1
|
Liu R, Li C, Zhang Y, Liu C, Xue J, Zheng Y. Enhanced biological nitrogen fixation and nodulation in alfalfa through the synergistic interactions between Sinorhizobium meliloti and Priestia aryabhattai. World J Microbiol Biotechnol 2025; 41:180. [PMID: 40415123 DOI: 10.1007/s11274-025-04394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 05/02/2025] [Indexed: 05/27/2025]
Abstract
Nitrogen fertilizer is crucial for agricultural output. However, prolonged overuse has resulted in nitrate leaching and potential soil acidification. Research on microbial fertilizer has become essential to enhance soil conditions and minimize nitrogen fertilizer usage. In alfalfa cultivation, research on efficient compound microbial agents remains limited, therefore this study concentrates on the investigation of dual microbial combinations. In the screening process, black soil was utilized with alfalfa plants as samples to identify a strain of rhizobacteria, Sinorhizobium meliloti LMGL3-1, exhibiting nitrogen-fixing capabilities, and Priestia aryabhattai (Bacillus aryabhattai) YJHT21, demonstrating phosphorus-solubilizing abilities. In addition, they were able to produce indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid deaminase (ACCd). The S. meliloti strain was demonstrated to have the ability to symbiotically associate with the alfalfa variety Longmu 806, resulting in the formation of effective nodules containing leghemoglobin, thereby enabling the plants to thrive in the absence of nitrogen fertilizer application. Here, we discovered that the inoculation of phosphorus-solubilizing P. aryabhattai enhanced alfalfa growth and the nitrogenase activity of S. meliloti (P < 0.0001). Comparing with no nitrogen fertilizer control, the two-bacteria complex culture made an extreme increase in chlorophyll (P < 0.0001) of alfalfa. The protein content and dry weight of alfalfa were also increased (P < 0.01 and P < 0.001, respectively). Additionally, it also increased the total nitrogen content of the black soil. Moreover, the incorporation of P. aryabhattai resulted in a significant increase in flavonoid production within the root system of alfalfa plants (P < 0.0001). Consequently, under the influence of the inducer extracted from the root system of quantitatively analyzed plants, the rhizobacteria exhibited enhanced production of metabolites associated with the Nod factor cluster. This study demonstrates that the interaction between S. meliloti and P. aryabhattai significantly enhanced biological nitrogen fixation, providing a theoretical foundation for the development of eco-friendly biofertilizer as an alternative to chemical fertilizer.
Collapse
Grants
- XDA28030201 Strategic Priority Research Program of the Chinese Academy of Sciences
- XDA28030201 Strategic Priority Research Program of the Chinese Academy of Sciences
- XDA28030201 Strategic Priority Research Program of the Chinese Academy of Sciences
- XDA28030201 Strategic Priority Research Program of the Chinese Academy of Sciences
- XDA28030201 Strategic Priority Research Program of the Chinese Academy of Sciences
- XDA28030201 Strategic Priority Research Program of the Chinese Academy of Sciences
- 2020YFA0906800 and 2022YFC2105300 National Key R&D Program of China
- 2020YFA0906800 and 2022YFC2105300 National Key R&D Program of China
- 2020YFA0906800 and 2022YFC2105300 National Key R&D Program of China
- 2020YFA0906800 and 2022YFC2105300 National Key R&D Program of China
- 2020YFA0906800 and 2022YFC2105300 National Key R&D Program of China
- 2020YFA0906800 and 2022YFC2105300 National Key R&D Program of China
- 92351302, 91851102, 32070034, 32270056 and 32300084 National Natural Science Foundation of China
- 92351302, 91851102, 32070034, 32270056 and 32300084 National Natural Science Foundation of China
- 92351302, 91851102, 32070034, 32270056 and 32300084 National Natural Science Foundation of China
- 92351302, 91851102, 32070034, 32270056 and 32300084 National Natural Science Foundation of China
- 92351302, 91851102, 32070034, 32270056 and 32300084 National Natural Science Foundation of China
- 92351302, 91851102, 32070034, 32270056 and 32300084 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Rui Liu
- College of Agronomy, Institute of Molecular Agriculture and Bioenergy, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Shanxi Agricultural University, Taigu, Shanxi, China
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Li
- College of Agronomy, Institute of Molecular Agriculture and Bioenergy, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Shanxi Agricultural University, Taigu, Shanxi, China
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunjun Zhang
- College of Agronomy, Institute of Molecular Agriculture and Bioenergy, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Shanxi Agricultural University, Taigu, Shanxi, China
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunli Liu
- College of Agronomy, Institute of Molecular Agriculture and Bioenergy, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Shanxi Agricultural University, Taigu, Shanxi, China
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinai Xue
- College of Agronomy, Institute of Molecular Agriculture and Bioenergy, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Shanxi Agricultural University, Taigu, Shanxi, China.
| | - Yanning Zheng
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Baloch FB, Zeng N, Gong H, Zhang Z, Zhang N, Baloch SB, Ali S, Li B. Rhizobacterial volatile organic compounds: Implications for agricultural ecosystems' nutrient cycling and soil health. Heliyon 2024; 10:e40522. [PMID: 39660212 PMCID: PMC11629272 DOI: 10.1016/j.heliyon.2024.e40522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) have emerged as key players in sustainable agriculture due to their ability to enhance plant growth, nutrient uptake, and disease resistance. A significant aspect of PGPR is the emission of volatile organic compounds (VOCs), which serve as signaling molecules that influence various physiological processes in plants. This review article explores the complex interactions between rhizobacterial VOCs and soil health, focusing particularly on their role in nutrient cycling within agricultural ecosystems. By investigating the mechanism of production and release of VOCs by rhizobacteria, along with impacts on soil properties and microbial communities. We aim to highlight the potential of rhizobacterial volatile organic compounds (VOCs) for sustainable agricultural management. Additionally, we discuss the role of rhizobacterial VOCs in promoting root growth, nutrient uptake, and enhancing nutrient cycling processes. By providing insights into these mechanisms, this review offers tailored strategies for exploring the potential of rhizobacterial VOCs to optimize nutrient availability, enhance soil fertility, and address environmental challenges in agriculture. Exploring the potential of rhizobacterial VOCs presents an opportunity to establish sustainable and resilient agricultural systems that significantly enhance global food security and promote environmental stewardship.
Collapse
Affiliation(s)
- Faryal Babar Baloch
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haiyang Gong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhiyong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Sadia Babar Baloch
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Branišovská 1645/31a, 37005, Ceske Budejovice, Czech Republic
| | - Shahzaib Ali
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Branišovská 1645/31a, 37005, Ceske Budejovice, Czech Republic
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
3
|
Magne K, Massot S, Folletti T, Sauviac L, Ait-Salem E, Pires I, Saad MM, Eida AA, Bougouffa S, Jugan A, Rolli E, Forquet R, Puech-Pages V, Maillet F, Bernal G, Gibelin C, Hirt H, Gruber V, Peyraud R, Vailleau F, Gourion B, Ratet P. Atypical rhizobia trigger nodulation and pathogenesis on the same legume hosts. Nat Commun 2024; 15:9246. [PMID: 39461961 PMCID: PMC11513132 DOI: 10.1038/s41467-024-53388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The emergence of commensalism and mutualism often derives from ancestral parasitism. However, in the case of rhizobium-legume interactions, bacterial strains displaying both pathogenic and nodulation features on a single host have not been described yet. Here, we isolated such a bacterium from Medicago nodules. On the same plant genotypes, the T4 strain can induce ineffective nodules in a highly competitive way and behave as a harsh parasite triggering plant death. The T4 strain presents this dual ability on multiple legume species of the Inverted Repeat-Lacking Clade, the output of the interaction relying on the developmental stage of the plant. Genomic and phenotypic clustering analysis show that T4 belongs to the nonsymbiotic Ensifer adhaerens group and clusters together with T173, another strain harboring this dual ability. In this work, we identify a bacterial clade that includes rhizobial strains displaying both pathogenic and nodulating abilities on a single legume host.
Collapse
Affiliation(s)
- Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Sophie Massot
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Tifaine Folletti
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Laurent Sauviac
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Elhosseyn Ait-Salem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Ilona Pires
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Maged M Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adrien Jugan
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Eleonora Rolli
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133, Milan, Italy
| | | | - Virginie Puech-Pages
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Toulouse INP, Université de Toulouse, Toulouse, France
- Metatoul-AgromiX Platform, MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, LRSV, Toulouse, France
| | - Fabienne Maillet
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Gautier Bernal
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Chrystel Gibelin
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Véronique Gruber
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | | | - Fabienne Vailleau
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Benjamin Gourion
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France.
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
| |
Collapse
|
4
|
Porter SS, Dupin SE, Denison RF, Kiers ET, Sachs JL. Host-imposed control mechanisms in legume-rhizobia symbiosis. Nat Microbiol 2024:10.1038/s41564-024-01762-2. [PMID: 39095495 DOI: 10.1038/s41564-024-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.
