1
|
Qi M, Taunt HN, Bečková M, Xia Z, Trinugroho JP, Komenda J, Nixon PJ. Enhancing the production of chlorophyll f in the cyanobacterium Synechocystis sp. PCC 6803. PHYSIOLOGIA PLANTARUM 2025; 177:e70169. [PMID: 40139952 PMCID: PMC11946780 DOI: 10.1111/ppl.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 03/29/2025]
Abstract
One potential approach to improve the productivity of cyanobacteria and microalgae is to enhance photosynthetic efficiency by introducing far-red absorbing pigment molecules (such as chlorophylls f and d) into the photosynthetic apparatus to expand the range of photosynthetically active radiation. We have shown previously that expressing the ChlF subunit of Chroococcidiopsis thermalis PCC 7203 in the model cyanobacterium Synechocystis sp. PCC 6803 (Syn6803) is sufficient to drive the production of chlorophyll f (Chl f), but only to low levels (0.24% Chl f/Chl a). By using the strong Pcpc560 promoter and an N-terminal truncated derivative of ChlF, we have been able to increase the yield of Chl f in white light by over 30-fold to about 8.2% Chl f/Chl a, close to the level displayed by far-red photoacclimated C. thermalis 7203. Additionally, we demonstrate that ChlF from Fisherella thermalis PCC 7521, like ChlF from C. thermalis 7203, assembles into a variant of the monomeric photosystem II (PSII) core complex termed the super-rogue PSII complex when expressed in Syn6803. This contrasts with the originally reported formation of a ChlF homodimeric complex in Synechococcus sp. PCC 7002. Overall, our work is an important starting point for mechanistic and structural studies of super-rogue PSII and for incorporating Chl f into the photosynthetic apparatus of Syn6803.
Collapse
Affiliation(s)
- Man Qi
- Sir Ernst Chain Building‐Wolfson Laboratories, Department of Life SciencesImperial College LondonLondonUK
| | - Henry N. Taunt
- Sir Ernst Chain Building‐Wolfson Laboratories, Department of Life SciencesImperial College LondonLondonUK
- Present address:
Baseimmune, BioScience Innovation CentreLondonUK
| | - Martina Bečková
- Institute of Microbiology of the Czech Academy of Sciences, Center AlgatechTřeboňCzech Republic
| | - Zhi Xia
- Sir Ernst Chain Building‐Wolfson Laboratories, Department of Life SciencesImperial College LondonLondonUK
| | - Joko P. Trinugroho
- Sir Ernst Chain Building‐Wolfson Laboratories, Department of Life SciencesImperial College LondonLondonUK
- Present address:
Research Center for Genetic Engineering, Research Organization for Life Science and Environment, National Research and Innovation AgencyCibinongBogorIndonesia
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Center AlgatechTřeboňCzech Republic
| | - Peter J. Nixon
- Sir Ernst Chain Building‐Wolfson Laboratories, Department of Life SciencesImperial College LondonLondonUK
| |
Collapse
|
2
|
Köbler C, Schmelling NM, Wiegard A, Pawlowski A, Pattanayak GK, Spät P, Scheurer NM, Sebastian KN, Stirba FP, Berwanger LC, Kolkhof P, Maček B, Rust MJ, Axmann IM, Wilde A. Two KaiABC systems control circadian oscillations in one cyanobacterium. Nat Commun 2024; 15:7674. [PMID: 39227593 PMCID: PMC11372060 DOI: 10.1038/s41467-024-51914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
The circadian clock of cyanobacteria, which predicts daily environmental changes, typically includes a standard oscillator consisting of proteins KaiA, KaiB, and KaiC. However, several cyanobacteria have diverse Kai protein homologs of unclear function. In particular, Synechocystis sp. PCC 6803 harbours, in addition to a canonical kaiABC gene cluster (named kaiAB1C1), two further kaiB and kaiC homologs (kaiB2, kaiB3, kaiC2, kaiC3). Here, we identify a chimeric KaiA homolog, named KaiA3, encoded by a gene located upstream of kaiB3. At the N-terminus, KaiA3 is similar to response-regulator receiver domains, whereas its C-terminal domain resembles that of KaiA. Homology analysis shows that a KaiA3-KaiB3-KaiC3 system exists in several cyanobacteria and other bacteria. Using the Synechocystis sp. PCC 6803 homologs, we observe circadian oscillations in KaiC3 phosphorylation in vitro in the presence of KaiA3 and KaiB3. Mutations of kaiA3 affect KaiC3 phosphorylation, leading to growth defects under both mixotrophic and chemoheterotrophic conditions. KaiC1 and KaiC3 exhibit phase-locked free-running phosphorylation rhythms. Deletion of either system (∆kaiAB1C1 or ∆kaiA3B3C3) alters the period of the cellular backscattering rhythm. Furthermore, both oscillators are required to maintain high-amplitude, self-sustained backscatter oscillations with a period of approximately 24 h, indicating their interconnected nature.
Collapse
Affiliation(s)
- Christin Köbler
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Nicolas M Schmelling
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Anika Wiegard
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Alice Pawlowski
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gopal K Pattanayak
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Philipp Spät
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Nina M Scheurer
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Kim N Sebastian
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Florian P Stirba
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lutz C Berwanger
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Petra Kolkhof
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Boris Maček
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Ilka M Axmann
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Annegret Wilde
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
3
|
Skotnicová P, Srivastava A, Aggarwal D, Talbot J, Karlínová I, Moos M, Mareš J, Bučinská L, Koník P, Šimek P, Tichý M, Sobotka R. A thylakoid biogenesis BtpA protein is required for the initial step of tetrapyrrole biosynthesis in cyanobacteria. THE NEW PHYTOLOGIST 2024; 241:1236-1249. [PMID: 37986097 DOI: 10.1111/nph.19397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Biogenesis of the photosynthetic apparatus requires complicated molecular machinery, individual components of which are either poorly characterized or unknown. The BtpA protein has been described as a factor required for the stability of photosystem I (PSI) in cyanobacteria; however, how the BtpA stabilized PSI remains unexplained. To clarify the role of BtpA, we constructed and characterized the btpA-null mutant (ΔbtpA) in the cyanobacterium Synechocystis sp. PCC 6803. The mutant contained only c. 1% of chlorophyll and nearly no thylakoid membranes. However, this strain, growing only in the presence of glucose, was genetically unstable and readily generated suppressor mutations that restore the photoautotrophy. Two suppressor mutations were mapped into the hemA gene encoding glutamyl-tRNA reductase (GluTR) - the first enzyme of tetrapyrrole biosynthesis. Indeed, the GluTR was not detectable in the ΔbtpA mutant and the suppressor mutations restored biosynthesis of tetrapyrroles and photoautotrophy by increased GluTR expression or by improved GluTR stability/processivity. We further demonstrated that GluTR associates with a large BtpA oligomer and that BtpA is required for the stability of GluTR. Our results show that the BtpA protein is involved in the biogenesis of photosystems at the level of regulation of tetrapyrrole biosynthesis.
Collapse
Affiliation(s)
- Petra Skotnicová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Amit Srivastava
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Department of Biological and Environmental Science, Nanoscience Centre, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Divya Aggarwal
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Jana Talbot
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tas., 7005, Australia
| | - Iva Karlínová
- Biology Centre of the Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Martin Moos
- Biology Centre of the Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Jan Mareš
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Biology Centre of the Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Lenka Bučinská
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
| | - Peter Koník
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Petr Šimek
- Biology Centre of the Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Martin Tichý
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| |
Collapse
|
4
|
Koník P, Skotnicová P, Gupta S, Tichý M, Sharma S, Komenda J, Sobotka R, Krynická V. The cyanobacterial FtsH4 protease controls accumulation of protein factors involved in the biogenesis of photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149017. [PMID: 37827327 DOI: 10.1016/j.bbabio.2023.149017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Membrane-bound FtsH proteases are universally present in prokaryotes and in mitochondria and chloroplasts of eukaryotic cells. These metalloproteases are often critical for viability and play both protease and chaperone roles to maintain cellular homeostasis. In contrast to most bacteria bearing a single ftsH gene, cyanobacteria typically possess four FtsH proteases (FtsH1-4) forming heteromeric (FtsH1/3 and FtsH2/3) and homomeric (FtsH4) complexes. The functions and substrate repertoire of each complex are however poorly understood. To identify substrates of the FtsH4 protease complex we established a trapping assay in the cyanobacterium Synechocystis PCC 6803 utilizing a proteolytically inactivated trapFtsH4-His. Around 40 proteins were specifically enriched in trapFtsH4 pulldown when compared with the active FtsH4. As the list of putative FtsH4 substrates contained Ycf4 and Ycf37 assembly factors of Photosystem I (PSI), its core PsaB subunit and the IsiA chlorophyll-binding protein that associates with PSI during iron stress, we focused on these PSI-related proteins. Therefore, we analysed their degradation by FtsH4 in vivo in Synechocystis mutants and in vitro using purified substrates. The data confirmed that FtsH4 degrades Ycf4, Ycf37, IsiA, and also the individual PsaA and PsaB subunits in the unassembled state but not when assembled within the PSI complexes. A possible role of FtsH4 in the PSI life-cycle is discussed.
