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mingxia Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhenqing Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hans J. De Boeck
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
9
|
Hu Y, Zuo X, Yue P, Zhao S, Guo X, Li X, Medina-Roldán E. Increased Precipitation Shapes Relationship between Biochemical and Functional Traits of Stipa glareosa in Grass-Dominated Rather than Shrub-Dominated Community in a Desert Steppe. PLANTS 2020; 9:plants9111463. [PMID: 33138183 PMCID: PMC7692965 DOI: 10.3390/plants9111463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022]
Abstract
Understanding the effects of precipitation variations on plant biochemical and functional traits is crucial to predict plant adaptation to future climate changes. The dominant species, Stipa glareosa, plays an important role in maintaining the structure and function of plant communities in the desert steppe, Inner Mongolia. However, little is known about how altered precipitation affects biochemical and functional traits of S. glareosa in different communities in the desert steppe. Here, we examined the responses of biochemical and functional traits of S. glareosa in shrub- and grass-dominated communities to experimentally increased precipitation (control, +20%, +40%, and +60%). We found that +40% and +60% increased plant height and leaf dry matter content (LDMC) and decreased specific leaf area (SLA) of S. glareosa in grass community. For biochemical traits in grass community, +60% decreased the contents of protein and chlorophyll b (Cb), while +40% increased the relative electrical conductivity and superoxide dismutase. Additionally, +20% increased LDMC and malondialaenyde, and decreased SLA and protein in shrub community. Chlorophyll a, Cb, carotenoids, protein and superoxide dismutase in the grass community differed with shrub community, while +60% caused differences in SLA, LDMC, leaf carbon content, malondialaenyde and peroxidase between two communities. The positive or negative linear patterns were observed between different functional and biochemical traits in grass- rather than shrub-community. Soil water content explained changes in some biochemical traits in the grass community, but not for functional traits. These results suggest that increased precipitation can affect functional traits of S. glareosa in the grass community by altering biochemical traits caused by soil water content. The biochemical and functional traits of S. glareosa were more sensitive to extreme precipitation in grass- than shrub-community in the desert steppe. Our study highlights the important differences in adaptive strategies of S. glareosa in different plant communities at the same site to precipitation changes.
Collapse
Affiliation(s)
- Ya Hu
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; (Y.H.); (P.Y.); (S.Z.); (X.G.); (X.L.)
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoan Zuo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; (Y.H.); (P.Y.); (S.Z.); (X.G.); (X.L.)
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China
- Correspondence: ; Tel.: +86-139-1931-6226
| | - Ping Yue
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; (Y.H.); (P.Y.); (S.Z.); (X.G.); (X.L.)
| | - Shenglong Zhao
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; (Y.H.); (P.Y.); (S.Z.); (X.G.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxin Guo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; (Y.H.); (P.Y.); (S.Z.); (X.G.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyun Li
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; (Y.H.); (P.Y.); (S.Z.); (X.G.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eduardo Medina-Roldán
- Department of Health and Environmental Science, Xi’an Jiaotong-Liverpool University, Suzhou 215000, China;
| |
Collapse
|
10
|
Yuan M, Zhao L, Lin A, Wang L, Li Q, She D, Qu S. Impacts of preseason drought on vegetation spring phenology across the Northeast China Transect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140297. [PMID: 32806362 DOI: 10.1016/j.scitotenv.2020.140297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Vegetation phenology is undergoing profound changes in response to the recent increases in the intensity and frequency of drought events. However, the mechanisms by which drought affects the start of the growing season (SGS) are poorly understood particularly in arid and semi-arid regions. Here, we identified varying degrees of preseason drought events and analyzed the sensitivity of the SGS to preseason drought across the Northeast China Transect (NECT). Our results showed that drought caused a delayed SGS in grassland ecosystems, but an advanced SGS within forest ecosystems. These contrasting responses to preseason drought reflected different adaptive strategies between vegetation types. The SGS was shown to be highly sensitive to short timescales drought (1-3 months) in semi-arid grasslands where annual precipitation is 200-300 mm (i.e. SAGE200-300). Biomes within this region were found to be most vulnerable out of all the ecosystems to drought. Given the frequent nature of droughts in the mid-latitudes, a drought early warning system was recommended accompanied by improved modeling of how the SGS will be affected by intensified drought under future climate change.
