1
|
Djari A, Madignier G, Di Valentin O, Gillet T, Frasse P, Djouhri A, Hu G, Julliard S, Liu M, Zhang Y, Regad F, Pirrello J, Maza E, Bouzayen M. Haplotype-resolved genome assembly and implementation of VitExpress, an open interactive transcriptomic platform for grapevine. Proc Natl Acad Sci U S A 2024; 121:e2403750121. [PMID: 38805269 PMCID: PMC11161759 DOI: 10.1073/pnas.2403750121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous Vitis vinifera cultivars by combining high-fidelity long-read sequencing and high-throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar. The deletions/insertions, inversions, translocations, and duplications provide insight into the evolutionary history and parental relationship among grape varieties. Integration of de novo single long-read sequencing of full-length transcript isoforms (Iso-Seq) yielded a highly improved genome annotation. Given its higher contiguity, and the robustness of the IsoSeq-based annotation, the Chasselas assembly meets the standard to become the annotated reference genome for V. vinifera. Building on these resources, we developed VitExpress, an open interactive transcriptomic platform, that provides a genome browser and integrated web tools for expression profiling, and a set of statistical tools (StatTools) for the identification of highly correlated genes. Implementation of the correlation finder tool for MybA1, a major regulator of the anthocyanin pathway, identified candidate genes associated with anthocyanin metabolism, whose expression patterns were experimentally validated as discriminating between black and white grapes. These resources and innovative tools for mining genome-related data are anticipated to foster advances in several areas of grapevine research.
Collapse
Affiliation(s)
- Anis Djari
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| | - Guillaume Madignier
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
- Fondation Jean Poupelain, Cognac, Javrezac16100, France
| | - Olivia Di Valentin
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| | - Thibault Gillet
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| | - Pierre Frasse
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| | - Amel Djouhri
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| | - Guojian Hu
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
- Fondation Jean Poupelain, Cognac, Javrezac16100, France
| | - Sebastien Julliard
- Conservatoire du vignoble charentais, Institut de Formation de Richemont, Cherves-Richemont16370, France
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu610065, China
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu610065, China
| | - Farid Regad
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| | - Elie Maza
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales–Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, Université Paul Sabatier, Institut Polytechnique de Toulouse, Auzeville Tolosan31326, France
| |
Collapse
|
2
|
Savoi S, Santiago A, Orduña L, Matus JT. Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. FRONTIERS IN PLANT SCIENCE 2022; 13:937927. [PMID: 36340350 PMCID: PMC9630917 DOI: 10.3389/fpls.2022.937927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Transcriptomics and metabolomics are methodologies being increasingly chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing either on plant and fruit development or on interaction with abiotic or biotic factors. Currently, the integration of these approaches has become of utmost relevance when studying key plant physiological and metabolic processes. The results from these analyses can undoubtedly be incorporated in breeding programs whereby genes associated with better fruit quality (e.g., those enhancing the accumulation of health-promoting compounds) or with stress resistance (e.g., those regulating beneficial responses to environmental transition) can be used as selection markers in crop improvement programs. Despite the vast amount of data being generated, integrative transcriptome/metabolome meta-analyses (i.e., the joint analysis of several studies) have not yet been fully accomplished in this species, mainly due to particular specificities of metabolomic studies, such as differences in data acquisition (i.e., different compounds being investigated), unappropriated and unstandardized metadata, or simply no deposition of data in public repositories. These meta-analyses require a high computational capacity for data mining a priori, but they also need appropriate tools to explore and visualize the integrated results. This perspective article explores the universe of omics studies conducted in V. vinifera, focusing on fruit-transcriptome and metabolome analyses as leading approaches to understand berry physiology, secondary metabolism, and quality. Moreover, we show how omics data can be integrated in a simple format and offered to the research community as a web resource, giving the chance to inspect potential gene-to-gene and gene-to-metabolite relationships that can later be tested in hypothesis-driven research. In the frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we present the first grapevine transcriptomic and metabolomic integrated database (TransMetaDb) developed within the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz). This tool also enables the user to conduct and explore meta-analyses utilizing different experiments, therefore hopefully motivating the community to generate Findable, Accessible, Interoperable and Reusable (F.A.I.R.) data to be included in the future.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
3
|
Grimplet J. Genomic and Bioinformatic Resources for Perennial Fruit Species. Curr Genomics 2022; 23:217-233. [PMID: 36777875 PMCID: PMC9875543 DOI: 10.2174/1389202923666220428102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022] Open
Abstract
In the post-genomic era, data management and development of bioinformatic tools are critical for the adequate exploitation of genomics data. In this review, we address the actual situation for the subset of crops represented by the perennial fruit species. The agronomical singularity of these species compared to plant and crop model species provides significant challenges on the implementation of good practices generally not addressed in other species. Studies are usually performed over several years in non-controlled environments, usage of rootstock is common, and breeders heavily rely on vegetative propagation. A reference genome is now available for all the major species as well as many members of the economically important genera for breeding purposes. Development of pangenome for these species is beginning to gain momentum which will require a substantial effort in term of bioinformatic tool development. The available tools for genome annotation and functional analysis will also be presented.
Collapse
Affiliation(s)
- Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Hortofruticultura, Gobierno de Aragón, Avda. Montañana, Zaragoza, Spain
- Instituto Agroalimentario de Aragón–IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet, Zaragoza, Spain
| |
Collapse
|
4
|
Lee AJ, Reiter T, Doing G, Oh J, Hogan DA, Greene CS. Using genome-wide expression compendia to study microorganisms. Comput Struct Biotechnol J 2022; 20:4315-4324. [PMID: 36016717 PMCID: PMC9396250 DOI: 10.1016/j.csbj.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/07/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022] Open
Abstract
A gene expression compendium is a heterogeneous collection of gene expression experiments assembled from data collected for diverse purposes. The widely varied experimental conditions and genetic backgrounds across samples creates a tremendous opportunity for gaining a systems level understanding of the transcriptional responses that influence phenotypes. Variety in experimental design is particularly important for studying microbes, where the transcriptional responses integrate many signals and demonstrate plasticity across strains including response to what nutrients are available and what microbes are present. Advances in high-throughput measurement technology have made it feasible to construct compendia for many microbes. In this review we discuss how these compendia are constructed and analyzed to reveal transcriptional patterns.
Collapse
Affiliation(s)
- Alexandra J. Lee
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Taylor Reiter
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, CO, USA
| | - Georgia Doing
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, NH, USA
| | - Casey S. Greene
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, CO, USA
| |
Collapse
|
5
|
Moretto M, Sonego P, Pilati S, Matus JT, Costantini L, Malacarne G, Engelen K. A COMPASS for VESPUCCI: A FAIR Way to Explore the Grapevine Transcriptomic Landscape. FRONTIERS IN PLANT SCIENCE 2022; 13:815443. [PMID: 35283898 PMCID: PMC8908374 DOI: 10.3389/fpls.2022.815443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Successfully integrating transcriptomic experiments is a challenging task with the ultimate goal of analyzing gene expression data in the broader context of all available measurements, all from a single point of access. In its second major release VESPUCCI, the integrated database of gene expression data for grapevine, has been updated to be FAIR-compliant, employing standards and created with open-source technologies. It includes all public grapevine gene expression experiments from both microarray and RNA-seq platforms. Transcriptomic data can be accessed in multiple ways through the newly developed COMPASS GraphQL interface, while the expression values are normalized using different methodologies to flexibly satisfy different analysis requirements. Sample annotations are manually curated and use standard formats and ontologies. The updated version of VESPUCCI provides easy querying and analyzing of integrated grapevine gene expression (meta)data and can be seamlessly embedded in any analysis workflow or tools. VESPUCCI is freely accessible and offers several ways of interaction, depending on the specific goals and purposes and/or user expertise; an overview can be found at https://vespucci.readthedocs.io/.
