1
|
Zhao W, Li X, Wen J, Li Q, Bian S, Ren Y. BrTTG1 regulates seed coat proanthocyanidin formation through a direct interaction with structural gene promoters of flavonoid pathway and glutathione S-transferases in Brassica rapa L. FRONTIERS IN PLANT SCIENCE 2024; 15:1372477. [PMID: 38638349 PMCID: PMC11024264 DOI: 10.3389/fpls.2024.1372477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
Introduction Seed coat color is a significant agronomic trait in horticultural crops such as Brassica rapa which is characterized by brown or yellow seed coat coloration. Previous Brassica rapa studies have shown that BrTTG1 is responsible for seed coat proanthocyanidin formation, which is dependent on the MYB-bHLH-WD40 complex, whereas some studies have reported that TRANSPARENT TESTA GLABRA 1 (TTG1) directly interacts with the structural gene promoters of the flavonoid pathway. Methods Herein, the brown-seeded inbred B147 and ttg1 yellow-seeded inbred B80 mutants were used as plant materials for gene expression level analysis, gene promoter clone and transient overexpression. Results The analysis identified eleven structural genes involved in the flavonoid biosynthesis pathway, which are potentially responsible for BrTTG1- dependent seed coat proanthocyanidin formation. The promoters of these genes were cloned and cis-acting elements were identified. Yeast one-hybrid and dual-luciferase assays confirmed that BrTTG1 directly and independently interacted with proCHS-Bra008792, proDFR-Bra027457, proTT12-Bra003361, proTT19-Bra008570, proTT19-Bra023602 and proAHA10-Bra016610. A TTG1-binding motif (RTWWGTRGM) was also identified. Overexpression of TTG1 in the yellow-seed B. rapa inbred induced proanthocyanidin accumulation by increasing the expression levels of related genes. Discussion Our study unveiled, for the first time, the direct interaction between TTG1 and the promoters of the flavonoid biosynthesis pathway structural genes and glutathione S-transferases in Brassica rapa. Additionally, we have identified a novel TTG1-binding motif, providing a basis for further exploration into the function of TTG1 and the accumulation of proanthocyanidins in seed coats.
Collapse
Affiliation(s)
- Wenju Zhao
- Qinghai University, Academy of Agriculture and Forestry Sciences of Qinghai Province, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai, Xining, China
| | - Xiaojuan Li
- Qinghai University, Academy of Agriculture and Forestry Sciences of Qinghai Province, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai, Xining, China
| | - Junqin Wen
- Qinghai University, Academy of Agriculture and Forestry Sciences of Qinghai Province, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai, Xining, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Qinghai, Xining, China
| | - Quanhui Li
- Qinghai University, Academy of Agriculture and Forestry Sciences of Qinghai Province, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai, Xining, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Qinghai, Xining, China
| | - Shuanling Bian
- Qinghai University, Academy of Agriculture and Forestry Sciences of Qinghai Province, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai, Xining, China
| | - Yanjing Ren
- Qinghai University, Academy of Agriculture and Forestry Sciences of Qinghai Province, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai, Xining, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Qinghai, Xining, China
| |
Collapse
|
2
|
Singh J, Garai S, Das S, Thakur JK, Tripathy BC. Role of C4 photosynthetic enzyme isoforms in C3 plants and their potential applications in improving agronomic traits in crops. PHOTOSYNTHESIS RESEARCH 2022; 154:233-258. [PMID: 36309625 DOI: 10.1007/s11120-022-00978-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
As compared to C3, C4 plants have higher photosynthetic rates and better tolerance to high temperature and drought. These traits are highly beneficial in the current scenario of global warming. Interestingly, all the genes of the C4 photosynthetic pathway are present in C3 plants, although they are involved in diverse non-photosynthetic functions. Non-photosynthetic isoforms of carbonic anhydrase (CA), phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), the decarboxylating enzymes NAD/NADP-malic enzyme (NAD/NADP-ME), and phosphoenolpyruvate carboxykinase (PEPCK), and finally pyruvate orthophosphate dikinase (PPDK) catalyze reactions that are essential for major plant metabolism pathways, such as the tricarboxylic acid (TCA) cycle, maintenance of cellular pH, uptake of nutrients and their assimilation. Consistent with this view differential expression pattern of these non-photosynthetic C3 isoforms has been observed in different tissues across the plant developmental stages, such as germination, grain filling, and leaf senescence. Also abundance of these C3 isoforms is increased considerably in response to environmental fluctuations particularly during abiotic stress. Here we review the vital roles played by C3 isoforms of C4 enzymes and the probable mechanisms by which they help plants in acclimation to adverse growth conditions. Further, their potential applications to increase the agronomic trait value of C3 crops is discussed.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| | - Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, 110067, India.
