1
|
Edema H, Ashraf MF, Samkumar A, Jaakola L, Karppinen K. Characterization of cellulases from softening fruit for enzymatic depolymerization of cellulose. Carbohydr Polym 2024; 343:122493. [PMID: 39174143 DOI: 10.1016/j.carbpol.2024.122493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024]
Abstract
Cellulose is a major renewable resource for a wide variety of sustainable industrial products. However, for its utilization, finding new efficient enzymes for plant cell wall depolymerization is crucial. In addition to microbial sources, cellulases also exist in plants, however, are less studied. Fleshy fruit ripening includes enzymatic cell wall hydrolysis, leading to tissue softening. Therefore, bilberry (Vaccinium myrtillus L.), which produces small fruits that undergo extensive and rapid softening, was selected to explore cellulases of plant origin. We identified 20 glycoside hydrolase family 9 (GH9) cellulases from a recently sequenced bilberry genome, including four of which showed fruit ripening-specific expression and could be associated with fruit softening based on phylogenetic, transcriptomic and gene expression analyses. These four cellulases were secreted enzymes: two B-types and two C-types with a carbohydrate binding module 49. For functional characterization, these four cellulases were expressed in Pichia pastoris. All recombinant enzymes demonstrated glucanase activity toward cellulose and hemicellulose substrates. Particularly, VmGH9C1 demonstrated high activity and ability to degrade cellulose, xyloglucan, and glucomannan. In addition, all the enzymes retained activity under wide pH (6-10) and temperature ranges (optimum 70 °C), revealing the potential applications of plant GH9 cellulases in the industrial bioprocessing of lignocellulose.
Collapse
Affiliation(s)
- Hilary Edema
- The Arctic Centre for Sustainable Energy, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway.
| | - Muhammad Furqan Ashraf
- The Arctic Centre for Sustainable Energy, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway.
| | - Amos Samkumar
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Plant Science, Norwegian University of Life Sciences, Ås 1430, Norway.
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway; Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Ås 1431, Norway.
| | - Katja Karppinen
- The Arctic Centre for Sustainable Energy, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway.
| |
Collapse
|
2
|
Ozbayram EG, Kleinsteuber S, Nikolausz M. Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass. Appl Microbiol Biotechnol 2019; 104:489-508. [DOI: 10.1007/s00253-019-10239-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
|
3
|
Buyel JF. Plant Molecular Farming - Integration and Exploitation of Side Streams to Achieve Sustainable Biomanufacturing. FRONTIERS IN PLANT SCIENCE 2019; 9:1893. [PMID: 30713542 PMCID: PMC6345721 DOI: 10.3389/fpls.2018.01893] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/06/2018] [Indexed: 05/22/2023]
Abstract
Plants have unique advantages over other systems such as mammalian cells for the production of valuable small molecules and proteins. The benefits cited most often include safety due to the absence of replicating human pathogens, simplicity because sterility is not required during production, scalability due to the potential for open-field cultivation with transgenic plants, and the speed of transient expression potentially providing gram quantities of product in less than 4 weeks. Initially there were also significant drawbacks, such as the need to clarify feed streams with a high particle burden and the large quantities of host cell proteins, but efficient clarification is now readily achieved. Several additional advantages have also emerged reflecting the fact that plants are essentially biodegradable, single-use bioreactors. This article will focus on the exploitation of this concept for the production of biopharmaceutical proteins, thus improving overall process economics. Specifically, we will discuss the single-use properties of plants, the sustainability of the production platform, and the commercial potential of different biomass side streams. We find that incorporating these side streams through rational process integration has the potential to more than double the revenue that can currently be achieved using plant-based production systems.
Collapse
Affiliation(s)
- Johannes F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Azab E, Kebeish R, Hegazy AK. Expression of the human gene CYP1A2 enhances tolerance and detoxification of the phenylurea herbicide linuron in Arabidopsis thaliana plants and Escherichia coli. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:281-290. [PMID: 29573710 DOI: 10.1016/j.envpol.2018.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 05/20/2023]
Abstract
The phenylurea herbicide, linuron (LIN), is used to control various types of weeds. Despite its efficient role in controlling weeds, it presents a persistent problem to the environment. In the current study, phytoremediation properties of transgenic CYP1A2 Arabidopsis thaliana plants to LIN were assessed. CYP1A2 gene was firstly cloned and expressed in bacteria before proceeding to plants. In presence of LIN, The growth of CYP1A2 expressing bacteria was superior compared to control bacteria transformed with the empty bacterial expression vector pET22b(+). No clear morphological changes were detected on CYP1A2 transgenic plants. However, significant resistance to LIN herbicide application either via spraying the foliar parts of the plant or via supplementation of the herbicide in the growth medium was observed for CYP1A2 transformants. Plant growth assays under LIN stress provide strong evidence for the enhanced capacity of transgenic lines to grow and to tolerate high concentrations of LIN compared to control plants. HPLC analyses showed that detoxification of LIN by bacterial extracts and/or transgenic plant leaves is improved as compared to the corresponding controls. Our data indicate that over expression of the human CYP1A2 gene increases the phytoremediation capacity and tolerance of Arabidopsis thaliana plants to the phenylurea herbicide linuron.