Collapse
Affiliation(s)
- Marco Moretto
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Paolo Sonego
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Stefania Pilati
- Unit of Plant Biology and Physiology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Laura Costantini
- Unit of Grapevine Genetics and Breeding, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Giulia Malacarne
- Unit of Plant Biology and Physiology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Kristof Engelen
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
6
|
Pirrello C, Malacarne G, Moretto M, Lenzi L, Perazzolli M, Zeilmaker T, Van den Ackerveken G, Pilati S, Moser C, Giacomelli L. Grapevine DMR6-1 Is a Candidate Gene for Susceptibility to Downy Mildew. Biomolecules 2022; 12:182. [PMID: 35204683 PMCID: PMC8961545 DOI: 10.3390/biom12020182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Grapevine (Vitis vinifera) is a valuable crop in Europe for both economical and cultural reasons, but highly susceptible to Downy mildew (DM). The generation of resistant vines is of critical importance for a sustainable viticulture and can be achieved either by introgression of resistance genes in susceptible varieties or by mutation of Susceptibility (S) genes, e.g., by gene editing. This second approach offers several advantages: it maintains the genetic identity of cultivars otherwise disrupted by crossing and generally results in a broad-spectrum and durable resistance, but it is hindered by the poor knowledge about S genes in grapevines. Candidate S genes are Downy mildew Resistance 6 (DMR6) and DMR6-Like Oxygenases (DLOs), whose mutations confer resistance to DM in Arabidopsis. In this work, we show that grapevine VviDMR6-1 complements the Arabidopsis dmr6-1 resistant mutant. We studied the expression of grapevine VviDMR6 and VviDLO genes in different organs and in response to the DM causative agent Plasmopara viticola. Through an automated evaluation of causal relationships among genes, we show that VviDMR6-1, VviDMR6-2, and VviDLO1 group into different co-regulatory networks, suggesting distinct functions, and that mostly VviDMR6-1 is connected with pathogenesis-responsive genes. Therefore, VviDMR6-1 represents a good candidate to produce resistant cultivars with a gene-editing approach.
Collapse
Affiliation(s)
- Carlotta Pirrello
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Giulia Malacarne
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Luisa Lenzi
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Tieme Zeilmaker
- SciENZA Biotechnologies B.V., Sciencepark 904, 1098 XH Amsterdam, The Netherlands;
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Stefania Pilati
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Lisa Giacomelli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| |
Collapse
|
7
|
Pilati S, Malacarne G, Navarro-Payá D, Tomè G, Riscica L, Cavecchia V, Matus JT, Moser C, Blanzieri E. Vitis OneGenE: A Causality-Based Approach to Generate Gene Networks in Vitis vinifera Sheds Light on the Laccase and Dirigent Gene Families. Biomolecules 2021; 11:1744. [PMID: 34944388 PMCID: PMC8698957 DOI: 10.3390/biom11121744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
The abundance of transcriptomic data and the development of causal inference methods have paved the way for gene network analyses in grapevine. Vitis OneGenE is a transcriptomic data mining tool that finds direct correlations between genes, thus producing association networks. As a proof of concept, the stilbene synthase gene regulatory network obtained with OneGenE has been compared with published co-expression analysis and experimental data, including cistrome data for MYB stilbenoid regulators. As a case study, the two secondary metabolism pathways of stilbenoids and lignin synthesis were explored. Several isoforms of laccase, peroxidase, and dirigent protein genes, putatively involved in the final oxidative oligomerization steps, were identified as specifically belonging to either one of these pathways. Manual curation of the predicted sequences exploiting the last available genome assembly, and the integration of phylogenetic and OneGenE analyses, identified a group of laccases exclusively present in grapevine and related to stilbenoids. Here we show how network analysis by OneGenE can accelerate knowledge discovery by suggesting new candidates for functional characterization and application in breeding programs.
Collapse
Affiliation(s)
- Stefania Pilati
- Research and Innovation Centre, Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy; (G.M.); (C.M.)
| | - Giulia Malacarne
- Research and Innovation Centre, Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy; (G.M.); (C.M.)
| | - David Navarro-Payá
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46908 Paterna, Valencia, Spain; (D.N.-P.); (J.T.M.)
| | - Gabriele Tomè
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| | - Laura Riscica
- Department of Information Engineering and Computer Science, University of Trento, 38123 Trento, Italy; (L.R.); (E.B.)
| | - Valter Cavecchia
- CNR-Institute of Materials for Electronics and Magnetism, 38123 Trento, Italy;
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46908 Paterna, Valencia, Spain; (D.N.-P.); (J.T.M.)
| | - Claudio Moser
- Research and Innovation Centre, Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy; (G.M.); (C.M.)
| | - Enrico Blanzieri
- Department of Information Engineering and Computer Science, University of Trento, 38123 Trento, Italy; (L.R.); (E.B.)
- CNR-Institute of Materials for Electronics and Magnetism, 38123 Trento, Italy;
| |
Collapse
|
8
|
Liu W, Tang R, Zhang Y, Liu X, Gao Y, Dai Z, Li S, Wu B, Wang L. Genome-wide identification of B-box proteins and VvBBX44 involved in light-induced anthocyanin biosynthesis in grape (Vitis vinifera L.). PLANTA 2021; 253:114. [PMID: 33934247 DOI: 10.1007/s00425-021-03618-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/26/2021] [Indexed: 05/27/2023]
Abstract
Genome-wide identification, analysis and functional characterization of an unreported VvBBX gene showed a response to light and positive correlation with anthocyanin content, but also inhibition of light-induced anthocyanin synthesis. B-box (BBX) proteins are a class of zinc (Zn) finger transcription factors or regulators characterized by the presence of one or two BBX domains and play important roles in plant growth and development. However, the BBX genes' potential functions are insufficiently characterized in grape, a globally popular berry with high economic value. Here, 25 BBX family genes including a novel member (assigned VvBBX44) were identified genome widely in grape. The expression level of these VvBBXs were analyzed in 'Cabernet Sauvignon' (V. vinifera) stem, flower, leaf, tendril, petiole, and developing berries. The expression of VvBBX44 increased in developing 'Cabernet Sauvignon' berries. Its expression was inhibited in 'Jingxiu' and 'Muscat Hamburg' berry skin without sunlight. Furthermore, overexpression of VvBBX44 decreased the expression of LONG HYPOCOTYL 5 (VvHY5) and UDP-glucose flavonoid 3-O-glucosyltransferase (VvUFGT), and reduced the anthocyanin content in grape calli. Our results suggest that VvBBX44 may play an important role in grape berry coloring by directly repressing VvHY5 expression. This study provides new insights into the potential role of VvBBXs in berry development and light response and contributes to the understanding on the regulation mechanism of VvBBX44 in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Wenwen Liu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Renkun Tang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Yuyu Zhang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Xianju Liu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Yingying Gao
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Benhong Wu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China.