Collapse
Affiliation(s)
- Peter Koník
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň 379 01, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Petra Skotnicová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň 379 01, Czech Republic
| | - Sadanand Gupta
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň 379 01, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Martin Tichý
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň 379 01, Czech Republic
| | - Surbhi Sharma
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň 379 01, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň 379 01, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň 379 01, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Vendula Krynická
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň 379 01, Czech Republic.
| |
Collapse
|
5
|
Kaňa R, Šedivá B, Prášil O. Microdomains heterogeneity in the thylakoid membrane proteins visualized by super-resolution microscopy. PHOTOSYNTHETICA 2023; 61:483-491. [PMID: 39649485 PMCID: PMC11586846 DOI: 10.32615/ps.2023.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/01/2023] [Indexed: 12/10/2024]
Abstract
The investigation of spatial heterogeneity within the thylakoid membrane (TM) proteins has gained increasing attention in photosynthetic research. The recent advances in live-cell imaging have allowed the identification of heterogeneous organisation of photosystems in small cyanobacterial cells. These sub-micrometre TM regions, termed microdomains in cyanobacteria, exhibit functional similarities with granal (Photosystem II dominant) and stromal (Photosystem I dominant) regions observed in TM of higher plants. This study delves into microdomain heterogeneity using super-resolution Airyscan-based microscopy enhancing resolution to approximately ~125 nm in x-y dimension. The new data reveal membrane areas rich in Photosystem I within the inner TM rings. Moreover, we identified analogous dynamics in the mobility of Photosystem II and phycobilisomes; countering earlier models that postulated differing mobility of these complexes. These novel findings thus hold significance for our understanding of photosynthesis regulation, particularly during state transitions.
Collapse
Affiliation(s)
- R. Kaňa
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - B. Šedivá
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31a, 370 05 České Budějovice, Czech Republic
| | - O. Prášil
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| |
Collapse
|
6
|
Kiss É, Talbot J, Adams NBP, Opekar S, Moos M, Pilný J, Kvasov T, Schneider E, Koník P, Šimek P, Sobotka R. Chlorophyll biosynthesis under the control of arginine metabolism. Cell Rep 2023; 42:113265. [PMID: 37864789 PMCID: PMC10783636 DOI: 10.1016/j.celrep.2023.113265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/11/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023] Open
Abstract
In natural environments, photosynthetic organisms adjust their metabolism to cope with the fluctuating availability of combined nitrogen sources, a growth-limiting factor. For acclimation, the dynamic degradation/synthesis of tetrapyrrolic pigments, as well as of the amino acid arginine, is pivotal; however, there has been no evidence that these processes could be functionally coupled. Using co-immunopurification and spectral shift assays, we found that in the cyanobacterium Synechocystis sp. PCC 6803, the arginine metabolism-related ArgD and CphB enzymes form protein complexes with Gun4, an essential protein for chlorophyll biosynthesis. Gun4 binds ArgD with high affinity, and the Gun4-ArgD complex accumulates in cells supplemented with ornithine, a key intermediate of the arginine pathway. Elevated ornithine levels restricted de novo synthesis of tetrapyrroles, which arrested the recovery from nitrogen deficiency. Our data reveal a direct crosstalk between tetrapyrrole biosynthesis and arginine metabolism that highlights the importance of balancing photosynthetic pigment synthesis with nitrogen homeostasis.
Collapse
Affiliation(s)
- Éva Kiss
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, The Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Jana Talbot
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, The Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Nathan B P Adams
- NanoTemper Technologies, Floessegasse 4, 81369 Munich, Germany; Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Stanislav Opekar
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Martin Moos
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Jan Pilný
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, The Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Tatjana Kvasov
- NanoTemper Technologies, Floessegasse 4, 81369 Munich, Germany
| | | | - Peter Koník
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, The Czech Academy of Sciences, 37901 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Petr Šimek
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Roman Sobotka
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, The Czech Academy of Sciences, 37901 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
7
|
Masuda T, Bečková M, Turóczy Z, Pilný J, Sobotka R, Trinugroho JP, Nixon PJ, Prášil O, Komenda J. Accumulation of Cyanobacterial Photosystem II Containing the 'Rogue' D1 Subunit Is Controlled by FtsH Protease and Synthesis of the Standard D1 Protein. PLANT & CELL PHYSIOLOGY 2023; 64:660-673. [PMID: 36976618 DOI: 10.1093/pcp/pcad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/16/2023]
Abstract
Unicellular diazotrophic cyanobacteria contribute significantly to the photosynthetic productivity of the ocean and the fixation of molecular nitrogen, with photosynthesis occurring during the day and nitrogen fixation during the night. In species like Crocosphaera watsonii WH8501, the decline in photosynthetic activity in the night is accompanied by the disassembly of oxygen-evolving photosystem II (PSII) complexes. Moreover, in the second half of the night phase, a small amount of rogue D1 (rD1), which is related to the standard form of the D1 subunit found in oxygen-evolving PSII, but of unknown function, accumulates but is quickly degraded at the start of the light phase. We show here that the removal of rD1 is independent of the rD1 transcript level, thylakoid redox state and trans-thylakoid pH but requires light and active protein synthesis. We also found that the maximal level of rD1 positively correlates with the maximal level of chlorophyll (Chl) biosynthesis precursors and enzymes, which suggests a possible role for rogue PSII (rPSII) in the activation of Chl biosynthesis just before or upon the onset of light, when new photosystems are synthesized. By studying strains of Synechocystis PCC 6803 expressing Crocosphaera rD1, we found that the accumulation of rD1 is controlled by the light-dependent synthesis of the standard D1 protein, which triggers the fast FtsH2-dependent degradation of rD1. Affinity purification of FLAG-tagged rD1 unequivocally demonstrated the incorporation of rD1 into a non-oxygen-evolving PSII complex, which we term rPSII. The complex lacks the extrinsic proteins stabilizing the oxygen-evolving Mn4CaO5 cluster but contains the Psb27 and Psb28-1 assembly factors.
Collapse
Affiliation(s)
- Takako Masuda
- Institute of Microbiology, The Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, Třeboň 37901, Czech Republic
| | - Martina Bečková
- Institute of Microbiology, The Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, Třeboň 37901, Czech Republic
| | - Zoltán Turóczy
- Institute of Microbiology, The Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, Třeboň 37901, Czech Republic
| | - Jan Pilný
- Institute of Microbiology, The Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, Třeboň 37901, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology, The Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, Třeboň 37901, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 370 05, Czech Republic
| | - Joko P Trinugroho
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, Třeboň 37901, Czech Republic
| | - Josef Komenda
- Institute of Microbiology, The Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, Třeboň 37901, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 370 05, Czech Republic
| |
Collapse
|
8
|
Enomoto G, Wallner T, Wilde A. Control of light-dependent behaviour in cyanobacteria by the second messenger cyclic di-GMP. MICROLIFE 2023; 4:uqad019. [PMID: 37223735 PMCID: PMC10124867 DOI: 10.1093/femsml/uqad019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
Nucleotide-derived signalling molecules control a wide range of cellular processes in all organisms. The bacteria-specific cyclic dinucleotide c-di-GMP plays a crucial role in regulating motility-to-sessility transitions, cell cycle progression, and virulence. Cyanobacteria are phototrophic prokaryotes that perform oxygenic photosynthesis and are widespread microorganisms that colonize almost all habitats on Earth. In contrast to photosynthetic processes that are well understood, the behavioural responses of cyanobacteria have rarely been studied in detail. Analyses of cyanobacterial genomes have revealed that they encode a large number of proteins that are potentially involved in the synthesis and degradation of c-di-GMP. Recent studies have demonstrated that c-di-GMP coordinates many different aspects of the cyanobacterial lifestyle, mostly in a light-dependent manner. In this review, we focus on the current knowledge of light-regulated c-di-GMP signalling systems in cyanobacteria. Specifically, we highlight the progress made in understanding the most prominent behavioural responses of the model cyanobacterial strains Thermosynechococcus vulcanus and Synechocystis sp. PCC 6803. We discuss why and how cyanobacteria extract crucial information from their light environment to regulate ecophysiologically important cellular responses. Finally, we emphasize the questions that remain to be addressed.
Collapse
Affiliation(s)
- Gen Enomoto
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Wallner
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Jackson PJ, Hitchcock A, Brindley AA, Dickman MJ, Hunter CN. Absolute quantification of cellular levels of photosynthesis-related proteins in Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2023; 155:219-245. [PMID: 36542271 PMCID: PMC9958174 DOI: 10.1007/s11120-022-00990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Quantifying cellular components is a basic and important step for understanding how a cell works, how it responds to environmental changes, and for re-engineering cells to produce valuable metabolites and increased biomass. We quantified proteins in the model cyanobacterium Synechocystis sp. PCC 6803 given the general importance of cyanobacteria for global photosynthesis, for synthetic biology and biotechnology research, and their ancestral relationship to the chloroplasts of plants. Four mass spectrometry methods were used to quantify cellular components involved in the biosynthesis of chlorophyll, carotenoid and bilin pigments, membrane assembly, the light reactions of photosynthesis, fixation of carbon dioxide and nitrogen, and hydrogen and sulfur metabolism. Components of biosynthetic pathways, such as those for chlorophyll or for photosystem II assembly, range between 1000 and 10,000 copies per cell, but can be tenfold higher for CO2 fixation enzymes. The most abundant subunits are those for photosystem I, with around 100,000 copies per cell, approximately 2 to fivefold higher than for photosystem II and ATP synthase, and 5-20 fold more than for the cytochrome b6f complex. Disparities between numbers of pathway enzymes, between components of electron transfer chains, and between subunits within complexes indicate possible control points for biosynthetic processes, bioenergetic reactions and for the assembly of multisubunit complexes.