Collapse
Affiliation(s)
- Ehab Azab
- Taif University, Faculty of Science, Biotechnology Department, Taif, Saudi Arabia; Zagazig University, Faculty of Science, Botany and Microbiology Department, Plant Biotechnology Laboratory (PBL), El-Gamaa Street 1, 44519, Zagazig, Sharkia, Egypt.
| | - Rashad Kebeish
- Taibah University, Faculty of Science Yanbu, Biology Department, King Khalid Rd, Al amoedi, 46423, Yanbu El-Bahr, Saudi Arabia; Zagazig University, Faculty of Science, Botany and Microbiology Department, Plant Biotechnology Laboratory (PBL), El-Gamaa Street 1, 44519, Zagazig, Sharkia, Egypt.
| | - A K Hegazy
- Cairo University, Faculty of Science, Department of Botany and Microbiology, Giza, Egypt
| |
Collapse
|
5
|
Yadav SK. Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2017; 245:1727-1739. [PMID: 28552567 DOI: 10.1016/j.biortech.2017.05.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Hydrolytic enzymes are indispensable tools in the production of various foodstuffs, drugs, and consumables owing to their applications in almost every industrial process nowadays. One of the foremost areas of interest involving the use of hydrolytic enzymes is in the transformation of lignocellulosic biomass into value added products. However, limitations of the processes due to inadequate enzyme activity and stability with a narrow range of pH and temperature optima often limit their effective usage. The innovative technologies, involving manipulation of enzyme activity and stability through mutagenesis, genetic engineering and metagenomics lead to a major leap in all the fields using hydrolytic enzymes. This article provides recent advancement towards the isolation and use of microbes for lignocellulosic biomass utilisation, microbes producing the hydrolytic enzymes, the modern age technologies used to manipulate and enhance the hydrolytic enzyme activity and the applications of such enzymes in value added products development from lignocellulosic biomass.
Collapse
Affiliation(s)
- Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali, India.
| |
Collapse
|
6
|
Bhatia R, Gallagher JA, Gomez LD, Bosch M. Genetic engineering of grass cell wall polysaccharides for biorefining. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1071-1092. [PMID: 28557198 PMCID: PMC5552484 DOI: 10.1111/pbi.12764] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 05/10/2023]
Abstract
Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass-derived lignocellulose processing industry.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Joe A. Gallagher
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | | | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| |
Collapse
|
7
|
Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A. Metabolomics for Plant Improvement: Status and Prospects. FRONTIERS IN PLANT SCIENCE 2017; 8:1302. [PMID: 28824660 PMCID: PMC5545584 DOI: 10.3389/fpls.2017.01302] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/11/2017] [Indexed: 05/12/2023]
Abstract
Post-genomics era has witnessed the development of cutting-edge technologies that have offered cost-efficient and high-throughput ways for molecular characterization of the function of a cell or organism. Large-scale metabolite profiling assays have allowed researchers to access the global data sets of metabolites and the corresponding metabolic pathways in an unprecedented way. Recent efforts in metabolomics have been directed to improve the quality along with a major focus on yield related traits. Importantly, an integration of metabolomics with other approaches such as quantitative genetics, transcriptomics and genetic modification has established its immense relevance to plant improvement. An effective combination of these modern approaches guides researchers to pinpoint the functional gene(s) and the characterization of massive metabolites, in order to prioritize the candidate genes for downstream analyses and ultimately, offering trait specific markers to improve commercially important traits. This in turn will improve the ability of a plant breeder by allowing him to make more informed decisions. Given this, the present review captures the significant leads gained in the past decade in the field of plant metabolomics accompanied by a brief discussion on the current contribution and the future scope of metabolomics to accelerate plant improvement.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Plant Sciences, University of Hyderabad (UoH)Hyderabad, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Abhishek Bohra
- Crop Improvement Division, Indian Institute of Pulses Research (IIPR)Kanpur, India
| | - Arun K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University (IGNTU)Amarkantak, India
| |
Collapse
|
8
|