| | - Lijun Wang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China.
| |
Collapse
|
9
|
Burbidge CA, Ford CM, Melino VJ, Wong DCJ, Jia Y, Jenkins CLD, Soole KL, Castellarin SD, Darriet P, Rienth M, Bonghi C, Walker RP, Famiani F, Sweetman C. Biosynthesis and Cellular Functions of Tartaric Acid in Grapevines. FRONTIERS IN PLANT SCIENCE 2021; 12:643024. [PMID: 33747023 PMCID: PMC7970118 DOI: 10.3389/fpls.2021.643024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/09/2021] [Indexed: 05/29/2023]
Abstract
Tartaric acid (TA) is an obscure end point to the catabolism of ascorbic acid (Asc). Here, it is proposed as a "specialized primary metabolite", originating from carbohydrate metabolism but with restricted distribution within the plant kingdom and lack of known function in primary metabolic pathways. Grapes fall into the list of high TA-accumulators, with biosynthesis occurring in both leaf and berry. Very little is known of the TA biosynthetic pathway enzymes in any plant species, although recently some progress has been made in this space. New technologies in grapevine research such as the development of global co-expression network analysis tools and genome-wide association studies, should enable more rapid progress. There is also a lack of information regarding roles for this organic acid in plant metabolism. Therefore this review aims to briefly summarize current knowledge about the key intermediates and enzymes of TA biosynthesis in grapes and the regulation of its precursor, ascorbate, followed by speculative discussion around the potential roles of TA based on current knowledge of Asc metabolism, TA biosynthetic enzymes and other aspects of fruit metabolism.
Collapse
Affiliation(s)
| | | | | | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Yong Jia
- Western Barley Genetic Alliance, Murdoch University, Perth, WA, Australia
| | | | - Kathleen Lydia Soole
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Philippe Darriet
- Université Bordeaux, Unité de recherche OEnologie, EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
| | - Markus Rienth
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Oenology, Nyon, Switzerland
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Robert Peter Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Crystal Sweetman
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
10
|
Richter R, Rossmann S, Gabriel D, Töpfer R, Theres K, Zyprian E. Differential expression of transcription factor- and further growth-related genes correlates with contrasting cluster architecture in Vitis vinifera 'Pinot Noir' and Vitis spp. genotypes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3249-3272. [PMID: 32812062 PMCID: PMC7567691 DOI: 10.1007/s00122-020-03667-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/03/2020] [Indexed: 05/18/2023]
Abstract
Grapevine (Vitis vinifera L.) is an economically important crop that needs to comply with high quality standards for fruit, juice and wine production. Intense plant protection is required to avoid fungal damage. Grapevine cultivars with loose cluster architecture enable reducing protective treatments due to their enhanced resilience against fungal infections, such as Botrytis cinerea-induced gray mold. A recent study identified transcription factor gene VvGRF4 as determinant of pedicel length, an important component of cluster architecture, in samples of two loose and two compact quasi-isogenic 'Pinot Noir' clones. Here, we extended the analysis to 12 differently clustered 'Pinot Noir' clones from five diverse clonal selection programs. Differential gene expression of these clones was studied in three different locations over three seasons. Two phenotypically opposite clones were grown at all three locations and served for standardization. Data were correlated with the phenotypic variation of cluster architecture sub-traits. A set of 14 genes with consistent expression differences between loosely and compactly clustered clones-independent from season and location-was newly identified. These genes have annotations related to cellular growth, cell division and auxin metabolism and include two more transcription factor genes, PRE6 and SEP1-like. The differential expression of VvGRF4 in relation to loose clusters was exclusively found in 'Pinot Noir' clones. Gene expression studies were further broadened to phenotypically contrasting F1 individuals of an interspecific cross and OIV reference varieties of loose cluster architecture. This investigation confirmed PRE6 and six growth-related genes to show differential expression related to cluster architecture over genetically divergent backgrounds.
Collapse
Affiliation(s)
- Robert Richter
- Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute, 76833, Siebeldingen, Germany
| | - Susanne Rossmann
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Doreen Gabriel
- Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Julius Kühn Institute, Bundesallee 58, 38116, Brunswick, Germany
| | - Reinhard Töpfer
- Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute, 76833, Siebeldingen, Germany
| | - Klaus Theres
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Eva Zyprian
- Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute, 76833, Siebeldingen, Germany.
| |
Collapse
|
11
|
Wong DCJ. Network aggregation improves gene function prediction of grapevine gene co-expression networks. PLANT MOLECULAR BIOLOGY 2020; 103:425-441. [PMID: 32266646 DOI: 10.1007/s11103-020-01001-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/21/2020] [Indexed: 05/08/2023]
Abstract
Aggregation across multiple networks highlights robust co-expression interactions and improves the functional connectivity of grapevine gene co-expression networks. In recent years, the rapid accumulation of transcriptome datasets from diverse experimental conditions has enabled the widespread use of gene co-expression network (GCN) analysis in plants. In grapevine, GCN analysis has shown great promise for gene function prediction, however, measurable progress is currently lacking. Using accumulated microarray datasets from the grapevine whole-genome array (33 experiments, 1359 samples), we explored how meta-analysis through aggregation influences the functional connectivity (performance) of derived networks using guilt-by-association neighbor voting. Two annotation schemes, i.e. MapMan BIN and Pfam, at two sparsity thresholds, i.e. top 100 (stringent) and 300 (relaxed) ranked genes were evaluated. We observed that aggregating across multiple networks improves performance dramatically, with the aggregate outperforming the majority of functional terms across individual networks. Network sparsity and size (i.e. the number of samples and aggregates) were key factors influencing performance while the choice of annotation scheme had little. Systematic comparison with various state-of-the-art microarray and RNA-seq networks was also performed, however, none outperformed the aggregate microarray network despite having good predictive performance. Repeating these series of tests using a functional enrichment-based performance metric also showed remarkably consistent findings with guilt-by-association neighbor voting. To demonstrate its functionality, we explore the function and transcriptional regulation of grapevine EXPANSIN genes. We envisage that network aggregation will offer new and unique opportunities for gene function prediction in future grapevine functional genomics studies. To this end, we make the aggregate networks and associated metadata publicly available at VTC-Agg (https://sites.google.com/view/vtc-agg).