Collapse
Affiliation(s)
- Philip J Jackson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Amanda A Brindley
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - C Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
10
|
Koskinen S, Kurkela J, Linhartová M, Tyystjärvi T. The genome sequence of Synechocystis sp. PCC 6803 substrain GT-T and its implications for the evolution of PCC 6803 substrains. FEBS Open Bio 2023; 13:701-712. [PMID: 36792971 PMCID: PMC10068330 DOI: 10.1002/2211-5463.13576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Synechocystis sp. PCC 6803 is a model cyanobacterium, glucose-tolerant substrains of which are commonly used as laboratory strains. In recent years, it has become evident that 'wild-type' strains used in different laboratories show some differences in their phenotypes. We report here the chromosome sequence of our Synechocystis sp. PCC 6803 substrain, named substrain GT-T. The chromosome sequence of GT-T was compared to those of two other commonly used laboratory substrains, GT-S and PCC-M. We identified 11 specific mutations in the GT-T substrain, whose physiological consequences are discussed. We also provide an update on evolutionary relationships between different Synechocystis sp. PCC 6803 substrains.
Collapse
Affiliation(s)
- Satu Koskinen
- Department of Life Sciences/Molecular Plant Biology, University of Turku, Finland
| | - Juha Kurkela
- Department of Life Sciences/Molecular Plant Biology, University of Turku, Finland
| | - Markéta Linhartová
- Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Taina Tyystjärvi
- Department of Life Sciences/Molecular Plant Biology, University of Turku, Finland
| |
Collapse
|
11
|
Krynická V, Skotnicová P, Jackson PJ, Barnett S, Yu J, Wysocka A, Kaňa R, Dickman MJ, Nixon PJ, Hunter CN, Komenda J. FtsH4 protease controls biogenesis of the PSII complex by dual regulation of high light-inducible proteins. PLANT COMMUNICATIONS 2023; 4:100502. [PMID: 36463410 PMCID: PMC9860182 DOI: 10.1016/j.xplc.2022.100502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
FtsH proteases are membrane-embedded proteolytic complexes important for protein quality control and regulation of various physiological processes in bacteria, mitochondria, and chloroplasts. Like most cyanobacteria, the model species Synechocystis sp. PCC 6803 contains four FtsH homologs, FtsH1-FtsH4. FtsH1-FtsH3 form two hetero-oligomeric complexes, FtsH1/3 and FtsH2/3, which play a pivotal role in acclimation to nutrient deficiency and photosystem II quality control, respectively. FtsH4 differs from the other three homologs by the formation of a homo-oligomeric complex, and together with Arabidopsis thaliana AtFtsH7/9 orthologs, it has been assigned to another phylogenetic group of unknown function. Our results exclude the possibility that Synechocystis FtsH4 structurally or functionally substitutes for the missing or non-functional FtsH2 subunit in the FtsH2/3 complex. Instead, we demonstrate that FtsH4 is involved in the biogenesis of photosystem II by dual regulation of high light-inducible proteins (Hlips). FtsH4 positively regulates expression of Hlips shortly after high light exposure but is also responsible for Hlip removal under conditions when their elevated levels are no longer needed. We provide experimental support for Hlips as proteolytic substrates of FtsH4. Fluorescent labeling of FtsH4 enabled us to assess its localization using advanced microscopic techniques. Results show that FtsH4 complexes are concentrated in well-defined membrane regions at the inner and outer periphery of the thylakoid system. Based on the identification of proteins that co-purified with the tagged FtsH4, we speculate that FtsH4 concentrates in special compartments in which the biogenesis of photosynthetic complexes takes place.
Collapse
Affiliation(s)
- Vendula Krynická
- The Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, Novohradská 237, 379 01 Třeboň, Czech Republic.
| | - Petra Skotnicová
- The Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Philip J Jackson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Samuel Barnett
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - Anna Wysocka
- The Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, Novohradská 237, 379 01 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Radek Kaňa
- The Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - C Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Josef Komenda
- The Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, Novohradská 237, 379 01 Třeboň, Czech Republic
| |
Collapse
|
12
|
Cryo-EM structures of the Synechocystis sp. PCC 6803 cytochrome b6f complex with and without the regulatory PetP subunit. Biochem J 2022; 479:1487-1503. [PMID: 35726684 PMCID: PMC9342900 DOI: 10.1042/bcj20220124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/01/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
In oxygenic photosynthesis, the cytochrome b6f (cytb6f) complex links the linear electron transfer (LET) reactions occurring at photosystems I and II and generates a transmembrane proton gradient via the Q-cycle. In addition to this central role in LET, cytb6f also participates in a range of processes including cyclic electron transfer (CET), state transitions and photosynthetic control. Many of the regulatory roles of cytb6f are facilitated by auxiliary proteins that differ depending upon the species, yet because of their weak and transient nature the structural details of these interactions remain unknown. An apparent key player in the regulatory balance between LET and CET in cyanobacteria is PetP, a ∼10 kDa protein that is also found in red algae but not in green algae and plants. Here, we used cryogenic electron microscopy to determine the structure of the Synechocystis sp. PCC 6803 cytb6f complex in the presence and absence of PetP. Our structures show that PetP interacts with the cytoplasmic side of cytb6f, displacing the C-terminus of the PetG subunit and shielding the C-terminus of cytochrome b6, which binds the heme cn cofactor that is suggested to mediate CET. The structures also highlight key differences in the mode of plastoquinone binding between cyanobacterial and plant cytb6f complexes, which we suggest may reflect the unique combination of photosynthetic and respiratory electron transfer in cyanobacterial thylakoid membranes. The structure of cytb6f from a model cyanobacterial species amenable to genetic engineering will enhance future site-directed mutagenesis studies of structure-function relationships in this crucial ET complex.
Collapse
|
13
|
Rahimzadeh-Karvansara P, Pascual-Aznar G, Bečková M, Komenda J. Psb34 protein modulates binding of high-light-inducible proteins to CP47-containing photosystem II assembly intermediates in the cyanobacterium Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2022; 152:333-346. [PMID: 35279779 PMCID: PMC9458560 DOI: 10.1007/s11120-022-00908-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Assembly of photosystem II (PSII), a water-splitting catalyst in chloroplasts and cyanobacteria, requires numerous auxiliary proteins which promote individual steps of this sequential process and transiently associate with one or more assembly intermediate complexes. In this study, we focussed on the role of a PSII-associated protein encoded by the ssl1498 gene in the cyanobacterium Synechocystis sp. PCC 6803. The N-terminal domain of this protein, which is here called Psb34, is very similar to the N-terminus of HliA/B proteins belonging to a family of high-light-inducible proteins (Hlips). Psb34 was identified in both dimeric and monomeric PSII, as well as in a PSII monomer lacking CP43 and containing Psb28. When FLAG-tagged, the protein is co-purified with these three complexes and with the PSII auxiliary proteins Psb27 and Psb28. However, the preparation also contained the oxygen-evolving enhancers PsbO and PsbV and lacked HliA/B proteins even when isolated from high-light-treated cells. The data suggest that Psb34 competes with HliA/B for the same binding site and that it is one of the components involved in the final conversion of late PSII assembly intermediates into functional PSII complexes, possibly keeping them free of Hlips. Unlike HliA/B, Psb34 does bind to the CP47 assembly module before its incorporation into PSII. Analysis of strains lacking Psb34 indicates that Psb34 mediates the optimal equilibrium of HliA/B binding among individual PSII assembly intermediates containing CP47, allowing Hlip-mediated photoprotection at all stages of PSII assembly.
Collapse
Affiliation(s)
- Parisa Rahimzadeh-Karvansara
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Guillem Pascual-Aznar
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Martina Bečková
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Josef Komenda
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981, Třeboň, Czech Republic.
| |
Collapse
|
14
|
Bečková M, Sobotka R, Komenda J. Photosystem II antenna modules CP43 and CP47 do not form a stable 'no reaction centre complex' in the cyanobacterium Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2022; 152:363-371. [PMID: 35015206 PMCID: PMC9458580 DOI: 10.1007/s11120-022-00896-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/31/2021] [Indexed: 05/05/2023]
Abstract
The repair of photosystem II is a key mechanism that keeps the light reactions of oxygenic photosynthesis functional. During this process, the PSII central subunit D1 is replaced with a newly synthesized copy while the neighbouring CP43 antenna with adjacent small subunits (CP43 module) is transiently detached. When the D2 protein is also damaged, it is degraded together with D1 leaving both the CP43 module and the second PSII antenna module CP47 unassembled. In the cyanobacterium Synechocystis sp. PCC 6803, the released CP43 and CP47 modules have been recently suggested to form a so-called no reaction centre complex (NRC). However, the data supporting the presence of NRC can also be interpreted as a co-migration of CP43 and CP47 modules during electrophoresis and ultracentrifugation without forming a mutual complex. To address the existence of NRC, we analysed Synechocystis PSII mutants accumulating one or both unassembled antenna modules as well as Synechocystis wild-type cells stressed with high light. The obtained results were not compatible with the existence of a stable NRC since each unassembled module was present as a separate protein complex with a mutually similar electrophoretic mobility regardless of the presence of the second module. The non-existence of NRC was further supported by isolation of the His-tagged CP43 and CP47 modules from strains lacking either D1 or D2 and their migration patterns on native gels.