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | | |
Collapse
|
3
|
Ren Y, Zhang N, Li R, Ma X, Zhang L. Comparative transcriptome and flavonoids components analysis reveal the structural genes responsible for the yellow seed coat color of Brassica rapa L. PeerJ 2021; 9:e10770. [PMID: 33717670 PMCID: PMC7937345 DOI: 10.7717/peerj.10770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022] Open
Abstract
Background Seed coat color is an important horticultural trait in Brassica crops, which is divided into two categories: brown/black and yellow. Seeds with yellow seed coat color have higher oil quality, higher protein content and lower fiber content. Yellow seed coat color is therefore considered a desirable trait in hybrid breeding of Brassica rapa, Brassica juncea and Brassica napus. Methods Comprehensive analysis of the abundance transcripts for seed coat color at three development stages by RNA-sequencing (RNA-seq) and corresponding flavonoids compounds by liquid chromatography-tandem mass spectrometry (LC-MS/MS) were carried out in B. rapa. Results We identified 41,286 unigenes with 4,989 differentially expressed genes between brown seeds (B147) and yellow seeds (B80) at the same development stage. Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified 19 unigenes associated with the phenylpropanoid, flavonoid, flavone and flavonol biosynthetic pathways as involved in seed coat color formation. Interestingly, expression levels of early biosynthetic genes (BrCHS, BrCHI, BrF3H, BrF3’H and BrFLS) in the flavonoid biosynthetic pathway were down-regulated while late biosynthetic genes (BrDFR, BrLDOX and BrBAN) were hardly or not expressed in seeds of B80. At the same time, BrTT8 and BrMYB5 were down-regulated in B80. Results of LC-MS also showed that epicatechin was not detected in seeds of B80. We validated the accuracy of our RNA-seq data by RT-qPCR of nine critical genes. Epicatechin was not detected in seeds of B80 by LC-MS/MS. Conclusions The expression levels of flavonoid biosynthetic pathway genes and the relative content of flavonoid biosynthetic pathway metabolites clearly explained yellow seed color formation in B. rapa. This study provides a foundation for further research on the molecular mechanism of seed coat color formation.
Collapse
Affiliation(s)
- Yanjing Ren
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China.,Qinghai Key Laboratory of Vegetable Genetics and Physiology, Xining, China.,State Key Laboratory of Crop Stress Biology for Arid Area, Northwest A&F University, Yangling, China
| | - Ning Zhang
- State Key Laboratory of Crop Stress Biology for Arid Area, Northwest A&F University, Yangling, China
| | - Ru Li
- State Key Laboratory of Crop Stress Biology for Arid Area, Northwest A&F University, Yangling, China
| | - Xiaomin Ma
- State Key Laboratory of Crop Stress Biology for Arid Area, Northwest A&F University, Yangling, China
| | - Lugang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Area, Northwest A&F University, Yangling, China.,State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, China
| |
Collapse
|
4
|
Pan J, Li D, Zhu J, Shu Z, Ye X, Xing A, Wen B, Ma Y, Zhu X, Fang W, Wang Y. Aluminum relieves fluoride stress through stimulation of organic acid production in Camellia sinensis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1127-1137. [PMID: 32549678 PMCID: PMC7266864 DOI: 10.1007/s12298-020-00813-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/10/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Tea plants (Camellia sinensis O. Kuntze) can hyperaccumulate fluoride (F) in leaves. Although, aluminum (Al) can alleviate F toxicity in C. sinensis, the mechanisms driving this process remain unclear. Here, we measured root length, root activity, soluble proteins content, and levels of peroxidase, superoxide dismutase, catalase, malondialdehyde (MDA), and chlorophyll in tea leaves after treatment with different F concentrations. In addition, we focused on the content of organic acids, the gene transcription of malate dehydrogenase (MDH), glycolate oxidase (GO) and citrate synthase (CS) and the relative enzyme activity involved in the tolerance to F in C. sinensis. We also examined the role of Al in this process by analyzing the content of these physiological indicators in tea leaves treated with F and Al. Our results demonstrate that increased MDA content, together with decreased chlorophyll content and soluble proteins are responsible for oxidative damage and metabolism inhibition at high F concentration. Moreover, increased antioxidant enzymes activity regulates ROS damage to protect tea leaves during F stress. Furthermore, exogenous Al alleviated F stress in tea leaves through the regulation of MDA content and antioxidant enzymes activity. In addition, organic acids in exudate stimulated root growth in tea plants exposed to low F concentrations are regulated by MDH, GO, and CS. In addition, Al can stimulate the exudation of organic acids, and may participate in regulating rhizosphere pH of the roots through the interaction with F, eventually leading to the response to F stress in C. sinensis.