Collapse
Affiliation(s)
- Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
12
|
Ambrosino L, Colantuono C, Diretto G, Fiore A, Chiusano ML. Bioinformatics Resources for Plant Abiotic Stress Responses: State of the Art and Opportunities in the Fast Evolving -Omics Era. PLANTS 2020; 9:plants9050591. [PMID: 32384671 PMCID: PMC7285221 DOI: 10.3390/plants9050591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Abiotic stresses are among the principal limiting factors for productivity in agriculture. In the current era of continuous climate changes, the understanding of the molecular aspects involved in abiotic stress response in plants is a priority. The rise of -omics approaches provides key strategies to promote effective research in the field, facilitating the investigations from reference models to an increasing number of species, tolerant and sensitive genotypes. Integrated multilevel approaches, based on molecular investigations at genomics, transcriptomics, proteomics and metabolomics levels, are now feasible, expanding the opportunities to clarify key molecular aspects involved in responses to abiotic stresses. To this aim, bioinformatics has become fundamental for data production, mining and integration, and necessary for extracting valuable information and for comparative efforts, paving the way to the modeling of the involved processes. We provide here an overview of bioinformatics resources for research on plant abiotic stresses, describing collections from -omics efforts in the field, ranging from raw data to complete databases or platforms, highlighting opportunities and still open challenges in abiotic stress research based on -omics technologies.
Collapse
Affiliation(s)
- Luca Ambrosino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Na), Italy; (L.A.); (C.C.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), 80121 Naples, Italy
| | - Chiara Colantuono
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Na), Italy; (L.A.); (C.C.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), 80121 Naples, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.D.); (A.F.)
| | - Alessia Fiore
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.D.); (A.F.)
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Na), Italy; (L.A.); (C.C.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), 80121 Naples, Italy
- Correspondence: ; Tel.: +39-081-253-9492
| |
Collapse
|
13
|
Wang Y, Zhang R, Liang Z, Li S. Grape-RNA: A Database for the Collection, Evaluation, Treatment, and Data Sharing of Grape RNA-Seq Datasets. Genes (Basel) 2020; 11:genes11030315. [PMID: 32188014 PMCID: PMC7140798 DOI: 10.3390/genes11030315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 01/08/2023] Open
Abstract
Since its inception, RNA sequencing (RNA-seq) has become the most effective way to study gene expression. After more than a decade of development, numerous RNA-seq datasets have been created, and the full utilization of these datasets has emerged as a major issue. In this study, we built a comprehensive database named Grape-RNA, which is focused on the collection, evaluation, treatment, and data sharing of grape RNA-seq datasets. This database contains 1529 RNA-seq samples, 112 microRNA samples from the public platform, and 485 RNA-seq in-house datasets sequenced by our lab. We classified these data into 25 conditions and provide the sample information, cleaned raw data, expression level, assembled unigenes, useful tools, and other relevant information to the users. Thus, this study provides data and tools that should be beneficial for researchers by allowing them to easily use the RNA-seq. The provided information can greatly contribute to grape breeding and genomic and biological research. This study may improve the usage of RNA-seq.
Collapse
Affiliation(s)
- Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China; (Y.W.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China; (Y.W.); (S.L.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: ; Tel./Fax: 86-010-62836064
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China; (Y.W.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Daldoul S, Boubakri H, Gargouri M, Mliki A. Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture. Mol Biol Rep 2020; 47:3141-3153. [PMID: 32130616 DOI: 10.1007/s11033-020-05363-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Cultivated grapevines, Vitis vinifera subsp. sativa, are thought to have been domesticated from wild populations of Vitis vinifera subsp. sylvestris in Central Asia. V. vinifera subsp. sativa is one of the most economically important fruit crops worldwide. Since cultivated grapevines are susceptible to multiple biotic and abiotic soil factors, they also need to be grafted on resistant rootstocks that are mostly developed though hybridization between American wild grapevine species (V. berlandieri, V. riparia, and V. rupestris). Therefore, wild grapevine species are essential genetic materials for viticulture to face biotic and abiotic stresses in both cultivar and rootstock parts. Actually, viticulture faces several environmental constraints that are further intensified by climate change. Recently, several reports on biotic and abiotic stresses-response in wild grapevines revealed accessions tolerant to different constraints. The emergence of advanced techniques such as omics technologies, marker-assisted selection (MAS), and functional analysis tools allowed a more detailed characterization of resistance mechanisms in these wild grapevines and suggest a number of species (V. rotundifolia, V. rupestris, V. riparia, V. berlandieri and V. amurensis) have untapped potential for new resistance traits including disease resistance loci and key tolerance genes. The present review reports on the importance of different biotechnological tools in exploring and examining wild grapevines tolerance mechanisms that can be employed to promote elite cultivated grapevines under climate change conditions.
Collapse
Affiliation(s)
- Samia Daldoul
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia.
| | - Hatem Boubakri
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, 2050, BP 901, Hammam-lif, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia
| |
Collapse
|
15
|
Abstract
Chronic Obstructive Pulmonary Disease (COPD) and Idiopathic Pulmonary Fibrosis (IPF) have contrasting clinical and pathological characteristics and interesting whole-genome transcriptomic profiles. However, data from public repositories are difficult to reprocess and reanalyze. Here, we present PulmonDB, a web-based database (http://pulmondb.liigh.unam.mx/) and R library that facilitates exploration of gene expression profiles for these diseases by integrating transcriptomic data and curated annotation from different sources. We demonstrated the value of this resource by presenting the expression of already well-known genes of COPD and IPF across multiple experiments and the results of two differential expression analyses in which we successfully identified differences and similarities. With this first version of PulmonDB, we create a new hypothesis and compare the two diseases from a transcriptomics perspective.
Collapse
|
16
|
De Ollas C, Morillón R, Fotopoulos V, Puértolas J, Ollitrault P, Gómez-Cadenas A, Arbona V. Facing Climate Change: Biotechnology of Iconic Mediterranean Woody Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:427. [PMID: 31057569 PMCID: PMC6477659 DOI: 10.3389/fpls.2019.00427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
The Mediterranean basin is especially sensitive to the adverse outcomes of climate change and especially to variations in rainfall patterns and the incidence of extremely high temperatures. These two concurring adverse environmental conditions will surely have a detrimental effect on crop performance and productivity that will be particularly severe on woody crops such as citrus, olive and grapevine that define the backbone of traditional Mediterranean agriculture. These woody species have been traditionally selected for traits such as improved fruit yield and quality or alteration in harvesting periods, leaving out traits related to plant field performance. This is currently a crucial aspect due to the progressive and imminent effects of global climate change. Although complete genome sequence exists for sweet orange (Citrus sinensis) and clementine (Citrus clementina), olive tree (Olea europaea) and grapevine (Vitis vinifera), the development of biotechnological tools to improve stress tolerance still relies on the study of the available genetic resources including interspecific hybrids, naturally occurring (or induced) polyploids and wild relatives under field conditions. To this respect, post-genomic era studies including transcriptomics, metabolomics and proteomics provide a wide and unbiased view of plant physiology and biochemistry under adverse environmental conditions that, along with high-throughput phenotyping, could contribute to the characterization of plant genotypes exhibiting physiological and/or genetic traits that are correlated to abiotic stress tolerance. The ultimate goal of precision agriculture is to improve crop productivity, in terms of yield and quality, making a sustainable use of land and water resources under adverse environmental conditions using all available biotechnological tools and high-throughput phenotyping. This review focuses on the current state-of-the-art of biotechnological tools such as high throughput -omics and phenotyping on grapevine, citrus and olive and their contribution to plant breeding programs.