Collapse
Affiliation(s)
- Martina Bečková
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Roman Sobotka
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Josef Komenda
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, 37981, Třeboň, Czech Republic.
| |
Collapse
|
15
|
Konert MM, Wysocka A, Koník P, Sobotka R. High-light-inducible proteins HliA and HliB: pigment binding and protein-protein interactions. PHOTOSYNTHESIS RESEARCH 2022; 152:317-332. [PMID: 35218444 DOI: 10.1007/s11120-022-00904-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
High-light-inducible proteins (Hlips) are single-helix transmembrane proteins that are essential for the survival of cyanobacteria under stress conditions. The model cyanobacterium Synechocystis sp. PCC 6803 contains four Hlip isoforms (HliA-D) that associate with Photosystem II (PSII) during its assembly. HliC and HliD are known to form pigmented (hetero)dimers that associate with the newly synthesized PSII reaction center protein D1 in a configuration that allows thermal dissipation of excitation energy. Thus, it is expected that they photoprotect the early steps of PSII biogenesis. HliA and HliB, on the other hand, bind the PSII inner antenna protein CP47, but the mode of interaction and pigment binding have not been resolved. Here, we isolated His-tagged HliA and HliB from Synechocystis and show that these two very similar Hlips do not interact with each other as anticipated, rather they form HliAC and HliBC heterodimers. Both dimers bind Chl and β-carotene in a quenching conformation and associate with the CP47 assembly module as well as later PSII assembly intermediates containing CP47. In the absence of HliC, the cellular levels of HliA and HliB were reduced, and both bound atypically to HliD. We postulate a model in which HliAC-, HliBC-, and HliDC-dimers are the functional Hlip units in Synechocystis. The smallest Hlip, HliC, acts as a 'generalist' that prevents unspecific dimerization of PSII assembly intermediates, while the N-termini of 'specialists' (HliA, B or D) dictate interactions with proteins other than Hlips.
Collapse
Affiliation(s)
- Minna M Konert
- Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237 - Opatovický mlýn, 37901, Třeboň, Czech Republic.
| | - Anna Wysocka
- Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237 - Opatovický mlýn, 37901, Třeboň, Czech Republic
| | - Peter Koník
- Institute of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237 - Opatovický mlýn, 37901, Třeboň, Czech Republic
| |
Collapse
|
16
|
Chiu Y, Fu H, Skotnicová P, Lin K, Komenda J, Chu H. Tandem gene amplification restores photosystem II accumulation in cytochrome b 559 mutants of cyanobacteria. THE NEW PHYTOLOGIST 2022; 233:766-780. [PMID: 34625967 PMCID: PMC9297868 DOI: 10.1111/nph.17785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/30/2021] [Indexed: 05/11/2023]
Abstract
Cytochrome (Cyt) b559 is a key component of the photosystem II complex (PSII) that is essential for its proper functioning and assembly. Site-directed mutants of the model cyanobacterium Synechocystis sp. PCC6803 with mutated heme axial ligands of Cyt b559 have little PSII and are therefore unable to grow photoautotrophically. Here we describe two types of Synechocystis autotrophic transformants that retained the same mutations in Cyt b559 but are able to accumulate PSII and grow photoautotrophically. Whole-genome sequencing revealed that all of these autotrophic transformants carried a variable number of tandem repeats (from 5 to 15) of chromosomal segments containing the psbEFLJ operon. RNA-seq analysis showed greatly increased transcript levels of the psbEFLJ operon in these autotrophic transformants. Multiple copies of the psbEFLJ operon in these transformants were only maintained during autotrophic growth, while its copy numbers gradually decreased under photoheterotrophic conditions. Two-dimensional PAGE analysis of membrane proteins revealed a strong deficiency in PSII complexes in the Cyt b559 mutants that was reversed in the autotrophic transformants. These results illustrate how tandem gene amplification restores PSII accumulation and photoautotrophic growth in Cyt b559 mutants of cyanobacteria, and may serve as an important adaptive mechanism for cyanobacterial survival.
Collapse
Affiliation(s)
- Yi‐Fang Chiu
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Han‐Yi Fu
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Petra Skotnicová
- Laboratory of PhotosynthesisCentre AlgatechInstitute of Microbiology of the Czech Academy of SciencesTřeboň379 01Czech Republic
| | - Keng‐Min Lin
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Josef Komenda
- Laboratory of PhotosynthesisCentre AlgatechInstitute of Microbiology of the Czech Academy of SciencesTřeboň379 01Czech Republic
| | - Hsiu‐An Chu
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| |
Collapse
|
17
|
Plant LHC-like proteins show robust folding and static non-photochemical quenching. Nat Commun 2021; 12:6890. [PMID: 34824207 PMCID: PMC8617258 DOI: 10.1038/s41467-021-27155-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Plants collect photons by light harvesting complexes (LHC)-abundant membrane proteins containing chlorophyll and xanthophyll molecules. LHC-like proteins are similar in their amino acid sequence to true LHC antennae, however, they rather serve a photoprotective function. Whether the LHC-like proteins bind pigments has remained unclear. Here, we characterize plant LHC-like proteins (LIL3 and ELIP2) produced in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). Both proteins were associated with chlorophyll a (Chl) and zeaxanthin and LIL3 was shown to be capable of quenching Chl fluorescence via direct energy transfer from the Chl Qy state to zeaxanthin S1 state. Interestingly, the ability of the ELIP2 protein to quench can be acquired by modifying its N-terminal sequence. By employing Synechocystis carotenoid mutants and site-directed mutagenesis we demonstrate that, although LIL3 does not need pigments for folding, pigments stabilize the LIL3 dimer.
Collapse
|
18
|
Linhartová M, Skotnicová P, Hakkila K, Tichý M, Komenda J, Knoppová J, Gilabert JF, Guallar V, Tyystjärvi T, Sobotka R. Mutations Suppressing the Lack of Prepilin Peptidase Provide Insights Into the Maturation of the Major Pilin Protein in Cyanobacteria. Front Microbiol 2021; 12:756912. [PMID: 34712217 PMCID: PMC8546353 DOI: 10.3389/fmicb.2021.756912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Type IV pili are bacterial surface-exposed filaments that are built up by small monomers called pilin proteins. Pilins are synthesized as longer precursors (prepilins), the N-terminal signal peptide of which must be removed by the processing protease PilD. A mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking the PilD protease is not capable of photoautotrophic growth because of the impaired function of Sec translocons. Here, we isolated phototrophic suppressor strains of the original ΔpilD mutant and, by sequencing their genomes, identified secondary mutations in the SigF sigma factor, the γ subunit of RNA polymerase, the signal peptide of major pilin PilA1, and in the pilA1-pilA2 intergenic region. Characterization of suppressor strains suggests that, rather than the total prepilin level in the cell, the presence of non-glycosylated PilA1 prepilin is specifically harmful. We propose that the restricted lateral mobility of the non-glycosylated PilA1 prepilin causes its accumulation in the translocon-rich membrane domains, which attenuates the synthesis of membrane proteins.
Collapse
Affiliation(s)
- Markéta Linhartová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Petra Skotnicová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Kaisa Hakkila
- Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Martin Tichý
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Knoppová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | | | - Victor Guallar
- Barcelona Supercomputing Center, Barcelona, Spain.,ICREA: Institucio Catalana de Recerca i Estudis Avançats Passeig Lluis Companys, Barcelona, Spain
| | - Taina Tyystjärvi
- Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
19
|
Canonico M, Konert G, Crepin A, Šedivá B, Kaňa R. Gradual Response of Cyanobacterial Thylakoids to Acute High-Light Stress-Importance of Carotenoid Accumulation. Cells 2021; 10:cells10081916. [PMID: 34440685 PMCID: PMC8393233 DOI: 10.3390/cells10081916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 02/02/2023] Open
Abstract
Light plays an essential role in photosynthesis; however, its excess can cause damage to cellular components. Photosynthetic organisms thus developed a set of photoprotective mechanisms (e.g., non-photochemical quenching, photoinhibition) that can be studied by a classic biochemical and biophysical methods in cell suspension. Here, we combined these bulk methods with single-cell identification of microdomains in thylakoid membrane during high-light (HL) stress. We used Synechocystis sp. PCC 6803 cells with YFP tagged photosystem I. The single-cell data pointed to a three-phase response of cells to acute HL stress. We defined: (1) fast response phase (0–30 min), (2) intermediate phase (30–120 min), and (3) slow acclimation phase (120–360 min). During the first phase, cyanobacterial cells activated photoprotective mechanisms such as photoinhibition and non-photochemical quenching. Later on (during the second phase), we temporarily observed functional decoupling of phycobilisomes and sustained monomerization of photosystem II dimer. Simultaneously, cells also initiated accumulation of carotenoids, especially ɣ–carotene, the main precursor of all carotenoids. In the last phase, in addition to ɣ-carotene, we also observed accumulation of myxoxanthophyll and more even spatial distribution of photosystems and phycobilisomes between microdomains. We suggest that the overall carotenoid increase during HL stress could be involved either in the direct photoprotection (e.g., in ROS scavenging) and/or could play an additional role in maintaining optimal distribution of photosystems in thylakoid membrane to attain efficient photoprotection.