Collapse
Affiliation(s)
- Moxi Yuan
- School of resources and Environmental Sciences, Wuhan University, Wuhan 430079, PR China
| | - Lin Zhao
- School of resources and Environmental Sciences, Wuhan University, Wuhan 430079, PR China
| | - Aiwen Lin
- School of resources and Environmental Sciences, Wuhan University, Wuhan 430079, PR China.
| | - Lunche Wang
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Qingjun Li
- School of resources and Environmental Sciences, Wuhan University, Wuhan 430079, PR China
| | - Dunxian She
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, PR China; Hubei Provincial Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, PR China
| | - Sai Qu
- School of resources and Environmental Sciences, Wuhan University, Wuhan 430079, PR China
| |
Collapse
|
11
|
Zhang Y, Li Y, Wang R, Xu L, Li M, Liu Z, Wu Z, Zhang J, Yu G, He N. Spatial Variation of Leaf Chlorophyll in Northern Hemisphere Grasslands. FRONTIERS IN PLANT SCIENCE 2020; 11:1244. [PMID: 32903418 PMCID: PMC7434964 DOI: 10.3389/fpls.2020.01244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Chlorophyll is the molecular basis for the function of photosystems and is also a promising tool for ecological prediction. However, the large-scale patterns of chlorophyll variation in grasslands remain poorly understood. We performed consistent measurements of chlorophyll a, b, a+b, and the a:b ratio (chlorophyll a/b) for 421 species across northern hemisphere grassland transects, recorded their distributions, variations, and influencing factors, and examined their relationships with leaf nitrogen. The results showed that the distributional ranges were 0.52-28.33 (mean 5.49) mg·g-1 dry weight, 0.15-12.11 (mean 1.83) mg·g-1 dry weight, 0.67-39.29 (mean 7.32) mg·g-1 dry weight, and 1.28-7.84 (mean 3.02) for chlorophyll a, b, a+b, and a/b, respectively. The chlorophyll averages differed among regions (higher in the Loess Plateau and the Mongolian Plateau than in the Tibetan Plateau), grassland types (desert grasslands > meadow > typical grasslands), life forms, life spans, and taxonomies. In the entire northern hemisphere grassland, chlorophyll concentrations and chlorophyll a/b were negatively correlated to photosynthetically active radiation and the soil N:P ratio, and positively correlated to the mean annual temperatures. These results implied that chlorophyll in grasslands was shaped by the layered structure of grasses, distinct plateau environments, and phylogeny. The allocation patterns of leaf nitrogen to chlorophyll differed among regions and grassland types, showing that caution is required if simply relating single leaf N or chlorophyll to productivity separately. These findings enhance our understanding of chlorophyll in natural grasslands on a large scale, as well as providing information for ecological predictive models.
Collapse
Affiliation(s)
- Yao Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Ruomeng Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Li Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Mingxu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zhaogang Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zhenliang Wu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jiahui Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
12
|
Lv X, He Q, Zhou G. Contrasting responses of steppe Stipa ssp. to warming and precipitation variability. Ecol Evol 2019; 9:9061-9075. [PMID: 31463004 PMCID: PMC6706196 DOI: 10.1002/ece3.5452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/11/2022] Open
Abstract
Climate change, characterized by warming and precipitation variability, restricted the growth of plants in arid and semiarid areas, and various functional traits are impacted differently. Comparing responses of functional traits to warming and precipitation variability and determining critical water threshold of dominate steppe grasses from Inner Mongolia facilitates the identification and monitoring of water stress effects. A combination of warming (ambient temperature, +1.5°C and +2.0°C) and varying precipitation (-30%, -15%, ambient, +15%, and +30%) manipulation experiments were performed on four Stipa species (S. baicalensis, S. bungeana, S. grandis, and S. breviflora) from Inner Mongolia steppe. The results showed that the functional traits of the four grasses differed in their responses to precipitation, but they shared common sensitive traits (root/shoot ratio, R/S, and specific leaf area; SLA) under ambient temperature condition. Warming increased the response of the four grasses to changing precipitation, and these differences in functional traits resulted in changes to their total biomass, with leaf area, SLA, and R/S making the largest contributions. Critical water thresholds of the four grasses were identified, and warming led to their higher optimum precipitation requirements. The four steppe grasses were able to adapt better to mild drought (summer precipitation decreased by 12%-28%) when warming 1.5°C rather than 2.0°C. These results indicated that if the Paris Agreement to limit global warming to 1.5°C will be accomplished, this will increase the probability for sustained viability of the Stipa steppes in the next 50-100 years.
Collapse
Affiliation(s)
- Xiaomin Lv
- State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
| | - Qijin He
- College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Guangsheng Zhou
- State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
- Collaborative Innovation Center on Forecast Meteorological Disaster Warning and AssessmentNanjing University of Information Science & TechnologyNanjingChina
| |
Collapse
|
13
|
Climatic Suitability of the Geographic Distribution of Stipa breviflora in Chinese Temperate Grassland under Climate Change. SUSTAINABILITY 2018. [DOI: 10.3390/su10103767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stipa breviflora, a dominant species of Chinese temperate grassland, is vulnerable to climate change. A quantitative description of the changes in the geographic distribution of S. breviflora under climate change can provide a reference for potential changes in Chinese temperate grassland and the necessary countermeasures to cope with climate change. In this study, the relationship between the geographic distribution of S. breviflora and the climate, and its inter-decadal change in geographic distribution and climatic suitability from 1961 to 2040 were investigated. The results showed that S. breviflora’s geographic distribution could be simulated very well by the MaxEnt model, and its climatic suitability could be divided into four levels—most suitable, medium suitable, less suitable, and unsuitable areas—based on its existence probability from the MaxEnt model. In the past 50 years, the total climate-suitable area for S. breviflora’s potential geographical distribution exhibited an obvious increase and a trend of northward expansion, which was larger than the current distribution area. The total climate-suitable area would increase by about 6.7% and decrease by 11.5% from 2011–2040 under RCP4.5 and RCP8.5 climate scenarios, respectively; however, the most suitable area increased and moved to western areas of Tibet, Qinghai, and Ningxia. The results revealed that the distribution area of S. breviflora still has greater potential for expansion.