Collapse
Affiliation(s)
- Carlos De Ollas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raphaël Morillón
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, France
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Jaime Puértolas
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Patrick Ollitrault
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), San-Giuliano, France
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
17
|
Smit SJ, Vivier MA, Young PR. Linking Terpene Synthases to Sesquiterpene Metabolism in Grapevine Flowers. FRONTIERS IN PLANT SCIENCE 2019; 10:177. [PMID: 30846994 PMCID: PMC6393351 DOI: 10.3389/fpls.2019.00177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/05/2019] [Indexed: 05/23/2023]
Abstract
Grapevine (Vitis vinifera L.) terpene synthases (VviTPS) are responsible for the biosynthesis of terpenic volatiles. Volatile profiling of nine commercial wine cultivars showed unique cultivar-specific variation in volatile terpenes emitted from grapevine flowers. The flower chemotypes of three divergent cultivars, Muscat of Alexandria, Sauvignon Blanc and Shiraz were subsequently investigated at two flower developmental stages (EL-18 and -26). The cultivars displayed unique flower sesquiterpene compositions that changed during flower organogenesis and the profiles were dominated by either (E)-β-farnesene, (E,E)-α-farnesene or (+)-valencene. In silico remapping of microarray probes to VviTPS gene models allowed for a meta-analysis of VviTPS expression patterns in the grape gene atlas to identify genes that could regulate terpene biosynthesis in flowers. Selected sesquiterpene synthase genes were isolated and functionally characterized in three cultivars. Genotypic differences that could be linked to the function of a targeted gene model resulted in the isolation of a novel and cultivar-specific single product sesquiterpene synthase from Muscat of Alexandria flowers (VvivMATPS10), synthesizing (E)-β-farnesene as its major volatile. Furthermore, we identified structural variations (SNPs, InDels and splice variations) in the characterized VviTPS genes that potentially impact enzyme function and/or volatile sesquiterpene production in a cultivar-specific manner.
Collapse
Affiliation(s)
| | | | - Philip Richard Young
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
18
|
Moretto M, Sonego P, Villaseñor-Altamirano AB, Engelen K. First step toward gene expression data integration: transcriptomic data acquisition with COMMAND>_. BMC Bioinformatics 2019; 20:54. [PMID: 30691411 PMCID: PMC6348648 DOI: 10.1186/s12859-019-2643-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/22/2019] [Indexed: 11/30/2022] Open
Abstract
Background Exploring cellular responses to stimuli using extensive gene expression profiles has become a routine procedure performed on a daily basis. Raw and processed data from these studies are available on public databases but the opportunity to fully exploit such rich datasets is limited due to the large heterogeneity of data formats. In recent years, several approaches have been proposed to effectively integrate gene expression data for analysis and exploration at a broader level. Despite the different goals and approaches towards gene expression data integration, the first step is common to any proposed method: data acquisition. Although it is seemingly straightforward to extract valuable information from a set of downloaded files, things can rapidly get complicated, especially as the number of experiments grows. Transcriptomic datasets are deposited in public databases with little regard to data format and thus retrieving raw data might become a challenging task. While for RNA-seq experiments such problem is partially mitigated by the fact that raw reads are generally available on databases such as the NCBI SRA, for microarray experiments standards are not equally well established, or enforced during submission, and thus a multitude of data formats has emerged. Results COMMAND>_ is a specialized tool meant to simplify gene expression data acquisition. It is a flexible multi-user web-application that allows users to search and download gene expression experiments, extract only the relevant information from experiment files, re-annotate microarray platforms, and present data in a simple and coherent data model for subsequent analysis. Conclusions COMMAND>_ facilitates the creation of local datasets of gene expression data coming from both microarray and RNA-seq experiments and may be a more efficient tool to build integrated gene expression compendia. COMMAND>_ is free and open-source software, including publicly available tutorials and documentation.
Collapse
Affiliation(s)
- Marco Moretto
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy.
| | - Paolo Sonego
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Ana B Villaseñor-Altamirano
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma De México, 76230, Juriquilla, Querétaro, Mexico.,Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Kristof Engelen
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy.
| |
Collapse
|
19
|
Cheng C, Wang Y, Chai F, Li S, Xin H, Liang Z. Genome-wide identification and characterization of the 14-3-3 family in Vitis vinifera L. during berry development and cold- and heat-stress response. BMC Genomics 2018; 19:579. [PMID: 30068289 PMCID: PMC6090852 DOI: 10.1186/s12864-018-4955-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 07/23/2018] [Indexed: 11/11/2022] Open
Abstract
Background The 14–3-3 family of ubiquitous proteins in eukaryotes plays important roles in the regulation of various plant biological processes. However, less information is known about this family in grape fruit. Results To investigate the characteristics and functions of 14–3-3 in grape, a total of 11 14–3-3 proteins were identified. Phylogenetic analysis of 14–3-3 proteins in grape (VviGRFs) with homologous proteins in Arabidopsis showed that these proteins were classified into two groups, namely, epsilon and non-epsilon groups. Epsilon group members commonly contained more introns and motifs than non-epsilon group, and some intron positions were found to be conserved between Vitis and Arabidopsis 14–3-3 genes. RNA-seq and qRT-PCR results indicated that VviGRF genes may be involved in the regulation of grape development and berry ripening. Moreover, six VviGRFs exhibited significantly up- or down-regulated expression in response to cold and heat stresses, thereby revealing their potential roles in the regulation of abiotic stress responses. Conclusions This work provides fundamental knowledge for further studies about the biological roles of VviGRFs in grape development and abiotic stress response. The present result will also be beneficial for understanding their molecular mechanisms and improving grape agricultural traits in the future. Electronic supplementary material The online version of this article (10.1186/s12864-018-4955-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, People's Republic of China.,Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi Wang
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Fengmei Chai
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, People's Republic of China.
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, People's Republic of China. .,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, People's Republic of China.
| |
Collapse
|
20
|
Chitarra W, Pagliarani C, Abbà S, Boccacci P, Birello G, Rossi M, Palmano S, Marzachì C, Perrone I, Gambino G. miRVIT: A Novel miRNA Database and Its Application to Uncover Vitis Responses to Flavescence dorée Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1034. [PMID: 30065744 PMCID: PMC6057443 DOI: 10.3389/fpls.2018.01034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 05/08/2023]
Abstract
Micro(mi)RNAs play crucial roles in plant developmental processes and in defense responses to biotic and abiotic stresses. In the last years, many works on small RNAs in grapevine (Vitis spp.) were published, and several conserved and putative novel grapevine-specific miRNAs were identified. In order to reorganize the high quantity of available data, we produced "miRVIT," the first database of all novel grapevine miRNA candidates characterized so far, and still not deposited in miRBase. To this aim, each miRNA accession was renamed, repositioned in the last version of the grapevine genome, and compared with all the novel and conserved miRNAs detected in grapevine. Conserved and novel miRNAs cataloged in miRVIT were then used for analyzing Vitis vinifera plants infected by Flavescence dorée (FD), one of the most severe phytoplasma diseases affecting grapevine. The analysis of small RNAs from healthy, recovered (plants showing spontaneous and stable remission of symptoms), and FD-infected "Barbera" grapevines showed that FD altered the expression profiles of several miRNAs, including those involved in cell development and photosynthesis, jasmonate signaling, and disease resistance response. The application of miRVIT in a biological context confirmed the effectiveness of the followed approach, especially for the identification of novel miRNA candidates in grapevine. miRVIT database is available at http://mirvit.ipsp.cnr.it. Highlights: The application of the newly produced database of grapevine novel miRNAs to the analysis of plants infected by Flavescence dorée reveals key roles of miRNAs in photosynthesis and jasmonate signaling.