Collapse
Affiliation(s)
- Myriam Canonico
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (M.C.); (G.K.); (A.C.); (B.Š.)
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31a, 370 05 České Budějovice, Czech Republic
| | - Grzegorz Konert
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (M.C.); (G.K.); (A.C.); (B.Š.)
| | - Aurélie Crepin
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (M.C.); (G.K.); (A.C.); (B.Š.)
| | - Barbora Šedivá
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (M.C.); (G.K.); (A.C.); (B.Š.)
| | - Radek Kaňa
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (M.C.); (G.K.); (A.C.); (B.Š.)
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31a, 370 05 České Budějovice, Czech Republic
- Correspondence:
| |
Collapse
|
20
|
Nagy C, Thiel K, Mulaku E, Mustila H, Tamagnini P, Aro EM, Pacheco CC, Kallio P. Comparison of alternative integration sites in the chromosome and the native plasmids of the cyanobacterium Synechocystis sp. PCC 6803 in respect to expression efficiency and copy number. Microb Cell Fact 2021; 20:130. [PMID: 34246263 PMCID: PMC8272380 DOI: 10.1186/s12934-021-01622-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background Synechocystis sp. PCC 6803 provides a well-established reference point to cyanobacterial metabolic engineering as part of basic photosynthesis research, as well as in the development of next-generation biotechnological production systems. This study focused on expanding the current knowledge on genomic integration of expression constructs in Synechocystis, targeting a range of novel sites in the chromosome and in the native plasmids, together with established loci used in literature. The key objective was to obtain quantitative information on site-specific expression in reference to replicon copy numbers, which has been speculated but never compared side by side in this host. Results An optimized sYFP2 expression cassette was successfully integrated in two novel sites in Synechocystis chromosome (slr0944; sll0058) and in all four endogenous megaplasmids (pSYSM/slr5037-slr5038; pSYSX/slr6037; pSYSA/slr7023; pSYSG/slr8030) that have not been previously evaluated for the purpose. Fluorescent analysis of the segregated strains revealed that the expression levels between the megaplasmids and chromosomal constructs were very similar, and reinforced the view that highest expression in Synechocystis can be obtained using RSF1010-derived replicative vectors or the native small plasmid pCA2.4 evaluated in comparison. Parallel replicon copy number analysis by RT-qPCR showed that the expression from the alternative loci is largely determined by the gene dosage in Synechocystis, thereby confirming the dependence formerly proposed based on literature. Conclusions This study brings together nine different integrative loci in the genome of Synechocystis to demonstrate quantitative differences between target sites in the chromosome, the native plasmids, and a RSF1010-based replicative expression vector. To date, this is the most comprehensive comparison of alternative integrative sites in Synechocystis, and provides the first direct reference between expression efficiency and replicon gene dosage in the context. In the light of existing literature, the findings support the view that the small native plasmids can be notably more difficult to target than the chromosome or the megaplasmids, and that the RSF1010-derived vectors may be surprisingly well maintained under non-selective culture conditions in this cyanobacterial host. Altogether, the work broadens our views on genomic integration and the rational use of different integrative loci versus replicative plasmids, when aiming at expressing heterologous genes in Synechocystis. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01622-2.
Collapse
Affiliation(s)
- Csaba Nagy
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland
| | - Kati Thiel
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland
| | - Edita Mulaku
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland
| | - Henna Mustila
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland
| | - Paula Tamagnini
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland
| | - Catarina C Pacheco
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Pauli Kallio
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland.
| |
Collapse
|
21
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
22
|
Chen GE, Hitchcock A, Mareš J, Gong Y, Tichý M, Pilný J, Kovářová L, Zdvihalová B, Xu J, Hunter CN, Sobotka R. Evolution of Ycf54-independent chlorophyll biosynthesis in cyanobacteria. Proc Natl Acad Sci U S A 2021; 118:e2024633118. [PMID: 33649240 PMCID: PMC7958208 DOI: 10.1073/pnas.2024633118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chlorophylls (Chls) are essential cofactors for photosynthesis. One of the least understood steps of Chl biosynthesis is formation of the fifth (E) ring, where the red substrate, magnesium protoporphyrin IX monomethyl ester, is converted to the green product, 3,8-divinyl protochlorophyllide a In oxygenic phototrophs, this reaction is catalyzed by an oxygen-dependent cyclase, consisting of a catalytic subunit (AcsF/CycI) and an auxiliary protein, Ycf54. Deletion of Ycf54 impairs cyclase activity and results in severe Chl deficiency, but its exact role is not clear. Here, we used a Δycf54 mutant of the model cyanobacterium Synechocystis sp. PCC 6803 to generate suppressor mutations that restore normal levels of Chl. Sequencing Δycf54 revertants identified a single D219G amino acid substitution in CycI and frameshifts in slr1916, which encodes a putative esterase. Introduction of these mutations to the original Δycf54 mutant validated the suppressor effect, especially in combination. However, comprehensive analysis of the Δycf54 suppressor strains revealed that the D219G-substituted CycI is only partially active and its accumulation is misregulated, suggesting that Ycf54 controls both the level and activity of CycI. We also show that Slr1916 has Chl dephytylase activity in vitro and its inactivation up-regulates the entire Chl biosynthetic pathway, resulting in improved cyclase activity. Finally, large-scale bioinformatic analysis indicates that our laboratory evolution of Ycf54-independent CycI mimics natural evolution of AcsF in low-light-adapted ecotypes of the oceanic cyanobacteria Prochlorococcus, which lack Ycf54, providing insight into the evolutionary history of the cyclase enzyme.
Collapse
Affiliation(s)
- Guangyu E Chen
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jan Mareš
- Institute of Microbiology, Czech Academy of Sciences, 37901 Třeboň, Czech Republic
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Yanhai Gong
- Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Martin Tichý
- Institute of Microbiology, Czech Academy of Sciences, 37901 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Jan Pilný
- Institute of Microbiology, Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Lucie Kovářová
- Institute of Microbiology, Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Barbora Zdvihalová
- Institute of Microbiology, Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Jian Xu
- Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Roman Sobotka
- Institute of Microbiology, Czech Academy of Sciences, 37901 Třeboň, Czech Republic;
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| |
Collapse
|
23
|
Xanthophyll carotenoids stabilise the association of cyanobacterial chlorophyll synthase with the LHC-like protein HliD. Biochem J 2021; 477:4021-4036. [PMID: 32990304 DOI: 10.1042/bcj20200561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/28/2020] [Indexed: 02/03/2023]
Abstract
Chlorophyll synthase (ChlG) catalyses a terminal reaction in the chlorophyll biosynthesis pathway, attachment of phytol or geranylgeraniol to the C17 propionate of chlorophyllide. Cyanobacterial ChlG forms a stable complex with high light-inducible protein D (HliD), a small single-helix protein homologous to the third transmembrane helix of plant light-harvesting complexes (LHCs). The ChlG-HliD assembly binds chlorophyll, β-carotene, zeaxanthin and myxoxanthophyll and associates with the YidC insertase, most likely to facilitate incorporation of chlorophyll into translated photosystem apoproteins. HliD independently coordinates chlorophyll and β-carotene but the role of the xanthophylls, which appear to be exclusive to the core ChlG-HliD assembly, is unclear. Here we generated mutants of Synechocystis sp. PCC 6803 lacking specific combinations of carotenoids or HliD in a background with FLAG- or His-tagged ChlG. Immunoprecipitation experiments and analysis of isolated membranes demonstrate that the absence of zeaxanthin and myxoxanthophyll significantly weakens the interaction between HliD and ChlG. ChlG alone does not bind carotenoids and accumulation of the chlorophyllide substrate in the absence of xanthophylls indicates that activity/stability of the 'naked' enzyme is perturbed. In contrast, the interaction of HliD with a second partner, the photosystem II assembly factor Ycf39, is preserved in the absence of xanthophylls. We propose that xanthophylls are required for the stable association of ChlG and HliD, acting as a 'molecular glue' at the lateral transmembrane interface between these proteins; roles for zeaxanthin and myxoxanthophyll in ChlG-HliD complexation are discussed, as well as the possible presence of similar complexes between LHC-like proteins and chlorophyll biosynthesis enzymes in plants.
Collapse
|
24
|
Kaňa R, Steinbach G, Sobotka R, Vámosi G, Komenda J. Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane. Life (Basel) 2020; 11:life11010015. [PMID: 33383642 PMCID: PMC7823997 DOI: 10.3390/life11010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 01/08/2023] Open
Abstract
Biological membranes were originally described as a fluid mosaic with uniform distribution of proteins and lipids. Later, heterogeneous membrane areas were found in many membrane systems including cyanobacterial thylakoids. In fact, cyanobacterial pigment-protein complexes (photosystems, phycobilisomes) form a heterogeneous mosaic of thylakoid membrane microdomains (MDs) restricting protein mobility. The trafficking of membrane proteins is one of the key factors for long-term survival under stress conditions, for instance during exposure to photoinhibitory light conditions. However, the mobility of unbound 'free' proteins in thylakoid membrane is poorly characterized. In this work, we assessed the maximal diffusional ability of a small, unbound thylakoid membrane protein by semi-single molecule FCS (fluorescence correlation spectroscopy) method in the cyanobacterium Synechocystis sp. PCC6803. We utilized a GFP-tagged variant of the cytochrome b6f subunit PetC1 (PetC1-GFP), which was not assembled in the b6f complex due to the presence of the tag. Subsequent FCS measurements have identified a very fast diffusion of the PetC1-GFP protein in the thylakoid membrane (D = 0.14 - 2.95 µm2s-1). This means that the mobility of PetC1-GFP was comparable with that of free lipids and was 50-500 times higher in comparison to the mobility of proteins (e.g., IsiA, LHCII-light-harvesting complexes of PSII) naturally associated with larger thylakoid membrane complexes like photosystems. Our results thus demonstrate the ability of free thylakoid-membrane proteins to move very fast, revealing the crucial role of protein-protein interactions in the mobility restrictions for large thylakoid protein complexes.