Collapse
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - Simon E Dupin
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - R Ford Denison
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joel L Sachs
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
5
|
Vaccaro F, Passeri I, Ajijah N, Bettini P, Courty PE, Dębiec-Andrzejewska K, Joshi N, Kowalewska Ł, Stasiuk R, Musiałowski M, Pranaw K, Mengoni A. Genotype-by-genotype interkingdom cross-talk between symbiotic nitrogen fixing Sinorhizobium meliloti strains and Trichoderma species. Microbiol Res 2024; 285:127768. [PMID: 38820702 DOI: 10.1016/j.micres.2024.127768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
In the understanding of the molecular interaction between plants and their microbiome, a key point is to identify simplified models of the microbiome including relevant bacterial and fungal partners which could also be effective in plant growth promotion. Here, as proof-of-concept, we aim to identify the possible molecular interactions between symbiotic nitrogen-fixing rhizobia and soil fungi (Trichoderma spp.), hence shed light on synergistic roles rhizospheric fungi could have in the biology of symbiotic nitrogen fixation bacteria. We selected 4 strains of the model rhizobium Sinorhizobium meliloti and 4 Trichoderma species (T. velutinum, T. tomentosum, T. gamsii and T. harzianum). In an experimental scheme of 4 ×4 strains x species combinations, we investigated the rhizobia physiological and transcriptomic responses elicited by fungal spent media, as well as spent media effects on rhizobia-host legume plant (alfalfa, Medicago sativa L.) symbiosis. Fungal spent media had large effects on rhizobia, specific for each fungal species and rhizobial strains combination, indicating a generalized rhizobia genotype x fungal genotype interaction, including synergistic, neutral and antagonistic effects on alfalfa symbiotic phenotypes. Differential expression of a high number of genes was shown in rhizobia strains with up to 25% of total genes differentially expressed upon treatment of cultures with fungal spent media. Percentages over total genes and type of genes differentially expressed changed according to both fungal species and rhizobial strain. To support the hypothesis of a relevant rhizobia genotype x fungal genotype interaction, a nested Likelihood Ratio Test indicated that the model considering the fungus-rhizobium interaction explained 23.4% of differentially expressed genes. Our results provide insights into molecular interactions involving nitrogen-fixing rhizobia and rhizospheric fungi, highlighting the panoply of genes and genotypic interactions (fungus, rhizobium, host plant) which may concur to plant symbiosis.
Collapse
Affiliation(s)
| | | | - Nur Ajijah
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland
| | | | | | | | - Namrata Joshi
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | - Robert Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland
| | - Marcin Musiałowski
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland; School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
6
|
Granada Agudelo M, Ruiz B, Capela D, Remigi P. The role of microbial interactions on rhizobial fitness. FRONTIERS IN PLANT SCIENCE 2023; 14:1277262. [PMID: 37877089 PMCID: PMC10591227 DOI: 10.3389/fpls.2023.1277262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Rhizobia are soil bacteria that can establish a nitrogen-fixing symbiosis with legume plants. As horizontally transmitted symbionts, the life cycle of rhizobia includes a free-living phase in the soil and a plant-associated symbiotic phase. Throughout this life cycle, rhizobia are exposed to a myriad of other microorganisms that interact with them, modulating their fitness and symbiotic performance. In this review, we describe the diversity of interactions between rhizobia and other microorganisms that can occur in the rhizosphere, during the initiation of nodulation, and within nodules. Some of these rhizobia-microbe interactions are indirect, and occur when the presence of some microbes modifies plant physiology in a way that feeds back on rhizobial fitness. We further describe how these interactions can impose significant selective pressures on rhizobia and modify their evolutionary trajectories. More extensive investigations on the eco-evolutionary dynamics of rhizobia in complex biotic environments will likely reveal fascinating new aspects of this well-studied symbiotic interaction and provide critical knowledge for future agronomical applications.
Collapse
Affiliation(s)
- Margarita Granada Agudelo
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Bryan Ruiz
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Delphine Capela
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Philippe Remigi
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
7
|
Abe JNA, Dhungana I, Nguyen NH. Legume-nodulating rhizobia are widespread in soils and plants across the island of O'ahu, Hawai'i. PLoS One 2023; 18:e0291250. [PMID: 37695782 PMCID: PMC10495000 DOI: 10.1371/journal.pone.0291250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
Legumes and their interaction with rhizobia represent one of the most well-characterized symbioses that are widespread across both natural and agricultural environments. However, larger distribution patterns and host associations on isolated Pacific islands with many native and introduced hosts have not been well-documented. Here, we used molecular and culturing techniques to characterize rhizobia from soils and 24 native and introduced legume species on the island of O'ahu, Hawai'i. We chose two of these isolates to inoculate an endemic legume tree, Erythina sandwicensis to measure nodulation potentials and host benefits. We found that all rhizobia genera can be found in the soil, where only Cupriavidus was found at all sites, although at lower abundance relative to other more common genera such as Rhizobium (and close relatives), Bradyzhizobium, and Devosia. Bradyrhizobium was the most common nodulator of legumes, where the strain Bradyrhizobium sp. strain JA1 is a generalist capable of forming nodules on nine different host species, including two native species. In greenhouse nursery inoculations, the two different Bradyrhizobium strains successfully nodulate the endemic E. sandwicensis; both strains equally and significantly increased seedling biomass in nursery inoculations. Overall, this work provides a molecular-based framework in which to study potential native and introduced rhizobia on one of the most isolated archipelagos on the planet.
Collapse
Affiliation(s)
- Jonathan N. A. Abe
- Department of Tropical Plant and Soil Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Ishwora Dhungana
- Department of Tropical Plant and Soil Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Nhu H. Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| |
Collapse
|
8
|
Rahman A, Manci M, Nadon C, Perez IA, Farsamin WF, Lampe MT, Le TH, Torres Martínez L, Weisberg AJ, Chang JH, Sachs JL. Competitive interference among rhizobia reduces benefits to hosts. Curr Biol 2023; 33:2988-3001.e4. [PMID: 37490853 DOI: 10.1016/j.cub.2023.06.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/31/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
The capacity of beneficial microbes to compete for host infection-and the ability of hosts to discriminate among them-introduces evolutionary conflict that is predicted to destabilize mutualism. We investigated fitness outcomes in associations between legumes and their symbiotic rhizobia to characterize fitness impacts of microbial competition. Diverse Bradyrhizobium strains varying in their capacity to fix nitrogen symbiotically with a common host plant, Acmispon strigosus, were tested in full-factorial coinoculation experiments involving 28 pairwise strain combinations. We analyzed the effects of interstrain competition and host discrimination on symbiotic-interaction outcomes by relativizing fitness proxies to clonally infected and uninfected controls. More than one thousand root nodules of coinoculated plants were genotyped to quantify strain occupancy, and the Bradyrhizobium strain genome sequences were analyzed to uncover the genetic bases of interstrain competition outcomes. Strikingly, interstrain competition favored a fast-growing, minimally beneficial rhizobia strain. Host benefits were significantly diminished in coinoculation treatments relative to expectations from clonally inoculated controls, consistent with competitive interference among rhizobia that reduced both nodulation and plant growth. Competition traits appear polygenic, linked with inter-strain allelopathic interactions in the rhizosphere. This study confirms that competition among strains can destabilize mutualism by favoring microbes that are superior in colonizing host tissues but provide minimal benefits to host plants. Moreover, our findings help resolve the paradox that despite efficient host control post infection, legumes nonetheless encounter rhizobia that vary in their nitrogen fixation.
Collapse
Affiliation(s)
- Arafat Rahman
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Max Manci
- Department of Microbiology & Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Cassandra Nadon
- Department of Evolution Ecology & Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Ivan A Perez
- Department of Evolution Ecology & Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Warisha F Farsamin
- Department of Evolution Ecology & Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Matthew T Lampe
- Department of Evolution Ecology & Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Tram H Le
- Department of Evolution Ecology & Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Lorena Torres Martínez
- Department of Evolution Ecology & Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA; Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD 20686, USA
| | - Alexandra J Weisberg
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Jeff H Chang
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Joel L Sachs
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA; Department of Microbiology & Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA; Department of Evolution Ecology & Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
9
|
Burghardt LT, diCenzo GC. The evolutionary ecology of rhizobia: multiple facets of competition before, during, and after symbiosis with legumes. Curr Opin Microbiol 2023; 72:102281. [PMID: 36848712 DOI: 10.1016/j.mib.2023.102281] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 02/27/2023]
Abstract
Rhizobial bacteria have complex lifestyles that involve growth and survival in bulk soil, plant rhizospheres and rhizoplanes, legume infection threads, and mature and senescing legume nodules. In nature, rhizobia coexist and compete with many other rhizobial strains and species to form host associations. We review recent work defining competitive interactions across these environments. We highlight the use of sophisticated measurement tools and sequencing technologies to examine competition mechanisms in planta, and highlight environments (e.g. soil and senescing nodules) where we still know exceedingly little. We argue that moving toward an explicitly ecological framework (types of competition, resources, and genetic differentiation) will clarify the evolutionary ecology of these foundational organisms and open doors for engineering sustainable, beneficial associations with hosts.
