1
|
Zheng R, Zhao K, Chen J, Zhu X, Peng Y, Shen M, Liu ZJ, Peng D, Zhou Y. Genomic signatures of SnRKs highlighted conserved evolution within orchids and stress responses through ABA signaling in the Cymbidium ensifolium. BMC PLANT BIOLOGY 2025; 25:277. [PMID: 40025443 PMCID: PMC11874761 DOI: 10.1186/s12870-025-06280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Sucrose non-fermenting 1-related protein kinases (SnRKs) are crucial for modulating plant responses to abiotic stresses, linking metabolism with stress signaling pathways. Investigating the roles and stress responses of SnRKs in plants paves the way for developing stress-tolerant strategies in orchid species. Here, 362 SnRK members were identified from nine current orchid genomes, highlighting the conservation of these genes in evolution. Among these, 33 CeSnRKs were found across 20 chromosomes of C. ensifolium genome. Multiple duplication events increased the complexity of CeSnRKs during independent evolution. Moreover, distinct functional domains beyond the kinase domain differentiated the subfamilies. These multi-copy members existed tissue specific expressions falling into 6 main trends, especially CeSnRK1, CeCIPK9, CeCIPK23 displayed a strict floral expression. ABA-related elements were enriched in the promoters of CeSnRKs, and stress-related miRNA binding sites were identified on partial CeSnRKs. Consequently, most CeSnRKs exhibited up-regulated expression during ABA treatment. Several genes, such as CeSnRK2.1 and CeCIPK28 involved growth and development at different times and various tissues. The up-regulation of SnRK2.1, along with high expression of SnRK1 and CIPK27 under drought stress, and the differential expression patterns of CeSnRKs under cold stress, underscore the involvement of CeSnRK genes in different stress responses. Additionally, the diverse interactions of CeSnRKs with proteins highlighted a multifaceted functional network.These findings offer valuable insights for the future functional characterization formation of CeSnRKs and the adaptive evolution of genes in orchids.
Collapse
Affiliation(s)
- Ruiyue Zheng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Jiemin Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuanyi Zhu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yukun Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingli Shen
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Donghui Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuzhen Zhou
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Mycorrhizal Fungal Partners Remain Constant during a Root Lifecycle of Pleione bulbocodioides (Orchidaceae). J Fungi (Basel) 2021; 7:jof7110994. [PMID: 34829281 PMCID: PMC8621020 DOI: 10.3390/jof7110994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Mycorrhizal mutualisms are vital for orchids through germination to adulthood. Fungal species diversity and community composition vary across seasons and plant development stages and affect plant survival, adaptation, and community maintenance. Knowledge of the temporal turnover of mycorrhizal fungi (OMF) remains poorly understood in the eco-physiologically diverse orchids (especially in epiphytic orchids), although it is important to understand the function and adaptation of mycorrhizae. Some species of Pleione are epiphytic plants with annual roots and may recruit different fungal partners during their root lifecycle. Based on continuous samplings of Pleione bulbocodioides during a whole root lifecycle, we characterized the fungal temporal dynamics using Illumina sequencing of the ITS2 region. Our data showed that the plants of P. bulbocodioides were quickly colonized by OMF at root emergence and had a constant OMF composition throughout one root lifecycle, although the OMF richness declined with root aging after a peak occurrence during root elongation. In contrast, the richness of root-inhabiting fungal endophytes kept increasing with root aging and more drastic turnovers were found in their species compositions. Our findings of OMF temporal turnover contribute to further understanding of mycorrhizal associations and adaptation of Orchidaceae and will benefit orchid resource conservation and utilization.
Collapse
|
3
|
Zhang C, Chen J, Huang W, Song X, Niu J. Transcriptomics and Metabolomics Reveal Purine and Phenylpropanoid Metabolism Response to Drought Stress in Dendrobium sinense, an Endemic Orchid Species in Hainan Island. Front Genet 2021; 12:692702. [PMID: 34276795 PMCID: PMC8283770 DOI: 10.3389/fgene.2021.692702] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022] Open
Abstract
Drought stress is a bottleneck factor for plant growth and development, especially in epiphytic orchids that absorb moisture mainly from the air. Recent studies have suggested that there are complex transcriptional regulatory networks related to drought stress in Dendrobium sinense. In this study, the transcription and metabolite alterations involved in drought stress response in D. sinense were investigated through RNA-seq and metabolomics. A total of 856 metabolites were identified from stressed and control samples, with 391 metabolites showing significant differences. With PacBio and Illumina RNA sequencing, 72,969 genes were obtained with a mean length of 2,486 bp, and 622 differentially expressed genes (DEGs) were identified. Correlation analysis showed 7 differential genes, and 39 differential metabolites were involved in interaction networks. The network analysis of differential genes and metabolites suggested that the pathways of purine metabolism and phenylpropanoid biosynthesis may play an important role in drought response in D. sinense. These results provide new insights and reference data for culturally important medicinal plants and the protection of endangered orchids.