Collapse
Affiliation(s)
- Radek Kaňa
- Center ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (R.S.); (J.K.)
- Correspondence:
| | - Gábor Steinbach
- Institute of Biophysics, Biological Research Center, 6726 Szeged, Hungary;
| | - Roman Sobotka
- Center ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (R.S.); (J.K.)
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Josef Komenda
- Center ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (R.S.); (J.K.)
| |
Collapse
|
25
|
Pope MA, Hodge JA, Nixon PJ. An Improved Natural Transformation Protocol for the Cyanobacterium Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2020; 11:372. [PMID: 32351517 PMCID: PMC7174562 DOI: 10.3389/fpls.2020.00372] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
The naturally transformable cyanobacterium Synechocystis sp. PCC 6803 is a widely used chassis strain for the photosynthetic production of chemicals. However, Synechocystis possesses multiple genome copies per cell which means that segregating mutations across all genome copies can be time-consuming. Here we use flow cytometry in combination with DNA staining to investigate the effect of phosphate deprivation on the genome copy number of the glucose-tolerant GT-P sub-strain of Synechocystis 6803. Like the PCC 6803 wild type strain, the ploidy of GT-P cells grown in BG-11 medium is growth phase dependent with an average genome copy number of 6.05 ± 0.27 in early growth (OD740 = 0.1) decreasing to 2.49 ± 0.11 in late stationary phase (OD740 = 7). We show that a 10-fold reduction in the initial phosphate concentration of the BG-11 growth medium reduces the average genome copy number of GT-P cells from 4.51 ± 0.20 to 2.94 ± 0.13 and increases the proportion of monoploid cells from 0 to 6% after 7 days of growth. In addition, we also show that the DnaA protein, which unusually for bacteria is not required for DNA replication in Synechocystis, plays a role in restoring polyploidy upon subsequent phosphate supplementation. Based on these observations, we have developed an alternative natural transformation protocol involving phosphate depletion that decreases the time required to obtain fully segregated mutants.
Collapse
|
26
|
Trinugroho JP, Bečková M, Shao S, Yu J, Zhao Z, Murray JW, Sobotka R, Komenda J, Nixon PJ. Chlorophyll f synthesis by a super-rogue photosystem II complex. NATURE PLANTS 2020; 6:238-244. [PMID: 32170286 DOI: 10.1038/s41477-020-0616-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/06/2020] [Indexed: 05/21/2023]
Abstract
Certain cyanobacteria synthesize chlorophyll molecules (Chl d and Chl f) that absorb in the far-red region of the solar spectrum, thereby extending the spectral range of photosynthetically active radiation1,2. The synthesis and introduction of these far-red chlorophylls into the photosynthetic apparatus of plants might improve the efficiency of oxygenic photosynthesis, especially in far-red enriched environments, such as in the lower regions of the canopy3. Production of Chl f requires the ChlF subunit, also known as PsbA4 (ref. 4) or super-rogue D1 (ref. 5), a paralogue of the D1 subunit of photosystem II (PSII) which, together with D2, bind cofactors involved in the light-driven oxidation of water. Current ideas suggest that ChlF oxidizes Chl a to Chl f in a homodimeric ChlF reaction centre (RC) complex and represents a missing link in the evolution of the heterodimeric D1/D2 RC of PSII (refs. 4,6). However, unambiguous biochemical support for this proposal is lacking. Here, we show that ChlF can substitute for D1 to form modified PSII complexes capable of producing Chl f. Remarkably, mutation of just two residues in D1 converts oxygen-evolving PSII into a Chl f synthase. Overall, we have identified a new class of PSII complex, which we term 'super-rogue' PSII, with an unexpected role in pigment biosynthesis rather than water oxidation.
Collapse
Affiliation(s)
- Joko P Trinugroho
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Martina Bečková
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Shengxi Shao
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Ziyu Zhao
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - James W Murray
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Roman Sobotka
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Josef Komenda
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK.
| |
Collapse
|
27
|
Krynická V, Georg J, Jackson PJ, Dickman MJ, Hunter CN, Futschik ME, Hess WR, Komenda J. Depletion of the FtsH1/3 Proteolytic Complex Suppresses the Nutrient Stress Response in the Cyanobacterium Synechocystis sp strain PCC 6803. THE PLANT CELL 2019; 31:2912-2928. [PMID: 31615847 PMCID: PMC6925008 DOI: 10.1105/tpc.19.00411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/03/2019] [Accepted: 10/13/2019] [Indexed: 05/04/2023]
Abstract
The membrane-embedded FtsH proteases found in bacteria, chloroplasts, and mitochondria are involved in diverse cellular processes including protein quality control and regulation. The genome of the model cyanobacterium Synechocystis sp PCC 6803 encodes four FtsH homologs designated FtsH1 to FtsH4. The FtsH3 homolog is present in two hetero-oligomeric complexes: FtsH2/3, which is responsible for photosystem II quality control, and the essential FtsH1/3 complex, which helps maintain Fe homeostasis by regulating the level of the transcription factor Fur. To gain a more comprehensive insight into the physiological roles of FtsH hetero-complexes, we performed genome-wide expression profiling and global proteomic analyses of Synechocystis mutants conditionally depleted of FtsH3 or FtsH1 grown under various nutrient conditions. We show that the lack of FtsH1/3 leads to a drastic reduction in the transcriptional response to nutrient stress of not only Fur but also the Pho, NdhR, and NtcA regulons. In addition, this effect is accompanied by the accumulation of the respective transcription factors. Thus, the FtsH1/3 complex is of critical importance for acclimation to iron, phosphate, carbon, and nitrogen starvation in Synechocystis.plantcell;31/12/2912/FX1F1fx1.
Collapse
Affiliation(s)
- Vendula Krynická
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, 379 81, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Jens Georg
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Mark J Dickman
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Matthias E Futschik
- School of Biomedical Sciences, Institute of Translational and Stratified Medicine (ITSMed), Faculty of Medicine and Dentistry, University of Plymouth, Plymouth PL6 8BU, United Kingdom
- Systems Biology and Bioinformatics Laboratory (SysBioLab), Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Albertstrße 19, D-79104 Freiburg, Germany
| | - Josef Komenda
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, 379 81, Czech Republic
| |
Collapse
|
28
|
Kiss É, Knoppová J, Aznar GP, Pilný J, Yu J, Halada P, Nixon PJ, Sobotka R, Komenda J. A Photosynthesis-Specific Rubredoxin-Like Protein Is Required for Efficient Association of the D1 and D2 Proteins during the Initial Steps of Photosystem II Assembly. THE PLANT CELL 2019; 31:2241-2258. [PMID: 31320483 PMCID: PMC6751121 DOI: 10.1105/tpc.19.00155] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/04/2019] [Accepted: 07/18/2019] [Indexed: 05/20/2023]
Abstract
Oxygenic photosynthesis relies on accessory factors to promote the assembly and maintenance of the photosynthetic apparatus in the thylakoid membranes. The highly conserved membrane-bound rubredoxin-like protein RubA has previously been implicated in the accumulation of both PSI and PSII, but its mode of action remains unclear. Here, we show that RubA in the cyanobacterium Synechocystis sp PCC 6803 is required for photoautotrophic growth in fluctuating light and acts early in PSII biogenesis by promoting the formation of the heterodimeric D1/D2 reaction center complex, the site of primary photochemistry. We find that RubA, like the accessory factor Ycf48, is a component of the initial D1 assembly module as well as larger PSII assembly intermediates and that the redox-responsive rubredoxin-like domain is located on the cytoplasmic surface of PSII complexes. Fusion of RubA to Ycf48 still permits normal PSII assembly, suggesting a spatiotemporal proximity of both proteins during their action. RubA is also important for the accumulation of PSI, but this is an indirect effect stemming from the downregulation of light-dependent chlorophyll biosynthesis induced by PSII deficiency. Overall, our data support the involvement of RubA in the redox control of PSII biogenesis.