Collapse
Affiliation(s)
- Liana T Burghardt
- The Pennsylvania State University, Department of Plant Science, University Park, PA 16802, United States; The Pennsylvania State University, Ecology Graduate Program, University Park, PA 16802, United States.
| | - George C diCenzo
- Queen's University, Department of Biology, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
10
|
Hlaváčková K, Šamajová O, Hrbáčková M, Šamaj J, Ovečka M. Advanced microscopy resolves dynamic localization patterns of stress-induced mitogen-activated protein kinase SIMK during alfalfa root hair interactions with Ensifer meliloti. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad111. [PMID: 36951479 DOI: 10.1093/jxb/erad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 06/18/2023]
Abstract
Leguminous plants have established a mutualistic endosymbiotic interaction with nitrogen-fixing rhizobia to secure nitrogen sources in new specialised organs called root nodules. Before nodule formation, the development of early symbiotic structures is essential for rhizobia docking, internalization, targeted delivery and intracellular accommodation. We have recently reported that overexpression of stress-induced mitogen-activated protein kinase (SIMK) in alfalfa affects root hair, nodule and shoot formation, which raised the questions how SIMK may modulate these processes. In particular, detailed subcellular spatial distribution, activation and developmental relocation of SIMK during the early stages of alfalfa nodulation remain unclear. Here, we qualitatively and quantitatively characterised SIMK distribution patterns in Ensifer meliloti-infected root hairs using live-cell imaging and immunolocalization, employing alfalfa stable transgenic lines with genetically manipulated SIMK abundance and kinase activity. In the SIMKK-RNAi line, showing downregulation of SIMKK and SIMK, we found considerably decreased accumulation of phosphorylated SIMK around infection pockets and infection threads. However, this was strongly increased in the GFP-SIMK line, constitutively overexpressing GFP-tagged SIMK. Thus, genetically manipulated SIMK modulates root hair capacity to form infection pockets and infection threads. Employment of advanced light-sheet fluorescence microscopy (LSFM) on intact plants allowed gentle and non-invasive imaging of spatiotemporal interactions between root hairs and symbiotic Ensifer meliloti, while immunofluorescence detection confirmed that SIMK was activated in these locations. Our results shed new light on SIMK spatiotemporal participation in early interactions between alfalfa and Ensifer meliloti, and its internalization into root hairs, showing that local accumulation of active SIMK indeed modulates early nodulation in alfalfa.
Collapse
Affiliation(s)
- Kateřina Hlaváčková
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Miroslava Hrbáčková
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Miroslav Ovečka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
11
|
Iozzo M, Vitali F, Chiellini C, Gammuto L, Taddei A, Amedei A, Fani R. Preliminary Analysis of the Presence of Bacterial Azurin Coding Gene in CRC Patients and Correlation with the Microbiota Composition. FRONT BIOSCI-LANDMRK 2022; 27:305. [PMID: 36472111 DOI: 10.31083/j.fbl2711305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Azurin, a bacterial cupredoxin firstly isolated from the bacterium Pseudomonas aeruginosa, is considered a potential alternative therapeutic tool against different types of cancer. AIMS In this work we have explored the relationship possibly existing between azurin and colorectal cancer (CRC), in light of the evidence that microbial imbalance can lead to CRC progression. METHODOLOGY/RESULTS To this aim, the presence of azurin coding gene in the DNA extracted from saliva, stool, and biopsy samples of 10 CRC patients and 10 healthy controls was evaluated by real-time PCR using primers specifically designed to target the azurin coding gene from different bacterial groups. The correlation of the previously obtained microbiota data with real-time PCR results evidenced a "preferential" enrichment of seven bacterial groups in some samples than in others, even though no statistical significance was detected between controls and CRC. The subset of azurin gene-harbouring bacterial groups was representative of the entire community. CONCLUSIONS Despite the lack of statistical significance between healthy and diseased patients, HTS data analysis highlighted a kind of "preferential" enrichment of seven bacterial groups harbouring the azurin gene in some samples than in others.
Collapse
Affiliation(s)
- Marta Iozzo
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Francesco Vitali
- Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics, 50125 Firenze, Italy
| | - Carolina Chiellini
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| | - Leandro Gammuto
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Antonio Taddei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
12
|
Castaingts M, Kirolinko C, Rivero C, Artunian J, Mancini Villagra U, Blanco FA, Zanetti ME. Identification of conserved and new miRNAs that affect nodulation and strain selectivity in the Phaseolus vulgaris-Rhizobium etli symbiosis through differential analysis of host small RNAs. THE NEW PHYTOLOGIST 2022; 234:1430-1447. [PMID: 35203109 DOI: 10.1111/nph.18055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Phaseolus vulgaris plants from the Mesoamerican centre of genetic diversification establish a preferential and more efficient root nodule symbiosis with sympatric Rhizobium etli strains. This is mediated by changes in host gene expression, which might occur either at the transcriptional or at the post-transcriptional level. However, the implication of small RNA (sRNA)-mediated control of gene expression in strain selectivity has remained elusive. sRNA sequencing was used to identify host microRNAs (miRNAs) differentially regulated in roots at an early stage of the symbiotic interaction, which were further characterized by applying a reverse genetic approach. In silico analysis identified known and new miRNAs that accumulated to a greater extent in the preferential and more efficient interaction. One of them, designated as Pvu-miR5924, participates in the mechanisms that determine the selection of R. etli strains that will colonize the nodules. In addition, the functional analysis of Pvu-miR390b verified that this miRNA is a negative modulator of nodule formation and bacterial infection. This study not only extended the list of miRNAs identified in P. vulgaris but also enabled the identification of miRNAs that play relevant functions in nodule formation, rhizobial infection and the selection of the rhizobial strains that will occupy the nodule.
Collapse
Affiliation(s)
- Melisse Castaingts
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - Cristina Kirolinko
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - Claudio Rivero
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - Jennifer Artunian
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - Ulises Mancini Villagra
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - Flavio Antonio Blanco
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - María Eugenia Zanetti
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| |
Collapse
|
13
|
Cangioli L, Vaccaro F, Fini M, Mengoni A, Fagorzi C. Scent of a Symbiont: The Personalized Genetic Relationships of Rhizobium-Plant Interaction. Int J Mol Sci 2022; 23:3358. [PMID: 35328782 PMCID: PMC8954435 DOI: 10.3390/ijms23063358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/24/2023] Open
Abstract
Many molecular signals are exchanged between rhizobia and host legume plants, some of which are crucial for symbiosis to take place, while others are modifiers of the interaction, which have great importance in the competition with the soil microbiota and in the genotype-specific perception of host plants. Here, we review recent findings on strain-specific and host genotype-specific interactions between rhizobia and legumes, discussing the molecular actors (genes, gene products and metabolites) which play a role in the establishment of symbiosis, and highlighting the need for research including the other components of the soil (micro)biota, which could be crucial in developing rational-based strategies for bioinoculants and synthetic communities' assemblage.
Collapse
Affiliation(s)
- Lisa Cangioli
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Francesca Vaccaro
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Margherita Fini
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Bellabarba A, Bacci G, Decorosi F, Aun E, Azzarello E, Remm M, Giovannetti L, Viti C, Mengoni A, Pini F. Competitiveness for Nodule Colonization in Sinorhizobium meliloti: Combined In Vitro-Tagged Strain Competition and Genome-Wide Association Analysis. mSystems 2021. [PMID: 34313466 DOI: 10.1101/2020.09.15.298034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Associations between leguminous plants and symbiotic nitrogen-fixing rhizobia are a classic example of mutualism between a eukaryotic host and a specific group of prokaryotic microbes. Although this symbiosis is in part species specific, different rhizobial strains may colonize the same nodule. Some rhizobial strains are commonly known as better competitors than others, but detailed analyses that aim to predict rhizobial competitive abilities based on genomes are still scarce. Here, we performed a bacterial genome-wide association (GWAS) analysis to define the genomic determinants related to the competitive capabilities in the model rhizobial species Sinorhizobium meliloti. For this, 13 tester strains were green fluorescent protein (GFP) tagged and assayed versus 3 red fluorescent protein (RFP)-tagged reference competitor strains (Rm1021, AK83, and BL225C) in a Medicago sativa nodule occupancy test. Competition data and strain genomic sequences were employed to build a model for GWAS based on k-mers. Among the k-mers with the highest scores, 51 k-mers mapped on the genomes of four strains showing the highest competition phenotypes (>60% single strain nodule occupancy; GR4, KH35c, KH46, and SM11) versus BL225C. These k-mers were mainly located on the symbiosis-related megaplasmid pSymA, specifically on genes coding for transporters, proteins involved in the biosynthesis of cofactors, and proteins related to metabolism (e.g., fatty acids). The same analysis was performed considering the sum of single and mixed nodules obtained in the competition assays versus BL225C, retrieving k-mers mapped on the genes previously found and on vir genes. Therefore, the competition abilities seem to be linked to multiple genetic determinants and comprise several cellular components. IMPORTANCE Decoding the competitive pattern that occurs in the rhizosphere is challenging in the study of bacterial social interaction strategies. To date, the single-gene approach has mainly been used to uncover the bases of nodulation, but there is still a knowledge gap regarding the main features that a priori characterize rhizobial strains able to outcompete indigenous rhizobia. Therefore, tracking down which traits make different rhizobial strains able to win the competition for plant infection over other indigenous rhizobia will improve the strain selection process and, consequently, plant yield in sustainable agricultural production systems. We proved that a k-mer-based GWAS approach can efficiently identify the competition determinants of a panel of strains previously analyzed for their plant tissue occupancy using double fluorescent labeling. The reported strategy will be useful for detailed studies on the genomic aspects of the evolution of bacterial symbiosis and for an extensive evaluation of rhizobial inoculants.