Willis JD, Grant JN, Mazarei M, Kline LM, Rempe CS, Collins AG, Turner GB, Decker SR, Sykes RW, Davis MF, Labbe N, Jurat-Fuentes JL, Stewart CN. The TcEG1 beetle ( Tribolium castaneum) cellulase produced in transgenic switchgrass is active at alkaline pH and auto-hydrolyzes biomass for increased cellobiose release. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:230. [PMID: 29213306 PMCID: PMC5707894 DOI: 10.1186/s13068-017-0918-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/28/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND Genetically engineered biofuel crops, such as switchgrass (Panicum virgatum L.), that produce their own cell wall-digesting cellulase enzymes would reduce costs of cellulosic biofuel production. To date, non-bioenergy plant models have been used in nearly all studies assessing the synthesis and activity of plant-produced fungal and bacterial cellulases. One potential source for cellulolytic enzyme genes is herbivorous insects adapted to digest plant cell walls. Here we examine the potential of transgenic switchgrass-produced TcEG1 cellulase from Tribolium castaneum (red flour beetle). This enzyme, when overproduced in Escherichia coli and Saccharomyces cerevisiae, efficiently digests cellulose at optima of 50 °C and pH 12.0. RESULTS TcEG1 that was produced in green transgenic switchgrass tissue had a range of endoglucanase activity of 0.16-0.05 units (µM glucose release/min/mg) at 50 °C and pH 12.0. TcEG1 activity from air-dried leaves was unchanged from that from green tissue, but when tissue was dried in a desiccant oven (46 °C), specific enzyme activity decreased by 60%. When transgenic biomass was "dropped-in" into an alkaline buffer (pH 12.0) and allowed to incubate at 50 °C, cellobiose release was increased up to 77% over non-transgenic biomass. Saccharification was increased in one transgenic event by 28%, which had a concurrent decrease in lignin content of 9%. Histological analysis revealed an increase in cell wall thickness with no change to cell area or perimeter. Transgenic plants produced more, albeit narrower, tillers with equivalent dry biomass as the control. CONCLUSIONS This work describes the first study in which an insect cellulase has been produced in transgenic plants; in this case, the dedicated bioenergy crop switchgrass. Switchgrass overexpressing the TcEG1 gene appeared to be morphologically similar to its non-transgenic control and produced equivalent dry biomass. Therefore, we propose TcEG1 transgenics could be bred with other transgenic germplasm (e.g., low-lignin lines) to yield new switchgrass with synergistically reduced recalcitrance to biofuel production. In addition, transgenes for other cell wall degrading enzymes may be stacked with TcEG1 in switchgrass to yield complementary cell wall digestion features and complete auto-hydrolysis.
Collapse
Affiliation(s)
- Jonathan D. Willis
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Joshua N. Grant
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Lindsey M. Kline
- Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996 USA
| | - Caroline S. Rempe
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | - A. Grace Collins
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Geoffrey B. Turner
- The National Research Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Stephen R. Decker
- The National Research Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Robert W. Sykes
- The National Research Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Mark F. Davis
- The National Research Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Nicole Labbe
- Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996 USA
| | - Juan L. Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996 USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
9
|
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a disease that occurs when the brain is subjected to hypoxia, resulting in neuronal death and neurological deficits, with a poor prognosis. The mechanisms underlying hypoxic-ischemic brain injury include excitatory amino acid release, cellular proteolysis, reactive oxygen species generation, nitric oxide synthesis, and inflammation. The molecular and cellular changes in HIE include protein misfolding, aggregation, and destruction of organelles. The apoptotic pathways activated by ischemia and hypoxia include the mitochondrial pathway, the extrinsic Fas receptor pathway, and the endoplasmic reticulum stress-induced pathway. Numerous treatments for hypoxic-ischemic brain injury caused by HIE have been developed over the last half century. Hypothermia, xenon gas treatment, the use of melatonin and erythropoietin, and hypoxic-ischemic preconditioning have proven effective in HIE patients. Molecular chaperones are proteins ubiquitously present in both prokaryotes and eukaryotes. A large number of molecular chaperones are induced after brain ischemia and hypoxia, among which the heat shock proteins are the most important. Heat shock proteins not only maintain protein homeostasis; they also exert anti-apoptotic effects. Heat shock proteins maintain protein homeostasis by helping to transport proteins to their target destinations, assisting in the proper folding of newly synthesized polypeptides, regulating the degradation of misfolded proteins, inhibiting the aggregation of proteins, and by controlling the refolding of misfolded proteins. In addition, heat shock proteins exert anti-apoptotic effects by interacting with various signaling pathways to block the activation of downstream effectors in numerous apoptotic pathways, including the intrinsic pathway, the endoplasmic reticulum-stress mediated pathway and the extrinsic Fas receptor pathway. Molecular chaperones play a key role in neuroprotection in HIE. In this review, we provide an overview of the mechanisms of HIE and discuss the various treatment strategies. Given their critical role in the disease, molecular chaperones are promising therapeutic targets for HIE.
Collapse
Affiliation(s)
- Cong Hua
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wei-Na Ju
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hang Jin
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xin Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|