Collapse
Affiliation(s)
- Éva Kiss
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czech Republic
| | - Jana Knoppová
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czech Republic
| | - Guillem Pascual Aznar
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Jan Pilný
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czech Republic
| | - Jianfeng Yu
- Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, 14220 Praha 4-Krc, Czech Republic
| | - Peter J Nixon
- Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Roman Sobotka
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Josef Komenda
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| |
Collapse
|
29
|
Knoppová J, Komenda J. Sequential deletions of photosystem II assembly factors Ycf48, Ycf39 and Pam68 result in progressive loss of autotrophy in the cyanobacterium Synechocystis PCC 6803. Folia Microbiol (Praha) 2019; 64:683-689. [PMID: 31359262 DOI: 10.1007/s12223-019-00736-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/15/2019] [Indexed: 01/28/2023]
Abstract
The biogenesis of the cyanobacterial photosystem II (PSII) complex requires a number of auxiliary assembly factors that improve efficiency of the process but their precise function is not well understood. To assess a possible synergic action of the Ycf48 and Ycf39 factors acting in early steps of the biogenesis via interaction with the nascent D1 subunit of PSII, we constructed and characterised a double mutant of the cyanobacterium Synechocystis PCC 6803 lacking both these proteins. In addition, we also deleted the ycf39 gene in the double mutant lacking Ycf48 and Pam68, the latter being a ribosomal factor promoting insertion of chlorophyll (Chl) into the CP47 subunit of PSII. The resulting double ΔYcf48/ΔYcf39 and triple ΔYcf48/ΔPam68/ΔYcf39 mutants were deficient in PSII and total Chl, and in contrast to the source mutants, they lost the capacity for autotrophy. Interestingly, autotrophic growth was restored in both of the new multiple mutants by enhancing Chl biosynthesis using a specific ferrochelatase inhibitor. Taking together with the weak radioactive labelling of the D1 protein, these findings can be explained by inhibition of the D1 synthesis caused by the lack and/or incorrect binding of Chl molecules. The results emphasise the key importance of the sufficient Chl supply for the PSII biogenesis and also support the existence of a so far enigmatic regulatory mechanism leading to the reduced overall Chl biosynthesis/accumulation when the PSII assembly is impaired.
Collapse
Affiliation(s)
- Jana Knoppová
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czech Republic.
| | - Josef Komenda
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| |
Collapse
|
30
|
Strašková A, Steinbach G, Konert G, Kotabová E, Komenda J, Tichý M, Kaňa R. Pigment-protein complexes are organized into stable microdomains in cyanobacterial thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148053. [PMID: 31344362 DOI: 10.1016/j.bbabio.2019.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 02/03/2023]
Abstract
Thylakoids are the place of the light-photosynthetic reactions. To gain maximal efficiency, these reactions are conditional to proper pigment-pigment and protein-protein interactions. In higher plants thylakoids, the interactions lead to a lateral asymmetry in localization of protein complexes (i.e. granal/stromal thylakoids) that have been defined as a domain-like structures characteristic by different biochemical composition and function (Albertsson P-Å. 2001,Trends Plant Science 6: 349-354). We explored this complex organization of thylakoid pigment-proteins at single cell level in the cyanobacterium Synechocystis sp. PCC 6803. Our 3D confocal images captured heterogeneous distribution of all main photosynthetic pigment-protein complexes (PPCs), Photosystem I (fluorescently tagged by YFP), Photosystem II and Phycobilisomes. The acquired images depicted cyanobacterial thylakoid membrane as a stable, mosaic-like structure formed by microdomains (MDs). These microcompartments are of sub-micrometer in sizes (~0.5-1.5 μm), typical by particular PPCs ratios and importantly without full segregation of observed complexes. The most prevailing MD is represented by MD with high Photosystem I content which allows also partial separation of Photosystems like in higher plants thylakoids. We assume that MDs stability (in minutes) provides optimal conditions for efficient excitation/electron transfer. The cyanobacterial MDs thus define thylakoid membrane organization as a system controlled by co-localization of three main PPCs leading to formation of thylakoid membrane mosaic. This organization might represent evolutional and functional precursor for the granal/stromal spatial heterogeneity in photosystems that is typical for higher plant thylakoids.
Collapse
Affiliation(s)
- A Strašková
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - G Steinbach
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - G Konert
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - E Kotabová
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - J Komenda
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - M Tichý
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - R Kaňa
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
31
|
Pazderník M, Mareš J, Pilný J, Sobotka R. The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration. J Biol Chem 2019; 294:11131-11143. [PMID: 31167780 DOI: 10.1074/jbc.ra119.008434] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/29/2019] [Indexed: 01/19/2023] Open
Abstract
Ferrochelatase (FeCh) is an essential enzyme catalyzing the synthesis of heme. Interestingly, in cyanobacteria, algae, and plants, FeCh possesses a conserved transmembrane chlorophyll a/b binding (CAB) domain that resembles the first and the third helix of light-harvesting complexes, including a chlorophyll-binding motif. Whether the FeCh CAB domain also binds chlorophyll is unknown. Here, using biochemical and radiolabeled precursor experiments, we found that partially inhibited activity of FeCh in the cyanobacterium Synechocystis PCC 6803 leads to overproduction of chlorophyll molecules that accumulate in the thylakoid membrane and, together with carotenoids, bind to FeCh. We observed that pigments bound to purified FeCh are organized in an energy-dissipative conformation and further show that FeCh can exist in vivo as a monomer or a dimer depending on its own activity. However, pigmented FeCh was purified exclusively as a dimer. Separately expressed and purified FeCH CAB domain contained a pigment composition similar to that of full-length FeCh and retained its quenching properties. Phylogenetic analysis suggested that the CAB domain was acquired by a fusion between FeCh and a single-helix, high light-inducible protein early in the evolution of cyanobacteria. Following this fusion, the FeCh CAB domain with a functional chlorophyll-binding motif was retained in all currently known cyanobacterial genomes except for a single lineage of endosymbiotic cyanobacteria. Our findings indicate that FeCh from Synechocystis exists mostly as a pigment-free monomer in cells but can dimerize, in which case its CAB domain creates a functional pigment-binding segment organized in an energy-dissipating configuration.
Collapse
Affiliation(s)
- Marek Pazderník
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, 379 81, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Jan Mareš
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, 379 81, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic.,Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Jan Pilný
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, 379 81, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, 379 81, Czech Republic .,Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| |
Collapse
|
32
|
Konert G, Steinbach G, Canonico M, Kaňa R. Protein arrangement factor: a new photosynthetic parameter characterizing the organization of thylakoid membrane proteins. PHYSIOLOGIA PLANTARUM 2019; 166:264-277. [PMID: 30817002 DOI: 10.1111/ppl.12952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 05/18/2023]
Abstract
A proper spatial distribution of photosynthetic pigment-protein complexes - PPCs (photosystems, light-harvesting antennas) is crucial for photosynthesis. In plants, photosystems I and II (PSI and PSII) are heterogeneously distributed between granal and stromal thylakoids. Here we have described similar heterogeneity in the PSI, PSII and phycobilisomes (PBSs) distribution in cyanobacteria thylakoids into microdomains by applying a new image processing method suitable for the Synechocystis sp. PCC6803 strain with yellow fluorescent protein-tagged PSI. The new image processing method is able to analyze the fluorescence ratios of PPCs on a single-cell level, pixel per pixel. Each cell pixel is plotted in CIE1931 color space by forming a pixel-color distribution of the cell. The most common position in CIE1931 is then defined as protein arrangement (PA) factor with xy coordinates. The PA-factor represents the most abundant fluorescence ratio of PSI/PSII/PBS, the 'mode color' of studied cell. We proved that a shift of the PA-factor from the center of the cell-pixel distribution (the 'median' cell color) is an indicator of the presence of special subcellular microdomain(s) with a unique PSI/PSII/PBS fluorescence ratio in comparison to other parts of the cell. Furthermore, during a 6-h high-light (HL) treatment, 'median' and 'mode' color (PA-factor) of the cell changed similarly on the population level, indicating that such microdomains with unique PSI/PSII/PBS fluorescence were not formed during HL (i.e. fluorescence changed equally in the whole cell). However, the PA-factor was very sensitive in characterizing the fluorescence ratios of PSI/PSII/PBS in cyanobacterial cells during HL by depicting a 4-phase acclimation to HL, and their physiological interpretation has been discussed.
Collapse
Affiliation(s)
- Grzegorz Konert
- Institute of Microbiology, CAS, Centrum Algatech, Třeboň, Czech Republic
| | - Gabor Steinbach
- Institute of Microbiology, CAS, Centrum Algatech, Třeboň, Czech Republic
| | - Myriam Canonico
- Institute of Microbiology, CAS, Centrum Algatech, Třeboň, Czech Republic
| | - Radek Kaňa
- Institute of Microbiology, CAS, Centrum Algatech, Třeboň, Czech Republic
| |
Collapse
|
33
|
Komenda J, Krynická V, Zakar T. Isolation of Thylakoid Membranes from the Cyanobacterium Synechocystis sp. PCC 6803 and Analysis of Their Photosynthetic Pigment-protein Complexes by Clear Native-PAGE. Bio Protoc 2019; 9:e3126. [PMID: 33654759 DOI: 10.21769/bioprotoc.3126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria represent a frequently used model organism for the study of oxygenic photosynthesis. They belong to prokaryotic microorganisms but their photosynthetic apparatus is quite similar to that found in algal and plant chloroplasts. The key players in light reactions of photosynthesis are Photosystem I and Photosystem II complexes (PSI and PSII, resp.), large membrane complexes of proteins, pigments and other cofactors embedded in specialized photosynthetic membranes named thylakoids. For the study of these complexes a mild method for the isolation of the thylakoids, their subsequent solubilization and analysis is essential. The presented protocol describes such a method which utilizes breaking the cyanobacterial cells using glass beads in an optimized buffer. This is followed by their solubilization using dodecyl-maltoside and analysis using optimized clear-native gel electrophoresis which preserves the native oligomerization state of both complexes and allows the estimation of their content.