Collapse
Affiliation(s)
- Agnese Bellabarba
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Francesca Decorosi
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Erki Aun
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartugrid.10939.32, Tartu, Estonia
| | - Elisa Azzarello
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Maido Remm
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartugrid.10939.32, Tartu, Estonia
| | - Luciana Giovannetti
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Carlo Viti
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Francesco Pini
- Department of Biology, University of Bari Aldo Morogrid.7644.1, Bari, Italy
| |
Collapse
|
15
|
Mendoza-Suárez M, Andersen SU, Poole PS, Sánchez-Cañizares C. Competition, Nodule Occupancy, and Persistence of Inoculant Strains: Key Factors in the Rhizobium-Legume Symbioses. FRONTIERS IN PLANT SCIENCE 2021; 12:690567. [PMID: 34489993 PMCID: PMC8416774 DOI: 10.3389/fpls.2021.690567] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Biological nitrogen fixation by Rhizobium-legume symbioses represents an environmentally friendly and inexpensive alternative to the use of chemical nitrogen fertilizers in legume crops. Rhizobial inoculants, applied frequently as biofertilizers, play an important role in sustainable agriculture. However, inoculants often fail to compete for nodule occupancy against native rhizobia with inferior nitrogen-fixing abilities, resulting in low yields. Strains with excellent performance under controlled conditions are typically selected as inoculants, but the rates of nodule occupancy compared to native strains are rarely investigated. Lack of persistence in the field after agricultural cycles, usually due to the transfer of symbiotic genes from the inoculant strain to naturalized populations, also limits the suitability of commercial inoculants. When rhizobial inoculants are based on native strains with a high nitrogen fixation ability, they often have superior performance in the field due to their genetic adaptations to the local environment. Therefore, knowledge from laboratory studies assessing competition and understanding how diverse strains of rhizobia behave, together with assays done under field conditions, may allow us to exploit the effectiveness of native populations selected as elite strains and to breed specific host cultivar-rhizobial strain combinations. Here, we review current knowledge at the molecular level on competition for nodulation and the advances in molecular tools for assessing competitiveness. We then describe ongoing approaches for inoculant development based on native strains and emphasize future perspectives and applications using a multidisciplinary approach to ensure optimal performance of both symbiotic partners.
Collapse
Affiliation(s)
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
16
|
Thilakarathna MS, Cope KR. Split-root assays for studying legume-rhizobia symbioses, rhizodeposition, and belowground nitrogen transfer in legumes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5285-5299. [PMID: 33954584 DOI: 10.1093/jxb/erab198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Split-root assays have been used widely in studies focused on understanding the complex regulatory mechanisms in legume-rhizobia symbioses, root nitrogen rhizodeposition, and belowground nitrogen transfer, and the effects of different biotic/abiotic factors on this symbiotic interaction. This assay allows a plant to have a root system that is physically divided into two distinct sections that are both still attached to a common shoot. Thus, each root section can be treated separately to monitor local and systemic plant responses. Different techniques are used to establish split-root assemblies, including double-pot systems, divided growth pouches, elbow root assembly, twin-tube systems, a single pot or chamber with a partition in the center, and divided agar plates. This review is focused on discussing the various types of split-root assays currently used in legume-based studies, and their associated advantages and limitations. Furthermore, this review also focuses on how split-root assays have been used for studies on nitrogen rhizodeposition, belowground nitrogen transfer, systemic regulation of nodulation, and biotic and abiotic factors affecting legume-rhizobia symbioses.
Collapse
Affiliation(s)
- Malinda S Thilakarathna
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kevin R Cope
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
17
|
Competitiveness for Nodule Colonization in Sinorhizobium meliloti: Combined In Vitro-Tagged Strain Competition and Genome-Wide Association Analysis. mSystems 2021; 6:e0055021. [PMID: 34313466 PMCID: PMC8407117 DOI: 10.1128/msystems.00550-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Associations between leguminous plants and symbiotic nitrogen-fixing rhizobia are a classic example of mutualism between a eukaryotic host and a specific group of prokaryotic microbes. Although this symbiosis is in part species specific, different rhizobial strains may colonize the same nodule. Some rhizobial strains are commonly known as better competitors than others, but detailed analyses that aim to predict rhizobial competitive abilities based on genomes are still scarce. Here, we performed a bacterial genome-wide association (GWAS) analysis to define the genomic determinants related to the competitive capabilities in the model rhizobial species Sinorhizobium meliloti. For this, 13 tester strains were green fluorescent protein (GFP) tagged and assayed versus 3 red fluorescent protein (RFP)-tagged reference competitor strains (Rm1021, AK83, and BL225C) in a Medicago sativa nodule occupancy test. Competition data and strain genomic sequences were employed to build a model for GWAS based on k-mers. Among the k-mers with the highest scores, 51 k-mers mapped on the genomes of four strains showing the highest competition phenotypes (>60% single strain nodule occupancy; GR4, KH35c, KH46, and SM11) versus BL225C. These k-mers were mainly located on the symbiosis-related megaplasmid pSymA, specifically on genes coding for transporters, proteins involved in the biosynthesis of cofactors, and proteins related to metabolism (e.g., fatty acids). The same analysis was performed considering the sum of single and mixed nodules obtained in the competition assays versus BL225C, retrieving k-mers mapped on the genes previously found and on vir genes. Therefore, the competition abilities seem to be linked to multiple genetic determinants and comprise several cellular components. IMPORTANCE Decoding the competitive pattern that occurs in the rhizosphere is challenging in the study of bacterial social interaction strategies. To date, the single-gene approach has mainly been used to uncover the bases of nodulation, but there is still a knowledge gap regarding the main features that a priori characterize rhizobial strains able to outcompete indigenous rhizobia. Therefore, tracking down which traits make different rhizobial strains able to win the competition for plant infection over other indigenous rhizobia will improve the strain selection process and, consequently, plant yield in sustainable agricultural production systems. We proved that a k-mer-based GWAS approach can efficiently identify the competition determinants of a panel of strains previously analyzed for their plant tissue occupancy using double fluorescent labeling. The reported strategy will be useful for detailed studies on the genomic aspects of the evolution of bacterial symbiosis and for an extensive evaluation of rhizobial inoculants.
Collapse
|
18
|
Fields B, Moffat EK, Friman VP, Harrison E. The impact of intra-specific diversity in the rhizobia-legume symbiosis. MICROBIOLOGY-SGM 2021; 167. [PMID: 33829985 PMCID: PMC8289218 DOI: 10.1099/mic.0.001051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rhizobia - nitrogen-fixing, root-nodulating bacteria - play a critical role in both plant ecosystems and sustainable agriculture. Rhizobia form intracellular infections within legumes roots where they produce plant accessible nitrogen from atmospheric nitrogen and thus reduce the reliance on industrial inputs. The rhizobia-legume symbiosis is often treated as a pairwise relationship between single genotypes, both in research and in the production of rhizobial inoculants. However in nature individual plants are infected by a high diversity of rhizobia symbionts. How this diversity affects productivity within the symbiosis is unclear. Here, we use a powerful statistical approach to assess the impact of diversity within the Rhizobium leguminosarum - clover symbiosis using a biodiversity-ecosystem function framework. Statistically, we found no significant impact of rhizobium diversity. However this relationship was weakly positive - rather than negative - indicating that there is no significant cost to increasing inoculant diversity. Productivity was influenced by the identity of the strains within an inoculant; strains with the highest individual performance showed a significant positive contribution within mixed inoculants. Overall, inoculant effectiveness was best predicted by the individual performance of the best inoculant member, and only weakly predicted by the worst performing member. Collectively, our data suggest that the Rhizobium leguminosarum - clover symbiosis displays a weak diversity-function relationship, but that inoculant performance can be improved through the inclusion of high performing strains. Given the wide environmental dependence of rhizobial inoculant quality, multi-strain inoculants could be highly successful as they increase the likelihood of including a strain well adapted to local conditions across different environments.
Collapse
Affiliation(s)
- Bryden Fields
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Emma K Moffat
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ville-Petri Friman
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ellie Harrison
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
19
|
Alfalfa for a Sustainable Ovine Farming System: Proposed Research for a New Feeding Strategy Based on Alfalfa and Ecological Leftovers in Drought Conditions. SUSTAINABILITY 2021. [DOI: 10.3390/su13073880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the past 10 years, the average demand for meat and milk across the world has significantly increased, especially in developing countries. Therefore, to support the production of animal-derived food products, a huge quantity of feed resources is needed. This paper does not present original research, but rather provides a conceptual strategy to improve primary production in a sustainable way, in relation to forthcoming issues linked to climate change. Increases in meat and milk production could be achieved by formulating balanced diets for ovines based on alfalfa integrated with local agricultural by-products. As the central component of the diet is alfalfa, one goal of the project is increasing the yield of alfalfa in a sustainable way via inoculating seeds with symbiotic rhizobia (i.e., Sinorhizobium meliloti). Seed inoculants are already present on the market but have not been optimized for arid soils. Furthermore, a part of the project is focused on the selection of elite symbiotic strains that show increased resistance to salt stress and competitiveness. The second component of the experimental diets is bio-waste, especially that obtained from olive oil manufacturing (i.e., pomace). The addition of agro-by-products allows us to use such waste as a resource for animal feeding, and possibly, to modulate rumen metabolism, thereby increasing the nutritional quality of milk and meat.
Collapse
|
20
|
Rosselli R, La Porta N, Muresu R, Stevanato P, Concheri G, Squartini A. Pangenomics of the Symbiotic Rhizobiales. Core and Accessory Functions Across a Group Endowed with High Levels of Genomic Plasticity. Microorganisms 2021; 9:microorganisms9020407. [PMID: 33669391 PMCID: PMC7920277 DOI: 10.3390/microorganisms9020407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Pangenome analyses reveal major clues on evolutionary instances and critical genome core conservation. The order Rhizobiales encompasses several families with rather disparate ecological attitudes. Among them, Rhizobiaceae, Bradyrhizobiaceae, Phyllobacteriacreae and Xanthobacteriaceae, include members proficient in mutualistic symbioses with plants based on the bacterial conversion of N2 into ammonia (nitrogen-fixation). The pangenome of 12 nitrogen-fixing plant symbionts of the Rhizobiales was analyzed yielding total 37,364 loci, with a core genome constituting 700 genes. The percentage of core genes averaged 10.2% over single genomes, and between 5% to 7% were found to be plasmid-associated. The comparison between a representative reference genome and the core genome subset, showed the core genome highly enriched in genes for macromolecule metabolism, ribosomal constituents and overall translation machinery, while membrane/periplasm-associated genes, and transport domains resulted under-represented. The analysis of protein functions revealed that between 1.7% and 4.9% of core proteins could putatively have different functions.