Collapse
Affiliation(s)
- Junting Pan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dongqin Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiaojiao Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zaifa Shu
- Lishui Academy of Agricultural Sciences, Lishui, 323000 Zhejiang China
| | - Xiaoli Ye
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Anqi Xing
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bo Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
5
|
Cho EJ, Nguyen QA, Lee YG, Song Y, Park BJ, Bae HJ. Enhanced Biomass Yield of and Saccharification in Transgenic Tobacco Over-Expressing β-Glucosidase. Biomolecules 2020; 10:E806. [PMID: 32456184 PMCID: PMC7278181 DOI: 10.3390/biom10050806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
Here, we report an increase in biomass yield and saccharification in transgenic tobacco plants (Nicotiana tabacumL.) overexpressing thermostable β-glucosidase from Thermotoga maritima, BglB, targeted to the chloroplasts and vacuoles. The transgenic tobacco plants showed phenotypic characteristics that were significantly different from those of the wild-type plants. The biomass yield and life cycle (from germination to flowering and harvest) of the transgenic tobacco plants overexpressing BglB were 52% higher and 36% shorter than those of the wild-type tobacco plants, respectively, indicating a change in the genome transcription levels in the transgenic tobacco plants. Saccharification in biomass samples from the transgenic tobacco plants was 92% higher than that in biomass samples from the wild-type tobacco plants. The transgenic tobacco plants required a total investment (US$/year) corresponding to 52.9% of that required for the wild-type tobacco plants, but the total biomass yield (kg/year) of the transgenic tobacco plants was 43% higher than that of the wild-type tobacco plants. This approach could be applied to other plants to increase biomass yields and overproduce β-glucosidase for lignocellulose conversion.
Collapse
Affiliation(s)
- Eun Jin Cho
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea; (E.J.C.); (Q.A.N.); (Y.S.)
| | - Quynh Anh Nguyen
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea; (E.J.C.); (Q.A.N.); (Y.S.)
| | - Yoon Gyo Lee
- Department of Bioenergy science and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Younho Song
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea; (E.J.C.); (Q.A.N.); (Y.S.)
| | - Bok Jae Park
- Division of Business and Commerce, Chonnam National University, Yeosu 500-749, Korea;
| | - Hyeun-Jong Bae
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea; (E.J.C.); (Q.A.N.); (Y.S.)
- Department of Bioenergy science and Technology, Chonnam National University, Gwangju 61186, Korea;
| |
Collapse
|
6
|
Ren Y, He Q, Ma X, Zhang L. Characteristics of Color Development in Seeds of Brown- and Yellow-Seeded Heading Chinese Cabbage and Molecular Analysis of Brsc, the Candidate Gene Controlling Seed Coat Color. FRONTIERS IN PLANT SCIENCE 2017; 8:1410. [PMID: 28855913 PMCID: PMC5558542 DOI: 10.3389/fpls.2017.01410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/31/2017] [Indexed: 06/01/2023]
Abstract
The proanthocyanidin (PA) is the main flavonoids which affect the seed coat color in Brassica species. In this paper, characteristics of color development and accumulation of flavonoids were analyzed in the seeds of brown-seeded (B147) and yellow-seeded (B80) heading Chinese cabbage (Brassica rapa L. ssp. Pekinensis). It is found that the content of phenolic compounds in B147 were significantly more than that of B80 by using dimethylaminocinnamaldehyde (DMACA) staining and toluidine blue O (TBO) staining. In previous studies, the locus associated with seed coat color has been mapped. The results of whole genome re-sequencing showed that there are large fragment deletions variation in the mapping region between the brown-seeded parent '92S105' and the yellow-seeded parent '91-125.' Based on the B. rapa genome annotation information, the TRANSPARENT TESTA GLABRA 1 (TTG1), is likely to be the candidate gene controlling seed coat color. A 94-base deletion was found in the 96th base downstream of the initiation codon in the TTG1 of yellow seed, thus, the termination codon TGA was occurred in the 297th base which makes the full length of TTG1 of yellow seed is 300 bp. Based on the differential sequences of TTG1 of brown and yellow seed, a functional marker, Brsc-yettg1, was developed to detect the variation of TTG1. Quantitative real-time PCR analysis of BrTTG1 in different tissues showed that expression levels of BrTTG1 was not tissue-specific. During the whole seed development period, the expression of BrTTG1 in B147 was higher than that of B80. The expression levels of four structural genes, BrDFR, BrANS, BrANR1, and BrANR2 in B147 were also higher than those in B80. The co-segregation molecular markers obtained in this report and TTG1 related information provide a basis for further understanding of the molecular mechanism of seed coat color in heading Chinese cabbage.