Collapse
Affiliation(s)
- Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
- Viticultural and Enology Research Centre, Council for Agricultural Research and Economics, Conegliano, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Simona Abbà
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giancarlo Birello
- Research Institute on Sustainable Economic Growth, National Research Council of Italy, Turin, Italy
| | - Marika Rossi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Cristina Marzachì
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| |
Collapse
|
21
|
Wong DCJ, Ariani P, Castellarin S, Polverari A, Vandelle E. Co-expression network analysis and cis-regulatory element enrichment determine putative functions and regulatory mechanisms of grapevine ATL E3 ubiquitin ligases. Sci Rep 2018; 8:3151. [PMID: 29453355 PMCID: PMC5816651 DOI: 10.1038/s41598-018-21377-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/02/2018] [Indexed: 02/06/2023] Open
Abstract
Arabidopsis thaliana Toxicos en Levadura (ATL) proteins are a subclass of the RING-H2 zinc finger binding E3 ubiquitin ligases. The grapevine (Vitis vinifera) ATL family was recently characterized, revealing 96 members that are likely to be involved in several physiological processes through protein ubiquitination. However, the final targets and biological functions of most ATL E3 ligases are still unknown. We analyzed the co-expression networks among grapevine ATL genes across a set of transcriptomic data related to defense and abiotic stress, combined with a condition-independent dataset. This revealed strong correlations between ATL proteins and diverse signal transduction components and transcriptional regulators, in particular those involved in immunity. An enrichment analysis of cis-regulatory elements in ATL gene promoters and related co-expressed genes highlighted the importance of hormones in the regulation of ATL gene expression. Our work identified several ATL proteins as candidates for further studies aiming to decipher specific grapevine resistance mechanisms activated in response to pathogens.
Collapse
Affiliation(s)
- Darren C J Wong
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Pietro Ariani
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, 37134, Italy
| | - Simone Castellarin
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Annalisa Polverari
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, 37134, Italy.
| | - Elodie Vandelle
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, 37134, Italy.
| |
Collapse
|
22
|
Malacarne G, Pilati S, Valentini S, Asnicar F, Moretto M, Sonego P, Masera L, Cavecchia V, Blanzieri E, Moser C. Discovering Causal Relationships in Grapevine Expression Data to Expand Gene Networks. A Case Study: Four Networks Related to Climate Change. FRONTIERS IN PLANT SCIENCE 2018; 9:1385. [PMID: 30298082 PMCID: PMC6161569 DOI: 10.3389/fpls.2018.01385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 08/31/2018] [Indexed: 05/08/2023]
Abstract
In recent years the scientific community has been heavily engaged in studying the grapevine response to climate change. Final goal is the identification of key genetic traits to be used in grapevine breeding and the setting of agronomic practices to improve climatic resilience. The increasing availability of transcriptomic studies, describing gene expression in many tissues and developmental, or treatment conditions, have allowed the implementation of gene expression compendia, which enclose a huge amount of information. The mining of transcriptomic data represents an effective approach to expand a known local gene network (LGN) by finding new related genes. We recently published a pipeline based on the iterative application of the PC-algorithm, named NES2RA, to expand gene networks in Escherichia coli and Arabidopsis thaliana. Here, we propose the application of this method to the grapevine transcriptomic compendium Vespucci, in order to expand four LGNs related to the grapevine response to climate change. Two networks are related to the secondary metabolic pathways for anthocyanin and stilbenoid synthesis, involved in the response to solar radiation, whereas the other two are signaling networks, related to the hormones abscisic acid and ethylene, possibly involved in the regulation of cell water balance and cuticle transpiration. The expansion networks produced by NES2RA algorithm have been evaluated by comparison with experimental data and biological knowledge on the identified genes showing fairly good consistency of the results. In addition, the algorithm was effective in retaining only the most significant interactions among the genes providing a useful framework for experimental validation. The application of the NES2RA to Vitis vinifera expression data by means of the BOINC-based implementation is available upon request (valter.cavecchia@cnr.it).
Collapse
Affiliation(s)
- Giulia Malacarne
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all′Adige, Italy
| | - Stefania Pilati
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all′Adige, Italy
| | - Samuel Valentini
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all′Adige, Italy
| | - Francesco Asnicar
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
| | - Marco Moretto
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all′Adige, Italy
| | - Paolo Sonego
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all′Adige, Italy
| | - Luca Masera
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
| | - Valter Cavecchia
- Consiglio Nazionale delle Ricerche-Institute of Materials for Electronics and Magnetism, Trento, Italy
| | - Enrico Blanzieri
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
- Consiglio Nazionale delle Ricerche-Institute of Materials for Electronics and Magnetism, Trento, Italy
| | - Claudio Moser
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all′Adige, Italy
- *Correspondence: Claudio Moser,
| |
Collapse
|
23
|
Wong DCJ, Matus JT. Constructing Integrated Networks for Identifying New Secondary Metabolic Pathway Regulators in Grapevine: Recent Applications and Future Opportunities. FRONTIERS IN PLANT SCIENCE 2017; 8:505. [PMID: 28446914 PMCID: PMC5388765 DOI: 10.3389/fpls.2017.00505] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/22/2017] [Indexed: 05/19/2023]
Abstract
Representing large biological data as networks is becoming increasingly adopted for predicting gene function while elucidating the multifaceted organization of life processes. In grapevine (Vitis vinifera L.), network analyses have been mostly adopted to contribute to the understanding of the regulatory mechanisms that control berry composition. Whereas, some studies have used gene co-expression networks to find common pathways and putative targets for transcription factors related to development and metabolism, others have defined networks of primary and secondary metabolites for characterizing the main metabolic differences between cultivars throughout fruit ripening. Lately, proteomic-related networks and those integrating genome-wide analyses of promoter regulatory elements have also been generated. The integration of all these data in multilayered networks allows building complex maps of molecular regulation and interaction. This perspective article describes the currently available network data and related resources for grapevine. With the aim of illustrating data integration approaches into network construction and analysis in grapevine, we searched for berry-specific regulators of the phenylpropanoid pathway. We generated a composite network consisting of overlaying maps of co-expression between structural and transcription factor genes, integrated with the presence of promoter cis-binding elements, microRNAs, and long non-coding RNAs (lncRNA). This approach revealed new uncharacterized transcription factors together with several microRNAs potentially regulating different steps of the phenylpropanoid pathway, and one particular lncRNA compromising the expression of nine stilbene synthase (STS) genes located in chromosome 10. Application of network-based approaches into multi-omics data will continue providing supplementary resources to address important questions regarding grapevine fruit quality and composition.