Collapse
Affiliation(s)
- Riccardo Rosselli
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute of Sea Research, NL-1790 AB Den Burg, The Netherlands;
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 Alicante, Spain
| | - Nicola La Porta
- Department of Sustainable Agrobiosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy;
- MOUNTFOR Project Centre, European Forest Institute, 38098 San Michele all’Adige, Italy
| | - Rosella Muresu
- Institute of Animal Production Systems in Mediterranean Environments-National Research Council, 07040 Sassari, Italy;
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy; (P.S.); (G.C.)
| | - Giuseppe Concheri
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy; (P.S.); (G.C.)
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy; (P.S.); (G.C.)
- Correspondence: ; Tel.: +39-049-8272-923
| |
Collapse
|
21
|
Fagorzi C, Bacci G, Huang R, Cangioli L, Checcucci A, Fini M, Perrin E, Natali C, diCenzo GC, Mengoni A. Nonadditive Transcriptomic Signatures of Genotype-by-Genotype Interactions during the Initiation of Plant-Rhizobium Symbiosis. mSystems 2021. [PMID: 33436514 DOI: 10.1101/2020.06.15.152710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Rhizobia are ecologically important, facultative plant-symbiotic microbes. In nature, there is a large variability in the association of rhizobial strains and host plants of the same species. Here, we evaluated whether plant and rhizobial genotypes influence the initial transcriptional response of rhizobium following perception of a host plant. RNA sequencing of the model rhizobium Sinorhizobium meliloti exposed to root exudates or luteolin (an inducer of nod genes, involved in the early steps of symbiotic interaction) was performed on a combination of three S. meliloti strains and three alfalfa varieties as host plants. The response to root exudates involved hundreds of changes in the rhizobium transcriptome. Of the differentially expressed genes, 35% were influenced by the strain genotype, 16% were influenced by the plant genotype, and 29% were influenced by strain-by-host plant genotype interactions. We also examined the response of a hybrid S. meliloti strain in which the symbiotic megaplasmid (∼20% of the genome) was mobilized between two of the above-mentioned strains. Dozens of genes were upregulated in the hybrid strain, indicative of nonadditive variation in the transcriptome. In conclusion, this study demonstrated that transcriptional responses of rhizobia upon perception of legumes are influenced by the genotypes of both symbiotic partners and their interaction, suggesting a wide spectrum of genetic determinants involved in the phenotypic variation of plant-rhizobium symbiosis.IMPORTANCE A sustainable way for meeting the need of an increased global food demand should be based on a holobiont perspective, viewing crop plants as intimately associated with their microbiome, which helps improve plant nutrition, tolerance to pests, and adverse climate conditions. However, the genetic repertoire needed for efficient association with plants by the microbial symbionts is still poorly understood. The rhizobia are an exemplary model of facultative plant symbiotic microbes. Here, we evaluated whether genotype-by-genotype interactions could be identified in the initial transcriptional response of rhizobium perception of a host plant. We performed an RNA sequencing study to analyze the transcriptomes of different rhizobial strains elicited by root exudates of three alfalfa varieties as a proxy of an early step of the symbiotic interaction. The results indicated strain- and plant variety-dependent variability in the observed transcriptional changes, providing fundamentally novel insights into the genetic basis of rhizobium-plant interactions. Our results provide genetic insights and perspective to aid in the exploitation of natural rhizobium variation for improvement of legume growth in agricultural ecosystems.
Collapse
Affiliation(s)
- Camilla Fagorzi
- Department of Biology, University of Florence, Florence, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | - Rui Huang
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Lisa Cangioli
- Department of Biology, University of Florence, Florence, Italy
| | - Alice Checcucci
- Department of Biology, University of Florence, Florence, Italy
| | - Margherita Fini
- Department of Biology, University of Florence, Florence, Italy
| | - Elena Perrin
- Department of Biology, University of Florence, Florence, Italy
| | - Chiara Natali
- Department of Biology, University of Florence, Florence, Italy
| | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
22
|
Nonadditive Transcriptomic Signatures of Genotype-by-Genotype Interactions during the Initiation of Plant-Rhizobium Symbiosis. mSystems 2021; 6:6/1/e00974-20. [PMID: 33436514 PMCID: PMC7901481 DOI: 10.1128/msystems.00974-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rhizobia are ecologically important, facultative plant-symbiotic microbes. In nature, there is a large variability in the association of rhizobial strains and host plants of the same species. Here, we evaluated whether plant and rhizobial genotypes influence the initial transcriptional response of rhizobium following perception of a host plant. RNA sequencing of the model rhizobium Sinorhizobium meliloti exposed to root exudates or luteolin (an inducer of nod genes, involved in the early steps of symbiotic interaction) was performed on a combination of three S. meliloti strains and three alfalfa varieties as host plants. The response to root exudates involved hundreds of changes in the rhizobium transcriptome. Of the differentially expressed genes, 35% were influenced by the strain genotype, 16% were influenced by the plant genotype, and 29% were influenced by strain-by-host plant genotype interactions. We also examined the response of a hybrid S. meliloti strain in which the symbiotic megaplasmid (∼20% of the genome) was mobilized between two of the above-mentioned strains. Dozens of genes were upregulated in the hybrid strain, indicative of nonadditive variation in the transcriptome. In conclusion, this study demonstrated that transcriptional responses of rhizobia upon perception of legumes are influenced by the genotypes of both symbiotic partners and their interaction, suggesting a wide spectrum of genetic determinants involved in the phenotypic variation of plant-rhizobium symbiosis.IMPORTANCE A sustainable way for meeting the need of an increased global food demand should be based on a holobiont perspective, viewing crop plants as intimately associated with their microbiome, which helps improve plant nutrition, tolerance to pests, and adverse climate conditions. However, the genetic repertoire needed for efficient association with plants by the microbial symbionts is still poorly understood. The rhizobia are an exemplary model of facultative plant symbiotic microbes. Here, we evaluated whether genotype-by-genotype interactions could be identified in the initial transcriptional response of rhizobium perception of a host plant. We performed an RNA sequencing study to analyze the transcriptomes of different rhizobial strains elicited by root exudates of three alfalfa varieties as a proxy of an early step of the symbiotic interaction. The results indicated strain- and plant variety-dependent variability in the observed transcriptional changes, providing fundamentally novel insights into the genetic basis of rhizobium-plant interactions. Our results provide genetic insights and perspective to aid in the exploitation of natural rhizobium variation for improvement of legume growth in agricultural ecosystems.
Collapse
|
23
|
Fine-Scale Patterns of Genetic Structure in the Host Plant Chamaecrista fasciculata (Fabaceae) and Its Nodulating Rhizobia Symbionts. PLANTS 2020; 9:plants9121719. [PMID: 33297297 PMCID: PMC7762326 DOI: 10.3390/plants9121719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/04/2023]
Abstract
In natural plant populations, a fine-scale spatial genetic structure (SGS) can result from limited gene flow, selection pressures or spatial autocorrelation. However, limited gene flow is considered the predominant determinant in the establishment of SGS. With limited dispersal ability of bacterial cells in soil and host influence on their variety and abundance, spatial autocorrelation of bacterial communities associated with plants is expected. For this study, we collected genetic data from legume host plants, Chamaecrista fasciculata, their Bradyrhizobium symbionts and rhizosphere free-living bacteria at a small spatial scale to evaluate the extent to which symbiotic partners will have similar SGS and to understand how plant hosts choose among nodulating symbionts. We found SGS across all sampled plants for both the host plants and nodulating rhizobia, suggesting that both organisms are influenced by similar mechanisms structuring genetic diversity or shared habitat preferences by both plants and microbes. We also found that plant genetic identity and geographic distance might serve as predictors of nodulating rhizobia genetic identity. Bradyrhizobium elkanii was the only type of rhizobia found in nodules, which suggests some level of selection by the host plant.
Collapse
|
24
|
Fagorzi C, Ilie A, Decorosi F, Cangioli L, Viti C, Mengoni A, diCenzo GC. Symbiotic and Nonsymbiotic Members of the Genus Ensifer (syn. Sinorhizobium) Are Separated into Two Clades Based on Comparative Genomics and High-Throughput Phenotyping. Genome Biol Evol 2020; 12:2521-2534. [PMID: 33283865 PMCID: PMC7719227 DOI: 10.1093/gbe/evaa221] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 01/03/2023] Open
Abstract
Rhizobium–legume symbioses serve as paradigmatic examples for the study of mutualism evolution. The genus Ensifer (syn. Sinorhizobium) contains diverse plant-associated bacteria, a subset of which can fix nitrogen in symbiosis with legumes. To gain insights into the evolution of symbiotic nitrogen fixation (SNF), and interkingdom mutualisms more generally, we performed extensive phenotypic, genomic, and phylogenetic analyses of the genus Ensifer. The data suggest that SNF likely emerged several times within the genus Ensifer through independent horizontal gene transfer events. Yet, the majority (105 of 106) of the Ensifer strains with the nodABC and nifHDK nodulation and nitrogen fixation genes were found within a single, monophyletic clade. Comparative genomics highlighted several differences between the “symbiotic” and “nonsymbiotic” clades, including divergences in their pangenome content. Additionally, strains of the symbiotic clade carried 325 fewer genes, on average, and appeared to have fewer rRNA operons than strains of the nonsymbiotic clade. Initial characterization of a subset of ten Ensifer strains identified several putative phenotypic differences between the clades. Tested strains of the nonsymbiotic clade could catabolize 25% more carbon sources, on average, than strains of the symbiotic clade, and they were better able to grow in LB medium and tolerate alkaline conditions. On the other hand, the tested strains of the symbiotic clade were better able to tolerate heat stress and acidic conditions. We suggest that these data support the division of the genus Ensifer into two main subgroups, as well as the hypothesis that pre-existing genetic features are required to facilitate the evolution of SNF in bacteria.