Collapse
|
14
|
Li Z, Bagan H, Yamagata Y. Analysis of spatiotemporal land cover changes in Inner Mongolia using self-organizing map neural network and grid cells method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:1180-1191. [PMID: 29913580 DOI: 10.1016/j.scitotenv.2018.04.361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Land use has changed dramatically in the Inner Mongolia Autonomous Region because of rapid economic growth and human disturbances. However, little information is available about the medium- and long-term land use changes in this region. The effects of ecological recovery policies have also been evaluated rarely. In this study, we employed the self-organizing map neural network method to identify the land cover changes in Inner Mongolia between 2000 and 2014. MOD13Q1, Landsat, and DMSP/OLS night-time light data were used as the data resources. The dynamic change map was characterized using the grid cell method. The results showed that urban area of Inner Mongolia increased by more than five times during the 15-year study period, while the mining area also increased. In addition, 35.3% of the farmland was changed into grassland, which may have been caused by the "Grain to Green" policy. The most significant environmental issue in Inner Mongolia is the loss of wetland. >40% of the wetland was converted into other land use types between 2000 and 2014. Grassland increased by 6.05%, but areas of open water and woodland remained about the same. In terms of the geographical distribution, cropland increased in the eastern and middle parts of the region. The transformation from wetland to grassland mainly occurred in the north. Grassland degradation occurred in the west. Thus, environmental policy has resulted in some ecological improvements in Inner Mongolia. However, new environmental problems associated with rapid economic development should be addressed in a timely manner.
Collapse
Affiliation(s)
- Zhaoling Li
- Center for Global Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0053, Japan
| | - Hasi Bagan
- Institute of Urban Studies, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Yoshiki Yamagata
- Center for Global Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0053, Japan
| |
Collapse
|
15
|
She W, Zhang Y, Qin S, Wu B, Bai Y. Increased Precipitation and Nitrogen Alter Shrub Architecture in a Desert Shrubland: Implications for Primary Production. FRONTIERS IN PLANT SCIENCE 2016; 7:1908. [PMID: 28066468 PMCID: PMC5167761 DOI: 10.3389/fpls.2016.01908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 12/01/2016] [Indexed: 06/02/2023]
Abstract
Shrublands are one of the major types of ecosystems in the desert regions of northern China, which is expected to be substantially more sensitive to global environmental changes, such as widespread nitrogen enrichment and precipitation changes, than other ecosystem types. However, the interactive effects of nitrogen and precipitation on them remain poorly understood. We conducted a fully factorial field experiment simulating three levels of precipitation (ambient, +20%, +40%) and with two levels of nitrogen deposition (ambient, 60 kg N ha-1 yr-1) in a desert shrubland in the Mu Us Desert of northern China. We used plant architectural traits (plant cover, volume, twig size and number) as proxies to predict aboveground net primary productivity (ANPP) of the dominant shrub (Artemisia ordosica Krasch), and assessed the responses of plant productivity and architectural traits to water and nitrogen addition. We found significant differences in twig size and number of A. ordosica under water and nitrogen treatments but not in shrub cover/volume, which suggest that twig size and number of the shrub species were more sensitive to environmental changes. The productivity of the overall community was sensitive to increased precipitation and nitrogen, and shrubs played a more important role than herbaceous plants in driving productivity in this ecosystem. Precipitation- and nitrogen-induced increases in vegetation production were positively associated with increases in twig size and number of the dominant shrub. Water addition enhanced the twig length of A. ordosica, while nitrogen addition resulted in increased twig density (the number of twigs per square meter). Water and nitrogen interacted to affect twig length, but not twig number and shrub ANPP. The trade-off, defined as negative covariance between twig size and number, was likely the mechanism underlying the responses of twig length and shrub ANPP to water and nitrogen interactions. Our results highlight the sensitivity of twig size and number as indicators to estimate shrub production and the mechanism underpinning desert shrub ANPP response to global environmental changes.
Collapse
Affiliation(s)
- Weiwei She
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry UniversityBeijing, China
| | - Yuqing Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry UniversityBeijing, China
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry UniversityBeijing, China
| | - Shugao Qin
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry UniversityBeijing, China
- Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry UniversityBeijing, China
| | - Bin Wu
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry UniversityBeijing, China
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry UniversityBeijing, China
| | - Yuxuan Bai
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry UniversityBeijing, China
| |
Collapse
|