Collapse
Affiliation(s)
- Darren C. J. Wong
- Ecology and Evolution, Research School of Biology, Australian National UniversityActon, ACT, Australia
| | - José Tomás Matus
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UBBarcelona, Spain
- *Correspondence: José Tomás Matus
| |
Collapse
|
24
|
Fabres PJ, Collins C, Cavagnaro TR, Rodríguez López CM. A Concise Review on Multi-Omics Data Integration for Terroir Analysis in Vitis vinifera. FRONTIERS IN PLANT SCIENCE 2017; 8:1065. [PMID: 28676813 PMCID: PMC5477006 DOI: 10.3389/fpls.2017.01065] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/02/2017] [Indexed: 05/19/2023]
Abstract
Vitis vinifera (grapevine) is one of the most important fruit crops, both for fresh consumption and wine and spirit production. The term terroir is frequently used in viticulture and the wine industry to relate wine sensory attributes to its geographic origin. Although, it can be cultivated in a wide range of environments, differences in growing conditions have a significant impact on fruit traits that ultimately affect wine quality. Understanding how fruit quality and yield are controlled at a molecular level in grapevine in response to environmental cues has been a major driver of research. Advances in the area of genomics, epigenomics, transcriptomics, proteomics and metabolomics, have significantly increased our knowledge on the abiotic regulation of yield and quality in many crop species, including V. vinifera. The integrated analysis of multiple 'omics' can give us the opportunity to better understand how plants modulate their response to different environments. However, 'omics' technologies provide a large amount of biological data and its interpretation is not always straightforward, especially when different 'omic' results are combined. Here we examine the current strategies used to integrate multi-omics, and how these have been used in V. vinifera. In addition, we also discuss the importance of including epigenomics data when integrating omics data as epigenetic mechanisms could play a major role as an intermediary between the environment and the genome.
Collapse
Affiliation(s)
- Pastor Jullian Fabres
- Environmental Epigenetics and Genetics Group, Plant Research Centre, School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Cassandra Collins
- The Waite Research Institute, The School of Agriculture, Food and Wine, The University of Adelaide, Glen OsmondSA, Australia
| | - Timothy R. Cavagnaro
- The Waite Research Institute, The School of Agriculture, Food and Wine, The University of Adelaide, Glen OsmondSA, Australia
| | - Carlos M. Rodríguez López
- Environmental Epigenetics and Genetics Group, Plant Research Centre, School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
- *Correspondence: Carlos M. Rodríguez López,
| |
Collapse
|
25
|
Pilati S, Bagagli G, Sonego P, Moretto M, Brazzale D, Castorina G, Simoni L, Tonelli C, Guella G, Engelen K, Galbiati M, Moser C. Abscisic Acid Is a Major Regulator of Grape Berry Ripening Onset: New Insights into ABA Signaling Network. FRONTIERS IN PLANT SCIENCE 2017; 8:1093. [PMID: 28680438 PMCID: PMC5479058 DOI: 10.3389/fpls.2017.01093] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/06/2017] [Indexed: 05/18/2023]
Abstract
Grapevine is a world-wide cultivated economically relevant crop. The process of berry ripening is non-climacteric and does not rely on the sole ethylene signal. Abscisic acid (ABA) is recognized as an important hormone of ripening inception and color development in ripening berries. In order to elucidate the effect of this signal at the molecular level, pre-véraison berries were treated ex vivo for 20 h with 0.2 mM ABA and berry skin transcriptional modulation was studied by RNA-seq after the treatment and 24 h later, in the absence of exogenous ABA. This study highlighted that a small amount of ABA triggered its own biosynthesis and had a transcriptome-wide effect (1893 modulated genes) characterized by the amplification of the transcriptional response over time. By comparing this dataset with the many studies on ripening collected within the grapevine transcriptomic compendium Vespucci, an extended overlap between ABA- and ripening modulated gene sets was observed (71% of the genes), underpinning the role of this hormone in the regulation of berry ripening. The signaling network of ABA, encompassing ABA metabolism, transport and signaling cascade, has been analyzed in detail and expanded based on knowledge from other species in order to provide an integrated molecular description of this pathway at berry ripening onset. Expression data analysis was combined with in silico promoter analysis to identify candidate target genes of ABA responsive element binding protein 2 (VvABF2), a key upstream transcription factor of the ABA signaling cascade which is up-regulated at véraison and also by ABA treatments. Two transcription factors, VvMYB143 and VvNAC17, and two genes involved in protein degradation, Armadillo-like and Xerico-like genes, were selected for in vivo validation by VvABF2-mediated promoter trans-activation in tobacco. VvNAC17 and Armadillo-like promoters were induced by ABA via VvABF2, while VvMYB143 responded to ABA in a VvABF2-independent manner. This knowledge of the ABA cascade in berry skin contributes not only to the understanding of berry ripening regulation but might be useful to other areas of viticultural interest, such as bud dormancy regulation and drought stress tolerance.
Collapse
Affiliation(s)
- Stefania Pilati
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all′Adige, Italy
- *Correspondence: Stefania Pilati,
| | - Giorgia Bagagli
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all′Adige, Italy
| | - Paolo Sonego
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all′Adige, Italy
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all′Adige, Italy
| | - Daniele Brazzale
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all′Adige, Italy
| | - Giulia Castorina
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Laura Simoni
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Graziano Guella
- Department of Physics, Bioorganic Chemistry Lab, University of TrentoTrento, Italy
- Istituto di Biofisica, Consiglio Nazionale delle RicercheTrento, Italy
| | - Kristof Engelen
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all′Adige, Italy
| | - Massimo Galbiati
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all′Adige, Italy
| |
Collapse
|
26
|
Adam-Blondon AF, Alaux M, Pommier C, Cantu D, Cheng ZM, Cramer GR, Davies C, Delrot S, Deluc L, Di Gaspero G, Grimplet J, Fennell A, Londo JP, Kersey P, Mattivi F, Naithani S, Neveu P, Nikolski M, Pezzotti M, Reisch BI, Töpfer R, Vivier MA, Ware D, Quesneville H. Towards an open grapevine information system. HORTICULTURE RESEARCH 2016; 3:16056. [PMID: 27917288 PMCID: PMC5120350 DOI: 10.1038/hortres.2016.56] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/10/2016] [Accepted: 10/21/2016] [Indexed: 05/26/2023]
Abstract
Viticulture, like other fields of agriculture, is currently facing important challenges that will be addressed only through sustained, dedicated and coordinated research. Although the methods used in biology have evolved tremendously in recent years and now involve the routine production of large data sets of varied nature, in many domains of study, including grapevine research, there is a need to improve the findability, accessibility, interoperability and reusability (FAIR-ness) of these data. Considering the heterogeneous nature of the data produced, the transnational nature of the scientific community and the experience gained elsewhere, we have formed an open working group, in the framework of the International Grapevine Genome Program (www.vitaceae.org), to construct a coordinated federation of information systems holding grapevine data distributed around the world, providing an integrated set of interfaces supporting advanced data modeling, rich semantic integration and the next generation of data mining tools. To achieve this goal, it will be critical to develop, implement and adopt appropriate standards for data annotation and formatting. The development of this system, the GrapeIS, linking genotypes to phenotypes, and scientific research to agronomical and oeneological data, should provide new insights into grape biology, and allow the development of new varieties to meet the challenges of biotic and abiotic stress, environmental change, and consumer demand.