Collapse
Affiliation(s)
- Camilla Fagorzi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Alexandru Ilie
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Francesca Decorosi
- Genexpress Laboratory, Department of Agriculture, Food, Environment and Forestry, University of Florence, Sesto Fiorentino, Italy
| | - Lisa Cangioli
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Carlo Viti
- Genexpress Laboratory, Department of Agriculture, Food, Environment and Forestry, University of Florence, Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - George C diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, Italy.,Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
25
|
Burghardt LT. Evolving together, evolving apart: measuring the fitness of rhizobial bacteria in and out of symbiosis with leguminous plants. THE NEW PHYTOLOGIST 2020; 228:28-34. [PMID: 31276218 DOI: 10.1111/nph.16045] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/20/2019] [Indexed: 05/11/2023]
Abstract
Most plant-microbe interactions are facultative, with microbes experiencing temporally and spatially variable selection. How this variation affects microbial evolution is poorly understood. Given its tractability and ecological and agricultural importance, the legume-rhizobia nitrogen-fixing symbiosis is a powerful model for identifying traits and genes underlying bacterial fitness. New technologies allow high-throughput measurement of the relative fitness of bacterial mutants, strains and species in mixed inocula in the host, rhizosphere and soil environments. I consider how host genetic variation (G × G), other environmental factors (G × E), and host life-cycle variation may contribute to the maintenance of genetic variation and adaptive trajectories of rhizobia - and, potentially, other facultative symbionts. Lastly, I place these findings in the context of developing beneficial inoculants in a changing climate.
Collapse
Affiliation(s)
- Liana T Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St Paul, MN, 55108, USA
| |
Collapse
|
26
|
Soumare A, Diedhiou AG, Thuita M, Hafidi M, Ouhdouch Y, Gopalakrishnan S, Kouisni L. Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. PLANTS 2020; 9:plants9081011. [PMID: 32796519 PMCID: PMC7464700 DOI: 10.3390/plants9081011] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
For all living organisms, nitrogen is an essential element, while being the most limiting in ecosystems and for crop production. Despite the significant contribution of synthetic fertilizers, nitrogen requirements for food production increase from year to year, while the overuse of agrochemicals compromise soil health and agricultural sustainability. One alternative to overcome this problem is biological nitrogen fixation (BNF). Indeed, more than 60% of the fixed N on Earth results from BNF. Therefore, optimizing BNF in agriculture is more and more urgent to help meet the demand of the food production needs for the growing world population. This optimization will require a good knowledge of the diversity of nitrogen-fixing microorganisms, the mechanisms of fixation, and the selection and formulation of efficient N-fixing microorganisms as biofertilizers. Good understanding of BNF process may allow the transfer of this ability to other non-fixing microorganisms or to non-leguminous plants with high added value. This minireview covers a brief history on BNF, cycle and mechanisms of nitrogen fixation, biofertilizers market value, and use of biofertilizers in agriculture. The minireview focuses particularly on some of the most effective microbial products marketed to date, their efficiency, and success-limiting in agriculture. It also highlights opportunities and difficulties of transferring nitrogen fixation capacity in cereals.
Collapse
Affiliation(s)
- Abdoulaye Soumare
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco; (M.H.); (Y.O.); (L.K.)
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar 1386, Senegal
- Correspondence: (A.S.); (A.G.D.)
| | - Abdala G. Diedhiou
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar 1386, Senegal
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD) de Dakar, Dakar 1386, Senegal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA-AGRISAN), UCAD, Dakar 18524, Senegal
- Correspondence: (A.S.); (A.G.D.)
| | - Moses Thuita
- International Institute of Tropical Agriculture, Nairobi PO BOX 30772-00100, Kenya;
| | - Mohamed Hafidi
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco; (M.H.); (Y.O.); (L.K.)
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Yedir Ouhdouch
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco; (M.H.); (Y.O.); (L.K.)
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | | | - Lamfeddal Kouisni
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco; (M.H.); (Y.O.); (L.K.)
| |
Collapse
|
27
|
diCenzo GC, Tesi M, Pfau T, Mengoni A, Fondi M. Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. Nat Commun 2020; 11:2574. [PMID: 32444627 PMCID: PMC7244743 DOI: 10.1038/s41467-020-16484-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/28/2020] [Indexed: 11/09/2022] Open
Abstract
The mutualistic association between leguminous plants and endosymbiotic rhizobial bacteria is a paradigmatic example of a symbiosis driven by metabolic exchanges. Here, we report the reconstruction and modelling of a genome-scale metabolic network of Medicago truncatula (plant) nodulated by Sinorhizobium meliloti (bacterium). The reconstructed nodule tissue contains five spatially distinct developmental zones and encompasses the metabolism of both the plant and the bacterium. Flux balance analysis (FBA) suggests that the metabolic costs associated with symbiotic nitrogen fixation are primarily related to supporting nitrogenase activity, and increasing N2-fixation efficiency is associated with diminishing returns in terms of plant growth. Our analyses support that differentiating bacteroids have access to sugars as major carbon sources, ammonium is the main nitrogen export product of N2-fixing bacteria, and N2 fixation depends on proton transfer from the plant cytoplasm to the bacteria through acidification of the peribacteroid space. We expect that our model, called 'Virtual Nodule Environment' (ViNE), will contribute to a better understanding of the functioning of legume nodules, and may guide experimental studies and engineering of symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Michelangelo Tesi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Thomas Pfau
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, Italy.
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
28
|
Deciphering the Symbiotic Plant Microbiome: Translating the Most Recent Discoveries on Rhizobia for the Improvement of Agricultural Practices in Metal-Contaminated and High Saline Lands. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9090529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhizosphere and plant-associated microorganisms have been intensely studied for their beneficial effects on plant growth and health. These mainly include nitrogen-fixing bacteria (NFB) and plant-growth promoting rhizobacteria (PGPR). This beneficial fraction is involved in major functions such as plant nutrition and plant resistance to biotic and abiotic stresses, which include water deficiency and heavy-metal contamination. Consequently, crop yield emerges as the net result of the interactions between the plant genome and its associated microbiome. Here, we provide a review covering recent studies on PGP rhizobia as effective inoculants for agricultural practices in harsh soil, and we propose models for inoculant combinations and genomic manipulation strategies to improve crop yield.
Collapse
|
29
|
Microbial associations enabling nitrogen acquisition in plants. Curr Opin Microbiol 2019; 49:83-89. [DOI: 10.1016/j.mib.2019.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 01/29/2023]
|
30
|
diCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A. Multidisciplinary approaches for studying rhizobium–legume symbioses. Can J Microbiol 2019; 65:1-33. [DOI: 10.1139/cjm-2018-0377] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The rhizobium–legume symbiosis is a major source of fixed nitrogen (ammonia) in the biosphere. The potential for this process to increase agricultural yield while reducing the reliance on nitrogen-based fertilizers has generated interest in understanding and manipulating this process. For decades, rhizobium research has benefited from the use of leading techniques from a very broad set of fields, including population genetics, molecular genetics, genomics, and systems biology. In this review, we summarize many of the research strategies that have been employed in the study of rhizobia and the unique knowledge gained from these diverse tools, with a focus on genome- and systems-level approaches. We then describe ongoing synthetic biology approaches aimed at improving existing symbioses or engineering completely new symbiotic interactions. The review concludes with our perspective of the future directions and challenges of the field, with an emphasis on how the application of a multidisciplinary approach and the development of new methods will be necessary to ensure successful biotechnological manipulation of the symbiosis.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Maryam Zamani
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alice Checcucci
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
31
|
Achieving a multi-strain symbiosis: strain behavior and infection dynamics. ISME JOURNAL 2018; 13:698-706. [PMID: 30353039 DOI: 10.1038/s41396-018-0305-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/16/2018] [Accepted: 10/09/2018] [Indexed: 01/30/2023]
Abstract
Strain diversity, while now recognized as a key driver underlying partner dynamics in symbioses, is usually difficult to experimentally manipulate and image in hosts with complex microbiota. To address this problem, we have used the luminous marine bacterium Vibrio fischeri, which establishes a symbiosis within the crypts of the nascent light organ of the squid Euprymna scolopes. Competition assays in newly hatched juvenile squid have shown that symbiotic V. fischeri are either niche-sharing "S strains", which share the light organ when co-inoculated with other S strains, or niche-dominant "D strains", which are typically found alone in the light organ after a co-colonization. To understand this D strain advantage, we determined the minimum time that different V. fischeri strains needed to initiate colonization and used confocal microscopy to localize the symbionts along their infection track. Further, we determined whether symbiont-induced host morphogenic events also occurred earlier during a D strain colonization. We conclude that D strains colonized more quickly than S strains. Nevertheless, light-organ populations in field-caught adult squid often contain both D and S strains. We determined experimentally that this symbiont population heterogeneity might be achieved in nature by a serial encounter of different strains in the environment.