Collapse
Affiliation(s)
- Josef Komenda
- Centre Algatech, Institute of Microbiology, Academy of Sciences, Třeboň, Czech Republic
| | - Vendula Krynická
- Centre Algatech, Institute of Microbiology, Academy of Sciences, Třeboň, Czech Republic
| | - Tomas Zakar
- Centre Algatech, Institute of Microbiology, Academy of Sciences, Třeboň, Czech Republic.,Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
34
|
Bec Ková M, Yu J, Krynická V, Kozlo A, Shao S, Koník P, Komenda J, Murray JW, Nixon PJ. Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0394. [PMID: 28808107 PMCID: PMC5566888 DOI: 10.1098/rstb.2016.0394] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
One strategy for enhancing photosynthesis in crop plants is to improve their ability to repair photosystem II (PSII) in response to irreversible damage by light. Despite the pivotal role of thylakoid-embedded FtsH protease complexes in the selective degradation of PSII subunits during repair, little is known about the factors involved in regulating FtsH expression. Here we show using the cyanobacterium Synechocystis sp. PCC 6803 that the Psb29 subunit, originally identified as a minor component of His-tagged PSII preparations, physically interacts with FtsH complexes in vivo and is required for normal accumulation of the FtsH2/FtsH3 hetero-oligomeric complex involved in PSII repair. We show using X-ray crystallography that Psb29 from Thermosynechococcus elongatus has a unique fold consisting of a helical bundle and an extended C-terminal helix and contains a highly conserved region that might be involved in binding to FtsH. A similar interaction is likely to occur in Arabidopsis chloroplasts between the Psb29 homologue, termed THF1, and the FTSH2/FTSH5 complex. The direct involvement of Psb29/THF1 in FtsH accumulation helps explain why THF1 is a target during the hypersensitive response in plants induced by pathogen infection. Downregulating FtsH function and the PSII repair cycle via THF1 would contribute to the production of reactive oxygen species, the loss of chloroplast function and cell death. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’.
Collapse
Affiliation(s)
- Martina Bec Ková
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Vendula Krynická
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - Amanda Kozlo
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Shengxi Shao
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter Koník
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic .,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - James W Murray
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
35
|
Swainsbury DJK, Proctor MS, Hitchcock A, Cartron ML, Qian P, Martin EC, Jackson PJ, Madsen J, Armes SP, Hunter CN. Probing the local lipid environment of the Rhodobacter sphaeroides cytochrome bc 1 and Synechocystis sp. PCC 6803 cytochrome b 6f complexes with styrene maleic acid. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:215-225. [PMID: 29291373 PMCID: PMC5805856 DOI: 10.1016/j.bbabio.2017.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 01/21/2023]
Abstract
Intracytoplasmic vesicles (chromatophores) in the photosynthetic bacterium Rhodobacter sphaeroides represent a minimal structural and functional unit for absorbing photons and utilising their energy for the generation of ATP. The cytochrome bc1 complex (cytbc1) is one of the four major components of the chromatophore alongside the reaction centre-light harvesting 1-PufX core complex (RC-LH1-PufX), the light-harvesting 2 complex (LH2), and ATP synthase. Although the membrane organisation of these complexes is known, their local lipid environments have not been investigated. Here we utilise poly(styrene-alt-maleic acid) (SMA) co-polymers as a tool to simultaneously determine the local lipid environments of the RC-LH1-PufX, LH2 and cytbc1 complexes. SMA has previously been reported to effectively solubilise complexes in lipid-rich membrane regions whilst leaving lipid-poor ordered protein arrays intact. Here we show that SMA solubilises cytbc1 complexes with an efficiency of nearly 70%, whereas solubilisation of RC-LH1-PufX and LH2 was only 10% and 22% respectively. This high susceptibility of cytbc1 to SMA solubilisation is consistent with this complex residing in a locally lipid-rich region. SMA solubilised cytbc1 complexes retain their native dimeric structure and co-purify with 56 ± 6 phospholipids from the chromatophore membrane. We extended this approach to the model cyanobacterium Synechocystis sp. PCC 6803, and show that the cytochrome b6f complex (cytb6f) and Photosystem II (PSII) complexes are susceptible to SMA solubilisation, suggesting they also reside in lipid-rich environments. Thus, lipid-rich membrane regions could be a general requirement for cytbc1/cytb6f complexes, providing a favourable local solvent to promote rapid quinol/quinone binding and release at the Q0 and Qi sites. SMA preferentially solubilises cytbc1 from chromatophore membranes. Solubilised cytbc1 SMALPs contain dimeric complexes co-purified with 56 lipids. SMA-resistant fractions contain RC-LH1-PufX and LH2 rich membrane patches. The Rba. sphaeroides cytbc1 complex is likely to reside in a lipid-rich environment. Similar results for Synechocystis suggest cytbc1/b6f may be universally lipid-rich.
Collapse
Affiliation(s)
- David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Matthew S Proctor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Michaël L Cartron
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Jeppe Madsen
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Steven P Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom.
| |
Collapse
|
36
|
Zavřel T, Očenášová P, Červený J. Phenotypic characterization of Synechocystis sp. PCC 6803 substrains reveals differences in sensitivity to abiotic stress. PLoS One 2017; 12:e0189130. [PMID: 29216280 PMCID: PMC5720811 DOI: 10.1371/journal.pone.0189130] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/20/2017] [Indexed: 12/24/2022] Open
Abstract
Synechocystis sp. PCC 6803 is a widely used model cyanobacterium, whose substrains can vary on both genotype and phenotype levels. Previously described phenotypic variations include ability of mixotrophic growth, ability of movement on agar plates and variations in pigments composition or cell size. In this study, we report for the first time significant variation among Synechocystis substrains in complex cellular traits such as growth rate, photosynthesis efficiency, cellular dry weight and cellular composition (including protein or carbohydrates content). We also confirmed previously reported differences in cell size. Synechocystis cultures were cultivated in controlled environment of flat panel photobioreactors under red, blue and white light of intensities up to 790 μmol(photons) m-2 s-1, temperatures 23°C–60°C, input CO2 concentrations ranging from 400 to 15 000 ppm and in BG11 cultivation medium with and without addition of NaCl. Three Synechocystis substrains were used for the comparative experiments: GT-L, GT-B (Brno, CZ) and PCC-B (Brno, CZ). Growth rates of Synechocystis GT-B were inhibited under high intensities of red light (585–670 nm), and growth rates of both substrains GT-B and PCC-B were inhibited under photons of wavelengths 485–585 nm and 670–700 nm. Synechocystis GT-B was more sensitive to low temperatures than the other two tested substrains, and Synechocystis GT-L was sensitive to the presence of NaCl in the cultivation media. The results suggest that stress sensitivity of commonly used Synechocystis substrains can strongly vary, similarly as glucose tolerance or motility as reported previously. Our study further supports the previous statement that emphasizes importance of proper Synechocystis substrains selection and awareness of phenotypical differences among Synechocystis substrains which is crucial for comparative and reproducible research. This is highly relevant for studies related to stress physiology and development of sustainable biotechnological applications.
Collapse
Affiliation(s)
- Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czech Republic
- * E-mail:
| | - Petra Očenášová
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czech Republic
| | - Jan Červený
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czech Republic
| |
Collapse
|
37
|
Bečková M, Gardian Z, Yu J, Konik P, Nixon PJ, Komenda J. Association of Psb28 and Psb27 Proteins with PSII-PSI Supercomplexes upon Exposure of Synechocystis sp. PCC 6803 to High Light. MOLECULAR PLANT 2017; 10:62-72. [PMID: 27530366 DOI: 10.1016/j.molp.2016.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/29/2016] [Accepted: 08/04/2016] [Indexed: 05/23/2023]
Abstract
Formation of the multi-subunit oxygen-evolving photosystem II (PSII) complex involves a number of auxiliary protein factors. In this study we compared the localization and possible function of two homologous PSII assembly factors, Psb28-1 and Psb28-2, from the cyanobacterium Synechocystis sp. PCC 6803. We demonstrate that FLAG-tagged Psb28-2 is present in both the monomeric PSII core complex and a PSII core complex lacking the inner antenna CP43 (RC47), whereas Psb28-1 preferentially binds to RC47. When cells are exposed to increased irradiance, both tagged Psb28 proteins additionally associate with oligomeric forms of PSII and with PSII-PSI supercomplexes composed of trimeric photosystem I (PSI) and two PSII monomers as deduced from electron microscopy. The presence of the Psb27 accessory protein in these complexes suggests the involvement of PSI in PSII biogenesis, possibly by photoprotecting PSII through energy spillover. Under standard culture conditions, the distribution of PSII complexes is similar in the wild type and in each of the single psb28 null mutants except for loss of RC47 in the absence of Psb28-1. In comparison with the wild type, growth of mutants lacking Psb28-1 and Psb27, but not Psb28-2, was retarded under high-light conditions and, especially, intermittent high-light/dark conditions, emphasizing the physiological importance of PSII assembly factors for light acclimation.
Collapse
Affiliation(s)
- Martina Bečková
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Zdenko Gardian
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter Konik
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic.
| |
Collapse
|