Collapse
|
7
|
Daspute AA, Sadhukhan A, Tokizawa M, Kobayashi Y, Panda SK, Koyama H. Transcriptional Regulation of Aluminum-Tolerance Genes in Higher Plants: Clarifying the Underlying Molecular Mechanisms. FRONTIERS IN PLANT SCIENCE 2017; 8:1358. [PMID: 28848571 PMCID: PMC5550694 DOI: 10.3389/fpls.2017.01358] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/20/2017] [Indexed: 05/08/2023]
Abstract
Aluminum (Al) rhizotoxicity is one of the major environmental stresses that decrease global food production. Clarifying the molecular mechanisms underlying Al tolerance may contribute to the breeding of Al-tolerant crops. Recent studies identified various Al-tolerance genes. The expression of these genes is inducible by Al. Studies of the major Arabidopsis thaliana Al-tolerance gene, ARABIDOPSIS THALIANA ALUMINUM-ACTIVATED MALATE TRANSPORTER 1 (AtALMT1), which encodes an Al-activated malate transporter, revealed that the Al-inducible expression is regulated by a SENSITIVE TO PROTON RHIXOTOXICITY 1 (STOP1) zinc-finger transcription factor. This system, which involves STOP1 and organic acid transporters, is conserved in diverse plant species. The expression of AtALMT1 is also upregulated by several phytohormones and hydrogen peroxide, suggesting there is crosstalk among the signals involved in the transcriptional regulation of AtALMT1. Additionally, phytohormones and reactive oxygen species (ROS) activate various transcriptional responses, including the expression of genes related to increased Al tolerance or the suppression of root growth under Al stress conditions. For example, Al suppressed root growth due to abnormal accumulation of auxin and cytokinin. It activates transcription of TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 and other phytohormone responsive genes in distal transition zone, which causes suppression of root elongation. On the other hand, overexpression of Al inducible genes for ROS-detoxifying enzymes such as GLUTATHIONE-S-TRANSFERASE, PEROXIDASE, SUPEROXIDE DISMUTASE enhances Al resistance in several plant species. We herein summarize the complex transcriptional regulation of an Al-inducible genes affected by STOP1, phytohormones, and ROS.
Collapse
Affiliation(s)
| | - Ayan Sadhukhan
- Faculty of Applied Biological Sciences, Gifu UniversityGifu, Japan
| | | | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu UniversityGifu, Japan
| | - Sanjib K. Panda
- Faculty of Applied Biological Sciences, Gifu UniversityGifu, Japan
- Faculty of Life Science and Bioinformatics, Assam UniversitySilchar, India
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu UniversityGifu, Japan
| |
Collapse
|
8
|
Imran M, Tang K, Liu JY. Comparative Genome-Wide Analysis of the Malate Dehydrogenase Gene Families in Cotton. PLoS One 2016; 11:e0166341. [PMID: 27829020 PMCID: PMC5102359 DOI: 10.1371/journal.pone.0166341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022] Open
Abstract
Malate dehydrogenases (MDHs) play crucial roles in the physiological processes of plant growth and development. In this study, 13 and 25 MDH genes were identified from Gossypium raimondii and Gossypium hirsutum, respectively. Using these and 13 previously reported Gossypium arboretum MDH genes, a comparative molecular analysis between identified MDH genes from G. raimondii, G. hirsutum, and G. arboretum was performed. Based on multiple sequence alignments, cotton MDHs were divided into five subgroups: mitochondrial MDH, peroxisomal MDH, plastidial MDH, chloroplastic MDH and cytoplasmic MDH. Almost all of the MDHs within the same subgroup shared similar gene structure, amino acid sequence, and conserved motifs in their functional domains. An analysis of chromosomal localization suggested that segmental duplication played a major role in the expansion of cotton MDH gene families. Additionally, a selective pressure analysis indicated that purifying selection acted as a vital force in the evolution of MDH gene families in cotton. Meanwhile, an expression analysis showed the distinct expression profiles of GhMDHs in different vegetative tissues and at different fiber developmental stages, suggesting the functional diversification of these genes in cotton growth and fiber development. Finally, a promoter analysis indicated redundant but typical cis-regulatory elements for the potential functions and stress activity of many MDH genes. This study provides fundamental information for a better understanding of cotton MDH gene families and aids in functional analyses of the MDH genes in cotton fiber development.
Collapse
Affiliation(s)
- Muhammad Imran
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kai Tang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- * E-mail:
| |
Collapse
|