Collapse
|
32
|
Checcucci A, diCenzo GC, Ghini V, Bazzicalupo M, Becker A, Decorosi F, Döhlemann J, Fagorzi C, Finan TM, Fondi M, Luchinat C, Turano P, Vignolini T, Viti C, Mengoni A. Creation and Characterization of a Genomically Hybrid Strain in the Nitrogen-Fixing Symbiotic Bacterium Sinorhizobium meliloti. ACS Synth Biol 2018; 7:2365-2378. [PMID: 30223644 DOI: 10.1021/acssynbio.8b00158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many bacteria, often associated with eukaryotic hosts and of relevance for biotechnological applications, harbor a multipartite genome composed of more than one replicon. Biotechnologically relevant phenotypes are often encoded by genes residing on the secondary replicons. A synthetic biology approach to developing enhanced strains for biotechnological purposes could therefore involve merging pieces or entire replicons from multiple strains into a single genome. Here we report the creation of a genomic hybrid strain in a model multipartite genome species, the plant-symbiotic bacterium Sinorhizobium meliloti. We term this strain as cis-hybrid, since it is produced by genomic material coming from the same species' pangenome. In particular, we moved the secondary replicon pSymA (accounting for nearly 20% of total genome content) from a donor S. meliloti strain to an acceptor strain. The cis-hybrid strain was screened for a panel of complex phenotypes (carbon/nitrogen utilization phenotypes, intra- and extracellular metabolomes, symbiosis, and various microbiological tests). Additionally, metabolic network reconstruction and constraint-based modeling were employed for in silico prediction of metabolic flux reorganization. Phenotypes of the cis-hybrid strain were in good agreement with those of both parental strains. Interestingly, the symbiotic phenotype showed a marked cultivar-specific improvement with the cis-hybrid strains compared to both parental strains. These results provide a proof-of-principle for the feasibility of genome-wide replicon-based remodelling of bacterial strains for improved biotechnological applications in precision agriculture.
Collapse
Affiliation(s)
- Alice Checcucci
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - George C. diCenzo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Veronica Ghini
- CERM & CIRMMP, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Bazzicalupo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Anke Becker
- LOEWE − Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Francesca Decorosi
- Department of Agri-food Production and Environmental Science, University of Florence, 50019 Florence, Italy
| | | | - Camilla Fagorzi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Marco Fondi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- CERM & CIRMMP, University of Florence, 50019 Sesto Fiorentino, Italy
- CERM and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Paola Turano
- CERM & CIRMMP, University of Florence, 50019 Sesto Fiorentino, Italy
- CERM and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Tiziano Vignolini
- European Laboratory for Non-Linear Spectroscopy, LENS, 50019 Sesto Fiorentino, Italy
| | - Carlo Viti
- Department of Agri-food Production and Environmental Science, University of Florence, 50019 Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
33
|
Ndungu SM, Messmer MM, Ziegler D, Thuita M, Vanlauwe B, Frossard E, Thonar C. Evaluation of MALDI-TOF mass spectrometry for the competitiveness analysis of selected indigenous cowpea (Vigna unguiculata L. Walp.) Bradyrhizobium strains from Kenya. Appl Microbiol Biotechnol 2018; 102:5265-5278. [PMID: 29696334 DOI: 10.1007/s00253-018-9005-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 01/21/2023]
Abstract
Cowpea N2 fixation and yield can be enhanced by selecting competitive and efficient indigenous rhizobia. Strains from contrasting agro-ecologies of Kilifi and Mbeere (Kenya) were screened. Two pot experiments were established consisting of 13 Bradyrhizobium strains; experiment 1 (11 Mbeere + CBA + BK1 from Burkina Faso), experiment 2 (12 Kilifi + CBA). Symbiotic effectiveness was assessed (shoot biomass, SPAD index and N uptake). Nodule occupancy of 13 simultaneously co-inoculated strains in each experiment was analyzed by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) to assess competitiveness. Strains varied in effectiveness and competitiveness. The four most efficient strains were further evaluated in a field trial in Mbeere during the 2014 short rains. Strains from bacteroids of cowpea nodules from pot and field experiments were accurately identified as Bradyrhizobium by MALDI-TOF based on the SARAMIS™ database. In the field, abundant indigenous populations 7.10 × 103 rhizobia g-1 soil, outcompeted introduced strains. As revealed by MALDI-TOF, indigenous strains clustered into six distinct groups (I, II, III, IV, V and VI), group III were most abundant occupying 80% of nodules analyzed. MALDI-TOF was rapid, affordable and reliable to identify Bradyrhizobium strains directly from nodule suspensions in competition pot assays and in the field with abundant indigenous strains thus, its suitability for future competition assays. Evaluating strain competitiveness and then symbiotic efficacy is proposed in bioprospecting for potential cowpea inoculant strains.
Collapse
Affiliation(s)
- Samuel Mathu Ndungu
- Institute of Agricultural Sciences, ETH Zurich, Plant Nutrition group, Eschikon 33, CH-8315, Lindau, Switzerland. .,Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, CH-5070, Frick, Switzerland. .,International Institute of Tropical Agriculture (IITA), c/o ICIPE Campus, P.O. Box 30772-00100, Nairobi, Kenya.
| | - Monika M Messmer
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, CH-5070, Frick, Switzerland
| | - Dominik Ziegler
- Mabritec AG, Lörracherstrasse 50, CH-4125, Riehen, Switzerland
| | - Moses Thuita
- International Institute of Tropical Agriculture (IITA), c/o ICIPE Campus, P.O. Box 30772-00100, Nairobi, Kenya
| | - Bernard Vanlauwe
- International Institute of Tropical Agriculture (IITA), c/o ICIPE Campus, P.O. Box 30772-00100, Nairobi, Kenya
| | - Emmanuel Frossard
- Institute of Agricultural Sciences, ETH Zurich, Plant Nutrition group, Eschikon 33, CH-8315, Lindau, Switzerland
| | - Cécile Thonar
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, CH-5070, Frick, Switzerland. .,AgroBioChem Department, Gembloux Agro-Bio Tech, University of Liège, B-5030, Gembloux, Belgium.
| |
Collapse
|
34
|
Russo E, Bacci G, Chiellini C, Fagorzi C, Niccolai E, Taddei A, Ricci F, Ringressi MN, Borrelli R, Melli F, Miloeva M, Bechi P, Mengoni A, Fani R, Amedei A. Preliminary Comparison of Oral and Intestinal Human Microbiota in Patients with Colorectal Cancer: A Pilot Study. Front Microbiol 2018; 8:2699. [PMID: 29375539 PMCID: PMC5770402 DOI: 10.3389/fmicb.2017.02699] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/26/2017] [Indexed: 12/15/2022] Open
Abstract
In this study Next-Generation Sequencing (NGS) was used to analyze and compare human microbiota from three different compartments, i.e., saliva, feces, and cancer tissue (CT), of a selected cohort of 10 Italian patients with colorectal cancer (CRC) vs. 10 healthy controls (saliva and feces). Furthermore, the Fusobacterium nucleatum abundance in the same body site was investigated through real-time quantitative polymerase chain reaction (qPCR) to assess the association with CRC. Differences in bacterial composition, F. nucleatum abundance in healthy controls vs. CRC patients, and the association of F. nucleatum with clinical parameters were observed. Taxonomic analysis based on 16S rRNA gene, revealed the presence of three main bacterial phyla, which includes about 80% of reads: Firmicutes (39.18%), Bacteroidetes (30.36%), and Proteobacteria (10.65%). The results highlighted the presence of different bacterial compositions; in particular, the fecal samples of CRC patients seemed to be enriched with Bacteroidetes, whereas in the fecal samples of healthy controls Firmicutes were one of the major phyla detected though these differences were not statistically significant. The CT samples showed the highest alpha diversity values. These results emphasize a different taxonomic composition of feces from CRC compared to healthy controls. Despite the low number of samples included in the study, these results suggest the importance of microbiota in the CRC progression and could pave the way to the development of therapeutic interventions and novel microbial-related diagnostic tools in CRC patients.
Collapse
Affiliation(s)
- Edda Russo
- Immunology, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | | | - Camilla Fagorzi
- Department of Biology, University of Florence, Florence, Italy
| | - Elena Niccolai
- Immunology, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Antonio Taddei
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Federica Ricci
- Immunology, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Maria N. Ringressi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Rossella Borrelli
- Immunology, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Filippo Melli
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Manouela Miloeva
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Paolo Bechi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Florence, Italy
| | - Amedeo Amedei
- Immunology, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
- Neuromusculoskeletal Department (Interdisciplinary Internal Medicine), Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| |
Collapse
|
35
|
Checcucci A, DiCenzo GC, Bazzicalupo M, Mengoni A. Trade, Diplomacy, and Warfare: The Quest for Elite Rhizobia Inoculant Strains. Front Microbiol 2017; 8:2207. [PMID: 29170661 PMCID: PMC5684177 DOI: 10.3389/fmicb.2017.02207] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/26/2017] [Indexed: 01/12/2023] Open
Abstract
Rhizobia form symbiotic nitrogen-fixing nodules on leguminous plants, which provides an important source of fixed nitrogen input into the soil ecosystem. The improvement of symbiotic nitrogen fixation is one of the main challenges facing agriculture research. Doing so will reduce the usage of chemical nitrogen fertilizer, contributing to the development of sustainable agriculture practices to deal with the increasing global human population. Sociomicrobiological studies of rhizobia have become a model for the study of the evolution of mutualistic interactions. The exploitation of the wide range of social interactions rhizobia establish among themselves, with the soil and root microbiota, and with the host plant, could constitute a great advantage in the development of a new generation of highly effective rhizobia inoculants. Here, we provide a brief overview of the current knowledge on three main aspects of rhizobia interaction: trade of fixed nitrogen with the plant; diplomacy in terms of communication and possible synergistic effects; and warfare, as antagonism and plant control over symbiosis. Then, we propose new areas of investigation and the selection of strains based on the combination of the genetic determinants for the relevant rhizobia symbiotic behavioral phenotypes.