Collapse
Affiliation(s)
- A-F Adam-Blondon
- URGI, UR1164 INRA, Université Paris-Saclay, Versailles 78026, France
| | - M Alaux
- URGI, UR1164 INRA, Université Paris-Saclay, Versailles 78026, France
| | - C Pommier
- URGI, UR1164 INRA, Université Paris-Saclay, Versailles 78026, France
| | - D Cantu
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Z-M Cheng
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - GR Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - C Davies
- CSIRO Agriculture and Food, Waite Campus, WIC West Building, PMB2, Glen Osmond, South Australia 5064, Australia
| | - S Delrot
- Université de Bordeaux, ISVV, EGFV, UMR 1287, F-33140 Villenave d’Ornon, France
| | - L Deluc
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - G Di Gaspero
- Istituto di Genomica Applicata, Udine 33100, Italy
| | - J Grimplet
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño 26006, Spain
| | - A Fennell
- Plant Science Department, South Dakota State University, BioSNTR, Brookings, SD 57007, USA
| | - JP Londo
- United States Department of Agriculture-Agricultural Research Service-Grape Genetics Research Unit, Geneva, NY 14456, USA
| | - P Kersey
- European Molecular Biology Laboratory, The European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - F Mattivi
- Dipartimento Qualità Alimentare e Nutrizione, Centro Ricerca ed Innovazione Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italia
| | - S Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - P Neveu
- UMR Mistea, INRA, Montpellier 34060, France
| | - M Nikolski
- University of Bordeaux, CBiB, Bordeaux 33000, France
- University of Bordeaux, CNRS/LaBRI, Talence 33405, France
| | - M Pezzotti
- Department of Biotechnology, Università degli Studi di Verona, Verona 37134, Italy
| | - BI Reisch
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - R Töpfer
- JKI Institute for Grapevine Breeding Geilweilerhof, Siebeldingen 76833, Germany
| | - MA Vivier
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, Matieland 7602, South Africa
| | - D Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- US Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
| | - H Quesneville
- URGI, UR1164 INRA, Université Paris-Saclay, Versailles 78026, France
| |
Collapse
|
27
|
Malacarne G, Coller E, Czemmel S, Vrhovsek U, Engelen K, Goremykin V, Bogs J, Moser C. The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3509-22. [PMID: 27194742 PMCID: PMC4892739 DOI: 10.1093/jxb/erw181] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In grapevine, flavonoids constitute one of the most abundant subgroups of secondary metabolites, influencing the quality, health value, and typicity of wines. Their synthesis in many plant species is mainly regulated at the transcriptional level by modulation of flavonoid pathway genes either by single regulators or by complexes of different regulators. In particular, bZIP and MYB factors interact synergistically in the recognition of light response units present in the promoter of some genes of the pathway, thus mediating light-dependent flavonoid biosynthesis. We recently identified VvibZIPC22, a member of clade C of the grapevine bZIP family, in a quantitative trait locus (QTL) specifically associated with kaemperol content in mature berries. Here, to validate the involvement of this candidate gene in the fine regulation of flavonol biosynthesis, we characterized its function by in vitro and in vivo experiments. A role for this gene in the control of flavonol biosynthesis was indeed confirmed by its highest expression at flowering and during UV light-mediated induction, paralleled by accumulation of the flavonol synthase 1 transcript and flavonol compounds. The overexpression of VvibZIPC22 in tobacco caused a significant increase in several flavonoids in the flower, via induction of general and specific genes of the pathway. In agreement with this evidence, VvibZIPC22 was able to activate the promoters of specific genes of the flavonoid pathway, alone or together with other factors, as revealed by transient reporter assays. These findings, supported by in silico indications, allowed us to propose VvibZIPC22 as a new regulator of flavonoid biosynthesis in grapevine.
Collapse
Affiliation(s)
- Giulia Malacarne
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Emanuela Coller
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Stefan Czemmel
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | - Urska Vrhovsek
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Kristof Engelen
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Vadim Goremykin
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Jochen Bogs
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany Studiengang Weinbau und Oenologie, Dienstleistungszentrum Laendlicher Raum Rheinpfalz, Breitenweg 71, D-67435 Neustadt, Germany
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| |
Collapse
|
28
|
Leida C, Dal Rì A, Dalla Costa L, Gómez MD, Pompili V, Sonego P, Engelen K, Masuero D, Ríos G, Moser C. Insights into the Role of the Berry-Specific Ethylene Responsive Factor VviERF045. FRONTIERS IN PLANT SCIENCE 2016; 7:1793. [PMID: 28018369 PMCID: PMC5146979 DOI: 10.3389/fpls.2016.01793] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/15/2016] [Indexed: 05/03/2023]
Abstract
During grape ripening, numerous transcriptional and metabolic changes are required in order to obtain colored, sweet, and flavored berries. There is evidence that ethylene, together with other signals, plays an important role in triggering the onset of ripening. Here, we report the functional characterization of a berry-specific Ethylene Responsive Factor (ERF), VviERF045, which is induced just before véraison and peaks at ripening. Phylogenetic analysis revealed it is close to the SHINE clade of ERFs, factors involved in the regulation of wax biosynthesis and cuticle morphology. Transgenic grapevines lines overexpressing VviERF045 were obtained, in vitro propagated, phenotypically characterized, and analyzed for the content of specific classes of metabolites. The effect of VviERF045 was correlated with the level of transgene expression, with high-expressing lines showing stunted growth, discolored and smaller leaves, and a lower level of chlorophylls and carotenoids. One line with intermediate expression, L15, was characterized at the transcriptomic level and showed 573 differentially expressed genes compared to wild type plants. Microscopy and gene expression analyses point toward a major role of VviERF045 in epidermis patterning by acting on waxes and cuticle. They also indicate that VviERF045 affects phenolic secondary metabolism and induces a reaction resembling a plant immune response with modulation of receptor like-kinases and pathogen related genes. These results suggest also a possible role of this transcription factor in berry ripening, likely related to changes in epidermis and cuticle of the berry, cell expansion, a decrease in photosynthetic capacity, and the activation of several defense related genes as well as from the phenylpropanoid metabolism. All these processes occur in the berry during ripening.
Collapse
Affiliation(s)
- Carmen Leida
- Genomics and Biology of Fruit Crops Department, Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
- *Correspondence: Carmen Leida,
| | - Antonio Dal Rì
- Genomics and Biology of Fruit Crops Department, Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
| | - Lorenza Dalla Costa
- Genomics and Biology of Fruit Crops Department, Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
| | - Maria D. Gómez
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Valerio Pompili
- Genomics and Biology of Fruit Crops Department, Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
| | - Paolo Sonego
- Computational Biology Department, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Kristof Engelen
- Computational Biology Department, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Domenico Masuero
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund MachTrento, Italy
| | - Gabino Ríos
- Fruit Tree Breeding Department, Instituto Valenciano de Investigaciones AgrariasMoncada, Spain
| | - Claudio Moser
- Genomics and Biology of Fruit Crops Department, Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
| |
Collapse
|