Collapse
Affiliation(s)
- Cuili Zhang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Jinhui Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China.,Engineering Research Center of Rare and Precious Tree Species in Hainan Province, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Weixia Huang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Xiqiang Song
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Jun Niu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| |
Collapse
|
4
|
Qin J, Zhang W, Zhang SB, Wang JH. Similar mycorrhizal fungal communities associated with epiphytic and lithophytic orchids of Coelogyne corymbosa. PLANT DIVERSITY 2020; 42:362-369. [PMID: 33134620 PMCID: PMC7584797 DOI: 10.1016/j.pld.2020.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 05/04/2023]
Abstract
Mycorrhizal fungi are essential for the growth and development of both epiphytic (growing on trees) and lithophytic (growing on rocks) orchids. Previous studies indicate that in lowland tropical areas, orchid mycorrhizal fungal compositions are correlated with the life form (i.e., epiphytic, lithophytic, or terrestrial) of their host plants. We therefore tested if a similar correlation exists in an orchid distributed at higher elevations. Coelogyne corymbosa is an endangered ornamental orchid species that can be found as a lithophyte and epiphyte in subtropical to subalpine areas. Based on high-throughput sequencing of the fungal internal transcribed spacer 2 (ITS2)-rDNA region of mycorrhizae of C. corymbosa, we detected 73 putative mycorrhizal fungal Operational Taxonomic Units (OTUs). The OTUs of two dominant lineages (Cantharellales and Sebacinales) detected from C. corymbosa are phylogenetically different from those of other species within the genus Coelogyne, indicating that different orchid species prefer specific mycorrhizal fungi. We also found that the Non-metric multidimensional scaling (NMDS) plots of orchid mycorrhizal fungi were not clustered with life form, the variations among orchid mycorrhizal fungal communities of different life forms were not significant, and most of the OTUs detected from epiphytic individuals were shared by the lithophytic plants, suggesting that orchid mycorrhizal associations of C. corymbosa were not affected by life form. These findings provide novel insights into mycorrhizal associations with endangered ornamental orchids.
Collapse
Affiliation(s)
- Jiao Qin
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| | - Wei Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| | - Ji-Hua Wang
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
- Corresponding author.
| |
Collapse
|
5
|
Huang G, Li C, Li Y. Phenological responses to nitrogen and water addition are linked to plant growth patterns in a desert herbaceous community. Ecol Evol 2018; 8:5139-5152. [PMID: 29876088 PMCID: PMC5980538 DOI: 10.1002/ece3.4001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 02/13/2018] [Accepted: 02/25/2018] [Indexed: 02/03/2023] Open
Abstract
Increases in nitrogen (N) deposition and variation in precipitation have been occurring in temperate deserts; however, little information is available regarding plant phenological responses to environmental cues and their relationships with plant growth pattern in desert ecosystems. In this study, plant phenology and growth of six annuals in response to N and water addition were monitored throughout two consecutive growing seasons in 2011 and 2012 in a temperate desert in northwestern China. The effects of N and water addition on reproductive phenology differed among plant species. N and water addition consistently advanced the flowering onset time and fruiting time of four spring ephemerals; however, their effects on two spring-summer annuals were inconsistent, with advances being noted in one species and delays in another. N and water addition alone increased plant height, relative growth rate, leaf number, flower number, and individual biomass, while their combinative effects on plant growth and reproductive phenology were dependent on species. Multiple regression analysis showed that flowering onset time was negatively correlated with relative growth rate of two species, and negatively correlated with maximum plant height of the other four species. Our study demonstrates that phenological responses to increasing precipitation and N deposition varied in annuals with different life histories, whereby the effects of climate change on plant growth rate were related to reproductive phenology. Desert annuals that were able to accelerate growth rate under increasing soil resource availability tended to advance their flowering onset time to escape drought later in the growing season. This study promotes our understanding of the responses of temperate desert annuals to increasing precipitation and N deposition in this desert.
Collapse
Affiliation(s)
- Gang Huang
- State Key Lab of Desert and Oasis EcologyXinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiXinjiangChina
| | - Chen‐hua Li
- State Key Lab of Desert and Oasis EcologyXinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiXinjiangChina
| | - Yan Li
- State Key Lab of Desert and Oasis EcologyXinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiXinjiangChina
| |
Collapse
|
6
|
Li JW, Chen XD, Hu XY, Ma L, Zhang SB. Comparative physiological and proteomic analyses reveal different adaptive strategies by Cymbidium sinense and C. tracyanum to drought. PLANTA 2018; 247:69-97. [PMID: 28871432 DOI: 10.1007/s00425-017-2768-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
A terrestrial orchid, Cymbidium sinense appears to utilizes "remedy strategy", while an epiphytic orchid, C. tracyanum , employs a "precaution strategy" to drought stress based on morphological, physiological and proteomic analysis. Drought condition influences plant growth and productivity. Although the mechanism by which plants adapt to this abiotic stress has been studied extensively, the water-adaptive strategies of epiphytes grown in water-limited habitats remain undefined. Here, root and leaf anatomies, dynamic changes in physiological and proteomic responses during periods of drought stress and recovery studied in an epiphytic orchid (Cymbidium tracyanum) and a terrestrial orchid (C. sinense) to investigate their strategies for coping with drought. Compared with C. sinense, C. tracyanum showed stronger drought-resistant adaptive characteristics to drought because its leaves had more negative water potential at turgor loss point and roots had higher proportion of velamen radicum thickness. Although both species demonstrated quick recovery of photosynthesis after stress treatment, they differed in physiological and proteomic responses. We detected and functionally characterized 103 differentially expressed proteins in C. sinense and 104 proteins in C. tracyanum. These proteins were mainly involved in carbon and energy metabolism, photosynthesis, and defense responses. The up-regulated expression of plastid fibrillin may have contributed to the marked accumulation of jasmonates only in stressed C. sinense, while ferredoxin-NADP reductase up-regulation was only found in C. tracyanum which possibly related to the stimulation of cyclic electron flow that is linked with photoprotection. These physiological and proteomic performances suggest distinct adaptive strategies to drought stress between C. sinense (remedy strategy) and C. tracyanum (precaution strategy). Our findings may help improve our understanding about the ecological adaptation of epiphytic orchids.
Collapse
Affiliation(s)
- Jia-Wei Li
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Dong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiang-Yang Hu
- College of Life Science, Shanghai University, Shanghai, 200444, China
| | - Lan Ma
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| | - Shi-Bao Zhang
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China.
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China.
| |
Collapse
|