Collapse
Affiliation(s)
- Alice Checcucci
- Department of Biology, University of Florence, Florence, Italy
| | | | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
36
|
Quides KW, Stomackin GM, Lee HH, Chang JH, Sachs JL. Lotus japonicus alters in planta fitness of Mesorhizobium loti dependent on symbiotic nitrogen fixation. PLoS One 2017; 12:e0185568. [PMID: 28957401 PMCID: PMC5619806 DOI: 10.1371/journal.pone.0185568] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022] Open
Abstract
Rhizobial bacteria are known for their capacity to fix nitrogen for legume hosts. However ineffective rhizobial genotypes exist and can trigger the formation of nodules but fix little if any nitrogen for hosts. Legumes must employ mechanisms to minimize exploitation by the ineffective rhizobial genotypes to limit fitness costs and stabilize the symbiosis. Here we address two key questions about these host mechanisms. What stages of the interaction are controlled by the host, and can hosts detect subtle differences in nitrogen fixation? We provide the first explicit evidence for adaptive host control in the interaction between Lotus japonicus and Mesorhizobium loti. In both single inoculation and co-inoculation experiments, less effective rhizobial strains exhibited reduced in planta fitness relative to the wildtype M. loti. We uncovered evidence of host control during nodule formation and during post-infection proliferation of symbionts within nodules. We found a linear relationship between rhizobial fitness and symbiotic effectiveness. Our results suggest that L. japonicus can adaptively modulate the fitness of symbionts as a continuous response to symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Kenjiro W. Quides
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, United States of America
| | - Glenna M. Stomackin
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, United States of America
| | - Hsu-Han Lee
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, United States of America
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America
| | - Joel L. Sachs
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, United States of America
- Department of Botany and Plant Sciences, University of California, Riverside, CA, United States of America
- Institute for Integrative Genome Biology, University of California, Riverside, CA, United States of America
- * E-mail:
| |
Collapse
|
37
|
Regus JU, Quides KW, O'Neill MR, Suzuki R, Savory EA, Chang JH, Sachs JL. Cell autonomous sanctions in legumes target ineffective rhizobia in nodules with mixed infections. AMERICAN JOURNAL OF BOTANY 2017; 104:1299-1312. [PMID: 29885243 DOI: 10.3732/ajb.1700165] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/11/2017] [Indexed: 05/22/2023]
Affiliation(s)
- John U. Regus
- Department of Evolution, Ecology, and Organismal Biology, 2710 Life Sciences Building, University of California, Riverside, California 92521 USA
| | - Kenjiro W. Quides
- Department of Evolution, Ecology, and Organismal Biology, 2710 Life Sciences Building, University of California, Riverside, California 92521 USA
| | - Matthew R. O'Neill
- Department of Evolution, Ecology, and Organismal Biology, 2710 Life Sciences Building, University of California, Riverside, California 92521 USA
| | - Rina Suzuki
- Department of Evolution, Ecology, and Organismal Biology, 2710 Life Sciences Building, University of California, Riverside, California 92521 USA
| | - Elizabeth A. Savory
- Department of Botany and Plant Pathology, Cordley Hall, 2701 SW Campus Way, Oregon State University, Corvallis, Oregon 97331 USA
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Cordley Hall, 2701 SW Campus Way, Oregon State University, Corvallis, Oregon 97331 USA
| | - Joel L. Sachs
- Department of Evolution, Ecology, and Organismal Biology, 2710 Life Sciences Building, University of California, Riverside, California 92521 USA
- Department of Botany and Plant Sciences, 2142 Batchelor Hall, University of California, Riverside, California 92521 USA
- Institute for Integrative Genome Biology, 5406 Boyce Hall, University of California, Riverside, California 92521 USA
| |
Collapse
|
38
|
Le Roux JJ, Hui C, Keet JH, Ellis AG. Co-introduction vs ecological fitting as pathways to the establishment of effective mutualisms during biological invasions. THE NEW PHYTOLOGIST 2017; 215:1354-1360. [PMID: 28771816 DOI: 10.1111/nph.14593] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Contents 1354 I. 1354 II. 1355 III. 1357 IV. 1357 V. 1359 1359 References 1359 SUMMARY: Interactions between non-native plants and their mutualists are often disrupted upon introduction to new environments. Using legume-rhizobium mutualistic interactions as an example, we discuss two pathways that can influence symbiotic associations in such situations: co-introduction of coevolved rhizobia; and utilization of, and adaptation to, resident rhizobia, hereafter referred to as 'ecological fitting'. Co-introduction and ecological fitting have distinct implications for successful legume invasions and their impacts. Under ecological fitting, initial impacts may be less severe and will accrue over longer periods as novel symbiotic associations and/or adaptations may require fine-tuning over time. Co-introduction will have more profound impacts that will accrue more rapidly as a result of positive feedbacks between densities of non-native rhizobia and their coevolved host plants, in turn enhancing competition between native and non-native rhizobia. Co-introduction can further impact invasion outcomes by the exchange of genetic material between native and non-native rhizobia, potentially resulting in decreased fitness of native legumes. A better understanding of the roles of these two pathways in the invasion dynamics of non-native legumes is much needed, and we highlight some of the exciting research avenues it presents.
Collapse
Affiliation(s)
- Johannes J Le Roux
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
- Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland, 7602, South Africa
- Mathematical and Physical Biosciences, African Institute for Mathematical Sciences, Cape Town, 7945, South Africa
| | - Jan-Hendrik Keet
- Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
| | - Allan G Ellis
- Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
39
|
Keet JH, Ellis AG, Hui C, Le Roux JJ. Legume-rhizobium symbiotic promiscuity and effectiveness do not affect plant invasiveness. ANNALS OF BOTANY 2017; 119:1319-1331. [PMID: 28369229 PMCID: PMC5604570 DOI: 10.1093/aob/mcx028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND AIMS The ability to fix atmospheric nitrogen is thought to play an important role in the invasion success of legumes. Interactions between legumes and nitrogen-fixing bacteria (rhizobia) span a continuum of specialization, and promiscuous legumes are thought to have higher chances of forming effective symbioses in novel ranges. Using Australian Acacia species in South Africa, it was hypothesized that widespread and highly invasive species will be more generalist in their rhizobial symbiotic requirements and more effective in fixing atmospheric nitrogen compared with localized and less invasive species. METHODS To test these hypotheses, eight localized and 11 widespread acacias were examined using next-generation sequencing data for the nodulation gene, nodC , to compare the identity, species richness, diversity and compositional similarity of rhizobia associated with these acacias. Stable isotope analysis was also used to determine levels of nitrogen obtained from the atmosphere via symbiotic nitrogen fixation. KEY RESULTS No differences were found in richness, diversity and community composition between localized and widespread acacias. Similarly, widespread and localized acacias did not differ in their ability to fix atmospheric nitrogen. However, for some species by site comparisons, significant differences in δ15N isotopic signatures were found, indicating differential symbiotic effectiveness between these species at specific localities. CONCLUSIONS Overall, the results support recent findings that root nodule rhizobial diversity and community composition do not differ between acacias that vary in their invasiveness. Differential invasiveness of acacias in South Africa is probably linked to attributes such as differences in propagule pressure, reasons for (e.g. forestry vs. ornamental) and extent of, plantings in the country.
Collapse
Affiliation(s)
- Jan-Hendrik Keet
- Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa
| | - Allan G. Ellis
- Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland 7602, South Africa
- Mathematical and Physical Biosciences, African Institute for Mathematical Sciences, Cape Town 7945, South Africa
| | - Johannes J. Le Roux
- Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
40
|
Checcucci A, Azzarello E, Bazzicalupo M, De Carlo A, Emiliani G, Mancuso S, Spini G, Viti C, Mengoni A. Role and Regulation of ACC Deaminase Gene in Sinorhizobium meliloti: Is It a Symbiotic, Rhizospheric or Endophytic Gene? Front Genet 2017; 8:6. [PMID: 28194158 PMCID: PMC5276845 DOI: 10.3389/fgene.2017.00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/13/2017] [Indexed: 11/13/2022] Open
Abstract
Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior.
Collapse
Affiliation(s)
- Alice Checcucci
- Department of Biology, University of Florence Sesto Fiorentino, Italy
| | - Elisa Azzarello
- Department of Agri-food Production and Environmental Science, University of Florence Florence, Italy
| | - Marco Bazzicalupo
- Department of Biology, University of Florence Sesto Fiorentino, Italy
| | - Anna De Carlo
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Valorizzazione del Legno e delle Specie Arboree Florence, Italy
| | - Giovanni Emiliani
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Valorizzazione del Legno e delle Specie Arboree Florence, Italy
| | - Stefano Mancuso
- Department of Agri-food Production and Environmental Science, University of Florence Florence, Italy
| | - Giulia Spini
- Department of Agri-food Production and Environmental Science, University of Florence Florence, Italy
| | - Carlo Viti
- Department of Agri-food Production and Environmental Science, University of Florence Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence Sesto Fiorentino, Italy
| |
Collapse
|